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Hierarchical organization versus self-organization

Evo Busseniers
Global Brain Institute

Vrije Universiteit Brussel

September 11, 2017

1 Introduction

In this paper we try to define the difference between hierarchical organization and self-
organization. Organization is defined as a structure with a function. So we can define the
difference between hierarchical organization and self-organization both on the structure
as on the function. In the next two chapters these two definitions are given. For the
structure we will use some existing definitions in graph theory, for the function we will
use existing theory on (self-)organization. In the third chapter we will look how these two
definitions agree. Finally we give a conclusion.

2 Structure

We will only look at structures who can be represented as a graph. A graph G is defined
as the set of two sets V and E. V is the set of all nodes, and E is the set of all edges. We
can represent an edge as a pair of nodes, since an edge connects two nodes. In this paper
we will only work with undirected graphs. In a directed graph there is a starting node
and an ending node of an edge, so an edge is represented as a couple of two nodes. We
can define some properties of a node, which depends on the graph structure. By these
properties we can define hierarchy.

2.1 Degree

We define the degree of a node v as the number of edges that contain v. This is the same
as the number of neighbors of v, where a neighbor is a node which is connected by an edge
with v. We can now look at how the degree is distributed over the network: whether most
nodes have the same degree or some nodes have a higher degree then others. We do that
by looking at the probability distribution P , where P (k) is the probability that a node
has degree k. Through this distribution, two sorts of networks are defined: a random
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network and a scale-free network. In a random network P follows a normal distribution:
nodes vary around the mean, the further away from the mean, the less nodes with this
degree. In a scale-free network P follows a power-law:

P (k) ∼ k−λ,

with λ some constant[5, 3, 8]. So most nodes have a low degree, there are only a few nodes
with a high degree. See figure 1 for the plots of the distributions. A rather intuitive way to
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Figure 1: Probability distribution of random and scale-free network, second line on loglog-
scale

define hierarchy, would be to look at the distribution of the degree. The idea is that nodes
with a higher degree, have more influence. By that assumption, a hierarchical network
could be defined as a scale-free network, and a non-hierarchical network as a random
network. But this assumption is wrong, since a node could have only a few neighbors,
but still have a lot of influence since it connects different clusters. For this reason, we will
work with a better property: the cluster coefficient.

2.2 Cluster coefficient

The cluster coefficient is a measurement for how good the neighbors of a certain node
are connected. The idea behind using it to define hierarchy, is that if the neighbors of a
certain node are not that good connected, they depend more on that node. It will happen
more that communication has to pass via that certain node to reach a neighbor. If the
cluster coefficient of a node is high, it is interchangeable with its neighbors, since the
connections of a neighbor are pretty similar with the connections of our starting node.
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The cluster coefficient C(v) of a node v is defined as

C(v) =
|edges between neighbors|

|total possible edges between neighbors|

=
nv

k(k−1)
2

with nv = |edges between neighbors|; k =number of neighbors. With this measurement,
we can define two different networks[5]. The definitions are a refinement of the previous
definition of scale-free network. A non-hierarchical network is a network where the cluster
coefficient is independent of the degree; the averages of the cluster coefficients of all nodes
with the same degree, is (approximately) the same for all the degrees. In a hierarchical
network, the higher the degree of a node is, the lower the cluster coefficient. Here the
cluster coefficient follows the scaling law

C(k) ∼ k−1

with k the degree, and C(k) the average cluster coefficient of all nodes with degree k [3].

2.3 The three networks

The following figure gives a good summary about the differences the three networks have:

Figure 2: Probability distribution and cluster coefficient against degree in 3 networks,
from [4]
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We now try to construct examples of these networks, with an equal number of nodes
and an approximately equal number of edges. A random network is easily constructed:
you start by the number of nodes wanted, unconnected. Then, two nodes are selected
randomly and connected by an edge. This step is repeated until the graph has the number
of edges that was desired.
The hierarchical network used here, was based on this figure:

Figure 3: Hierarchical network, from [4]

Formally, clusters are used as building stones. At every scale, a bigger cluster is
constructed out of the existing clusters, the building stones. One of these clusters is
selected as being the leading cluster, its leader is also the leader of the bigger cluster.
This leader is connected with everything in the bigger cluster. The leaders of the smaller
clusters (the building blocks) are also connected. Here we use a scaling degree of 3, by
which we mean that each leader is connected with 3 other clusters, thus each cluster
consists of 4 building blocks. We thus start with 4 clusters, existing of one node. These
four nodes form a cluster on a higher scale. One of these nodes is the leading node of the
cluster, which is connected to every node, the other nodes are also connected with each
other, as they are the leaders of clusters (they are leaders of themselves) being together in
a cluster of a higher scale. So in this scale, we just have a complete graph with 4 nodes.
We now construct 4 of these clusters, which will become a cluster of a higher scale. One
of these clusters will be the leading cluster, with its leading node the leader of the big
cluster. This node will be connected with everything. The leaders of the other clusters
will be connected with each other. This procedure is repeated for a number of steps,
depending of the scale the hierarchical network has to have. In this paper we will use a
network of 121 nodes and 1025 edges. For this reason we also build our random network
with 121 nodes and 1025 edges.
To create a non-hierarchical network, we use the B-A algorithm [2, p. 71]. This works as
follows: we start from a small graph, nodes are added with m edges (m is a parameter
of the system, mostly between 1 and 5). But these connections don’t happen randomly:
there is more chance to connect with nodes who have already a high degree. This is called
preferential attachment. Formally, the probability

∏

that a new node will be connected
to node i with degree ki will be
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∏

(ki) =
ki

∑

j kj

Nodes are added until the size of the graph is as desired. We will start with a graph
of 5 nodes which form a line. We’ll add nodes until we have 121 nodes, with m = 4. Then
we get a graph with 928 edges.
We now check whether the constructed networks fulfill the necessary conditions. All
figures are visible in appendix A.1. First, we plot the frequency of a degree against the
degrees. We see that indeed, in the constructed hierarchical and non-hierarchical network,
the higher the degree, the less nodes there are with that degree, while in our random
network, the probability of a degree is normally distributed. Next, we plot the cluster
coefficient against the degree. The result agrees with our predictions: in the hierarchical
network, the cluster coefficient follows a power-law, while in the other networks the cluster
coefficient is approximately the same for all degrees.

2.4 Evaluating the networks

One way of evaluating a graph, is by looking at the diameter. The diameter is the biggest
distance that exists between two nodes in a graph. The distance between two nodes is
the length of the shortest path, that is, the number of edges that minimally have to be
passed to go from the one to the other. The shorter the diameter, the easier it is to go
from one node to another, so the better the network is. The diameter of the hierarchical
network is 2, the other networks have a diameter of 4.
Now we can look what happens to the diameter of a network when nodes are deleted.
There are two ways nodes can be deleted: randomly or delete nodes with the highest
degree. These two events are called respectively failure and attack. In a random network,
the diameter increases as more nodes are deleted, and there is no difference between failure
and attack. In a scale-free network, the diameter remains unchanged if nodes are removed
due failure. But if nodes are removed due attack, the diameter increases with a higher
scope then in a random network[1]. We let the three constructed networks fail 100 times,
and attack them 50 times - after this all networks are unconnected. As we expected, in the
random network the diameter already increases after a small number of steps (10), while
in the non-hierarchical and hierarchical network, the diameter remains unchanged during
a big number of deletions (33 and 68 respectively). The hierarchical network performs the
best, here the diameter remains unchanged until the network falls apart (at step 68) - see
figure 7 in appendix A.2. There is one remark though: the non-hierarchical network has
fewer edges then the rest (928 instead of 1025), which could be the cause why it doesn’t
perform so well. For this reason, we redo the simulation with a non-hierarchical network
with m = 5, which has 1150 edges. This network performs better, the diameter only
changes at step 45 and the network becomes unconnected at step 69, but this is still not
as well as the hierarchical network - see figure 8 in appendix A.2.
Attacking the networks shows that indeed in the random network there is not much
difference with failure, while the other networks fall apart fast, especially the hierarchical
network: the diameter changes immediately, and the network falls apart at step 6- see
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figure 9 in appendix A.2. The phenomenon of civil war could be explained by an attack in
an hierarchical network: the node(s) with the highest degree hold the network together,
since they have the lowest cluster coefficient. So if such a node is deleted, the network
easily falls apart, which causes the leaders of the different clans/clusters to fight for the
overall leadership. Civil war is often used as an argument why hierarchical organization
is necessary, since if there is no more leader, there is chaos, while this could be caused by
the hierarchical structure present from the beginning.

3 Organization

A structure isn’t enough to simulate real-life systems, most of the time they also have a
certain function. We define an organization as a structure with a function. This means
the structure as a whole aim at a global goal or a global pattern. It isn’t necessary that the
goal is clear from the beginning, but there should emerge some general direction. Now,
we can define the difference between self-organization and hierarchical organization on
the level of the functionality. We speak about self-organization if the function, the global
activity, arises spontaneously through local interactions. The common goal is thereby
put by the collective. In a hierarchical organization, on the contrary, the structure and
function is decided from above, by one or a few agents who put the common goal.

To be able to reach a goal, some coordination is needed between the different agents.
We define coordination as the structuring of actions to minimize friction and maximize
synergy[6]. There are 4 processes which can help with that: alignment, division of labor,
work-flow and aggregation. Next, we will define these concepts, and explain how they can
also work in self-organization. In the next chapter, we will make some simulations based
on these concepts, and see in which networks there is self-organization, and in which there
is hierarchical organization.

If different agents aim at the same target to avoid friction, we speak about alignment.
In a hierarchical organization, this is achieved by all agents adapting towards one leader.
In self-organization, agents adapt towards their neighbors, so that a common direction is
achieved. This adaptation usually happens by variation and selection: an agent varies a
bit in his direction, and the best direction, this is the one with the least friction with his
neighbors, is selected.

Synergy is defined as the surplus gained by working together. A task which couldn’t
be fulfilled by one individual, can be done by the work of different individuals together.
To maximize synergy, first, the initial task is divided into different sub-tasks. Different
agents perform different tasks, which is called division of labor. An end product of one
work is used for another work, which is called work-flow. Finally, everything needs to be
put together, we call this aggregation. This isn’t as linear as it looks. At every step in
the process it can happen that a task is divided into sub tasks or aggregated with other
tasks.
At first sight, it may seem that hierarchical organization is needed for this: there needs to
be one agent who divides the tasks, who has an overview. But these things can also work
by self-organization with simple rules. For division of labor and work-flow, any time an
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agent doesn’t have anything to do, he picks up a task he is most skilled at. An example
of this is the evolution of different species: a specie chooses a niche in which he further
develops. For aggregation, there are two possibilities: a shared medium or the interaction
of the products of different activities. An example of a shared medium is the earth with
ant pheromones: ants put pheromones on the earth, other ants can pick up this trace and
follow it. An example of the products of different activities that interact, is the ecosystem.
The output of one specie is used as a resource or a service for the other specie.
The principle behind this is again variation and selection. For division of labor, it works
as follows. In the beginning there is already some variation among the agents. This means
that some are more skilled for a certain task, so they will select it. By doing the task, they
will become even better in it. This is how certain species become extremely good in a
certain niche. In the case aggregation happens by different activities that interact, in the
beginning there will be some random interactions. Then, the best of these interactions
are selected.
In the next chapter some simulations of coordination between agents will be presented.

4 Simulations

We will now present two simulations of a network of coordinating agents. The basic idea
of both models is that agents in the network change their status depending on the status
of their neighbors. We simulate this in our 3 different network types, and look at what is
different and the same in these networks. In the first model the agents will try to minimize
the friction by using alignment, while in the second model they will try to maximize the
synergy by using division of labor, work-flow and aggregation.

4.1 Minimize friction

In this model, there is a number ni between 0 and 1 assigned to each node i, which we can
represent by a color on the gray-scale, 0 being black, 1 being white. To align, so to aim at
the same direction, in this case means to try to have the same color. At each time step,
we will therefore update the number of each node towards the number of its neighbors,
by the following rule:

ni ← ni +

∑

j∈Ni
(nj − ni)

2 · |Ni|

with Ni the set of neighbors of i.
We assign a fitness function to each agent, based on the idea that the less variation with
their neighbors there is (so the less friction), the higher the fitness.

f(ni) =

√

|Ni|
∑

j∈Ni
(ni − nj)2

We will also look at the difference in color between a node and the rest of the network. This
shows how good a node fits in the overall network. We will call this the colordifference
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of a node. You could see the colordifference as the inverse of the influence, where we
see influence as a measurement of how much agents adapt towards you. Assuming that
in the beginning the colors are randomly distributed across the nodes (which is done
here), the smaller your colordifference, the more the other agents moved towards your
color, thus the bigger your influence. The correspondence is not perfect though, since the
colordifference doesn’t differentiate whether you were influenced by the other agents- thus
your color moved towards their color- or you influenced the other neighbors - thus their
colors moved towards your color.

We will now run this simulation in our 3 networks, and look to how the fitness and
the colordifference depends on the degree and the clustering coefficient, in our 3 networks.
This is done by plotting the fitness or colordifference of the end of the simulation against
the degree or clustering coefficient.

Plotting the fitness against the degree, shows that in a hierarchical network, the
higher the degree, the lower the fitness. In the other networks the fitness is independent
of the degree - figure 10 in appendix A.3. It seems strange that in a hierarchical network,
the nodes with the highest degree, thus the leaders, have the lowest fitness. This can
be explained because these nodes or in between different clusters. These clusters evolve
rather independently, thus their colors differ a lot. But if we look to the colordifference,
we see that in all networks the higher the degree is, the lower the colordifference - figure
11 in appendix A.3. Thus, the nodes with a higher degree differ less with the rest of the
network then nodes with a lower degree, they are better aligned with the whole network.
If we look at the cluster coefficient, we see that in a hierarchical network it behaves
opposite to the degree: the higher the cluster coefficient, the higher the fitness and the
colordifference (figure 12 in appendix A.3). This is logical, since nodes with a lower degree
have a higher cluster coefficient. If we look at the non-hierarchical network, we see that
the higher the cluster coefficient, the higher the fitness ( figure 13 in appendix A.3).
The explanation is the same from above: the lower your cluster coefficient, the more
your neighbors or disconnected, thus the more they will evolve independently, thereby
the more difficult it is to adapt to them, thus the lower the fitness. The colordifference
is independent of the cluster coefficient in a non-hierarchical network - figure 13 . In a
random network, both the fitness and the colordifference are independent of the cluster
coefficient (figure 14 in appendix A.3).
There are two basic mechanisms in place in all networks we can extract from this analysis.
The higher the cluster coefficient, the higher the fitness. And the higher the degree, the
lower the colordifference is. If the cluster coefficient and the degree are uncorrelated, the
rest of the combinations are uncorrelated. Note that in a random network the fitness is
independent of the cluster coefficient, but this could simply be because there is not enough
difference in cluster coefficients of different nodes, maybe the fitness only increases as soon
as a certain threshold is passed.

We’ll now give the mean and standard deviation of both the fitness and the colordif-
ference in all networks, and discuss these numbers. The mean fitness is 131.7, 124.4 and
92.0 for respectively hierarchical, non-hierarchical and random network, while the stan-
dard deviation is respectively 60.3, 38.1 and 21.4. Thus, the fitness in the hierarchical
network is a bit higher then in a non-hierarchical network, but there is more difference
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among the nodes. The random network is particularly worse then the other networks,
even tho there is less difference.
The mean colordifference is respectively 0.0353, 0.0126 and 0.0078 for hierarchical, non-
hierarchical and random network, and the standard deviation is respectively 0.0090, 0.0048
and 0.0039. Thus, the difference between the node colors of a hierarchical network is big-
ger then in the other networks, which means that in general there is less alignment -
nodes are aligned with there neighbors but not with the whole network. There is also
more variation of the colordifference between the nodes of a hierarchical network.

4.2 Maximize synergy

The next model is inspired by the ecosystem. Each agent needs certain products and
produces products others can use. We can represent this by assigning a vector of length
n to each node, with n the number of products in the system. We call this vector
the needvector n̄i of node i. If a node needs a certain product, we put a 1 on that
place, if not, we put a 0. In the beginning, we put m ones on a random place in each
needvector. For each system a productionvector p̄ is also created. Each product an agent
has, is changed by that agent into another product, a garbage product. This is done by
a random permutation of the products, represented by the productionvector. This is a
vector containing the numbers 1 until n, but in another rank. Product k becomes the
product on position k in the productionvector, this is p̄(k). This productionvector is the
same for all agents.

But which products are transformed by an agent? This is the food an agent i has,
we’ll represent this in its foodvector f̄i, and we’ll present two models to construct this
vector. In the first model, a non-propagation model, every product in the needvector of
node i is a food product, thus f̄i = n̄i. In the second model, where there is propagation of
food, only the food an agent has obtained is produced into a garbage product, which can
be used by its neighbors. In the beginning, an agent has all the food products from his
needvector, thus the two vectors are the same. In each next step, an agent obtains all the
food products he needs and one of its neighbors has. The rest remains the same for both
models. So at step 1 f̄i = n̄i, but from step 2 on, the vector f̄i of a node is generated by:

for k = 1...n f̄i(k) =

{

1 if n̄i(k) = 1 and ∃j ∈ N(i) : ḡj(k) = 1
0 else

(1)

with N(i) the set of neighbors of i, and ḡj the garbagevector of node j as constructed
below.

These food products are then transformed into garbage products by the production-
vector. The garbage products are available for its neighbors. Thus, for each node i we
can define a garbage vector ḡi depending on the foodvector f̄i by :

ḡi(p̄(k)) = f̄i(k) for k = 1...n. (2)

9



The fitness of an agent i is the sum of all the garbage products one of its neighbors
has and he needs.

fit(i) =
∑

k|n̄i(k)=1 ∧ j∈N(i)

ḡj(k). (3)

In each step, the needvector of each agent is changed by a variation and selection, based
on the genetic algorithm[7]. We construct 10 random mutations of the needvector, and
choose the one with the highest fitness. We create a mutant by choosing two different
random positions in the needvector and flip places. Thus, if we have chosen two numbers
k1 and k2 between 1 and n randomly, and the needvector is

n̄i = (n̄i(1), ..., n̄i(k1), ..., n̄i(k2), ..., n̄i(n))

then our mutant is

m̄uti = (n̄i(1), ..., n̄i(k2), ..., n̄i(k1), ..., n̄i(n)).

10 mutants are created, and the one with the highest fitness replaces the original
needvector (if this fitness is higher then the original). This assures that the fitness of an
agent will rise. In the propagation model, he will use more garbage of its neighbors (by
definition of the fitness), hence more food, therefore he will also produce more garbage for
its neighbors. Thus the fitness of its neighbors will also increase, and this effect will spread
across the network. In the non-propagation model, the amount of garbage produced isn’t
influenced by a better needvector, thus the increase in fitness doesn’t get propagated. To
see how this really works, we plot the evolution of the fitness in time, in all networks,
both in the non-propagation model and the propagation model. In the non-propagation
model, in the beginning the fitness increases quite fast, but it quickly converges towards
one optimum (see figure 15 in appendix A.4). In the propagation model on the other
hand, while in general the scope decreases over time, at time step 3 the scope increases,
and the fitness is still increasing at the end (see figure 16 in appendix A.4). The fitness is
also significantly bigger in the propagation model. This shows the fitness gets propagated
through the network in the propagation network. While the values are different in the
different networks, the fitness evolves in the same way.

To see how the need- and garbagevector gets propagated through the network, we first
look at a system where p̄ = (1, ..., n), thus food products are transformed into themselves,
ḡi = f̄i ∀i. For the non-propagation model, this means need-, food-, and garbagevector are
the same, thus there is only one vector per agent. An agent will try to adjust his vector
to that of his neighbors (he’ll adjust his needvector to the garbagevector of its neighbors,
since that results in the most fitness). By this mechanism, vectors get propagated. In
the propagation model, an agent will still strive to have as much garbage products of its
neighbors as possible, thus to equalize its needvector with the garbagevectors of its neigh-
bors. Since ḡi = f̄i, it will thereby strive for a needvector which is as equal as possible
with the needvector of its neighbors, especially on the positions where the needvector is
equal with a neighbor of this neighbor - since then there is more chance the need will be
fulfilled, and thus on this position there will be a food product. Seen from another point
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of view, an agent will propagate its needvector on the positions where its need is fulfilled,
by sending the garbagevector to its neighbors (ḡi = f̄i). These neighbors will evolve their
needvectors towards this vector, and by this propagate it further.
In the general model where p̄ could be any permutation vector, the basic mechanism is
still the same, only it is no longer true that ḡi = f̄i. Thus, at each agent, the vector first
get transformed before it is propagated further. An agent evolves his needvector towards
the garbagevector of its neighbors, transforms this vector into the foodvector and then
the garbagevector, and propagates this vector further, where his neighbors do the same
thing. Thus the needvectors won’t align towards each other anymore, but they will evolve
so that the garbage in the system is used as much as possible.

To summarize the propagation model, the following steps are done for each agent i:

1. construct f̄i by (1)

2. construct ḡi by (2)

3. compute fitness by (3)

4. transform n̄i by variation and selection

The non-propagation model is the same, except that the first step isn’t done, f̄i = n̄i.

We now plot the difference in fitness against the degree and the cluster coefficient at
the end of the simulation. With the difference in fitness we mean the difference in fitness
of a node between the end and the beginning of the simulation. This shows how much
a node got stronger during the simulation. We could also just look at the fitness, this
gives the same results, thus in the beginning the fitness is approximately the same for all
nodes.
In all three networks, for both models, we see that the higher the degree, the higher
the difference in fitness, and the higher the cluster coefficient, the lower the difference in
fitness - see appendix A.5. Thus, nodes with a higher degree or a lower cluster coefficient
will increase more in fitness. In the non-propagation model, this effect is the highest in
a hierarchical network, and only a little bit there in a random network. For the cluster
coefficient, it is also in a non-hierarchical network that a higher cluster coefficient only
leads to a little bit lower difference in fitness.
We now look at some numbers. This is first done for our first model, where there is
no propagation. The mean difference in fitness is 3.21, 3.17 and 3.07 for respectively
hierarchical, non-hierarchical and random network. Thus the random network performs
worse than the other networks.
The standard deviation of the difference in fitness is 3.15, 2.58 and 2.24 for respectively
hierarchical, non-hierarchical and random network. Thus there is more variation in a
hierarchical network.
For the model with propagation, the mean difference in fitness is respectively 10.4959,
7.8595 and 7.0083 for the hierarchical, non-hierarchical and random network, while the
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standard deviation is respectively 16.5817, 6.7297 and 2.9958. Thus the same mechanism
as in the non-propagation model is working, but especially for the standard deviation
there is more difference between the networks. This model performs better then the
model without propagation - the mean difference in fitness is higher - even though the
standard deviation is also higher, thus there is more difference between the nodes.

What also looks interesting to investigate, is how the difference in color or food be-
tween the end and the beginning, depends on the degree or the cluster coefficient. This
variable shows how much a node changes during the simulation, thus how much it is in-
fluenced. We see though that in both models the difference in color or food between the
end and the beginning is independent of the degree and the cluster coefficient.

5 Further research

There are many ways the last model can be updated. The first way is to use another
fitness function. Since in the above model we work only binary - either an agent has
fulfilled his need for a product and thus produces it into a garbage product, or he hasn’t
- it would be more logical to count each product only once. Thus the fitness function of
a node i would look like this

fit(i) =
∑

k|ni(k)=1

max
j∈N(i)

g(j, k)

=
∑

k

f(k)

A function to measure the influence of agents in the second model can be practical. This
can be the amount of garbage used by the neighbors of an agent. The higher this number,
the more the neighbors depend on that agent. Or it could be the garbage given divided
by the garbage received. Or it could be a measurement how much the agent has changed.
If he has changed a lot, he had to adapt a lot to its neighbors, if not its neighbors where
probably more adapting themselves towards the agent.

The idea to try to minimize the friction can also be introduced. In this model this
could mean that it’s bad for your fitness if other agents also want a product you want, and
good if more neighbors have a product. This can be modeled by allowing any positive
number in the food- or garbage vector, not just 0 or 1. An agent divides his garbage
equally over the neighbors who need it. Thus the amount of a certain food product an
agent has is the sum of the amount of garbage he receives from his neighbors. In this
model, the fitness will be computed as the sum of all the food a node has received, thus
∑

k f(k).

The network structure itself can also be changed. This can be done by removing and
adding edges. A node can connect with neighbors of neighbors, with more chance if this
increases his fitness more. On the other hand a node could remove a connection if that
neighbor (almost) don’t provoke any rise in fitness. Maybe the amount of connections
could be constrained.
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Some biological and genetic ideas can also be added. The evolution mechanism of
the needvector can be made more complex by using the genetic algorithm more[7]. A
partner is chosen by fitness out of the group of neighbors with enough in common. Then
a cross-over and mutation happens.
The notions of birth and death can also be included, by adding and deleting nodes. A
child can be created by the cross-over and mutation mechanism, and connected with his
parents. First, he gets the same fitness as his parents, he gets mother milk or is fed by his
parents, thus he don’t need to fulfill his own needs yet. As times goes by, he gets connected
with more agents (by the mechanism described above), learns to be more independent,
and computes his own fitness. An agent can die in two way. First, out of hunger, thus
the lower the fitness the more chance to die. Second, by being eaten by another agent.
This can be modeled by making some garbage vital. The bigger the difference is between
the attacker’s fitness and the prey’s fitness, the more chance the prey get killed (and thus
deleted from the network).
We can also use this model to try to model the evolution of life, how things become more
and more complex. The further a product is in the vector, the more complex it is. The
first product is produced into the second product, that product into the the third, and so
on. Or, a more realistic model: the 1st and the 2nd product are produced into the 3rd,
the 2nd and 3rd into the 4th and so on. Thus, (12)→ 3, (23)→ 4, (34)→ 5, ... The first
(or first two) products are always available, this could be sunlight.

We could allow transporters or men in the middle: an agent who doesn’t process
products, but immediately pass it over to its neighbors. Thus (some of) his food products
will be the same as his garbage products. The man in the middle can be seen as a
catalyst in chemistry: he doesn’t do anything in the process, but makes the reaction
possible between two other agents. The question is now whether it is needed to give some
benefit to the man in the middle to transport the goods. A catalyst doesn’t have any
benefit, and actually it is better to bypass the man in the middle and have direct contacts,
since that’s more efficient. The benefit exist if agents strive for connections which increase
their fitness (thus which give them garbage). You can also adapt the fitness function so
that giving garbage also leads to an increase in fitness.

Some of these ideas can be used to build a model of an alternative economy. The idea is
that an agent has a need vector which is constant, and a production vector which changes
due variation and selection. As before, the agents form a network and the fitness is the
sum of the fulfilled needs. Production happens if the resources coded in the production
vector are available. The amount of end product produced is the amount of resources
multiplied with some efficiency variable. This variable increases logarithmic as there is
more produced in this manner. In the beginning an agent isn’t good at it yet, thus only
a little bit is produced. But he learns fast how to do it. Once he knows how to do it, he
won’t get that much better in it. The way products are used follows 4 steps. First, all
agents use the products they have to fulfill their needs, directly or by first going trough
a production process. Next, they give their products away to the agents who need it
directly or who can produce products they need with it. Third, they give it away to the
agents who use it in their production process. Finally, they divide the products that are
still left (if any) to all their neighbors, who just transport it.
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The economy is organized - besides the evolution of the production vector - by the links
created and deleted between the agents. If A is connected to B and B to C, then A gets
connected to C, with a higher chance if more needs are fulfilled. The amount of edges
of an agent is limited, thus connections with certain agents are deleted. If a neighbor
doesn’t supply a lot of products the agent need but takes a lot of products, he doesn’t
add much for the agent, and thus the connection is deleted. This is a way to avoid the
development of parasites. Even without having a direct profit form giving away products,
it is still stimulated. The details of this model still needs to be worked out.

Other structures then graphs can be used. This can be a directed graph, hierarchy
could then be defined as some kind of order relation. We could also work with a hyper-
graph, where edges can consist of more then two nodes. Here edges can be seen as a
market, or for our model more as a free shop, where products can be dropped and taken.
The next step is to look what these structures do in the discussed models.

6 Conclusion

We’ve made some interesting simulations which give better insights in how global orga-
nization arise from local interactions. In neither of the networks we found agents who
had all or a lot of influence. Thus we didn’t saw a hierarchical organization, but maybe
this is because influence is still poorly defined. They are some differences in behavior
in different networks though. The random network performs particularly worse then the
rest, and the hierarchical network performs the best. But there is more inequality, more
variation in fitness, in the hierarchical network, and the friction in the whole network is
also higher: mean colordifference is higher and more vulnerable to attack. There is also
more dependency on the degree and the cluster coefficient (both for the fitness and the
colordifference).
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A Appendices

A.1 Necessary conditions 3 networks
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Figure 4: Hierarchical, non-hierarchical and random network
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Figure 5: Plot probability distribution of resp hierarchical, non-hierarchical and random
network
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Figure 6: Cluster coefficient against degree in resp hierarchical, non-hierarchical and
random network

A.2 Failure and attack
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Figure 7: Failure in resp random, non-hierarchical and hierarchical network
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Figure 8: Failure in a non-hierarchical network with m = 5, thus more edges
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Figure 9: Attack in resp random, non-hierarchical and hierarchical network

A.3 Plots minimize friction model
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Figure 10: Fitness against degree in resp hierarchical, non-hierarchical and random net-
work. Slope and 95% confidence interval:−0.9795 and [−1.779,−0.1799] for hierarchical;
−0.1345 and [−1.141, 0.8718] for non-hierarchical; −1.206 and [−3.608, 1.196] for random
network.
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Figure 11: Colordifference against degree in resp hierarchical, non-hierarchical and ran-
dom network. Slope and 95% confidence interval: −3.552e − 005 and [−5.986e −
005,−1.119e − 005] for hierarchical; −0.0001232 and [−0.0002117,−3.466e − 005] for
non-hierarchical; −0.0002168 and [−0.0003554,−7.822e− 005] for random network.
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Figure 12: Fitness and Colordifference against cluster coefficient in hierarchical network.
Slope and 95% confidence interval: 100.5 and [39.73, 161.2] against fitness; 0.003266 and
[−0.005879, 0.01241] against colordiff.
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Figure 13: Fitness and Colordifference against cluster coefficient in non-hierarchical
network. Slope and 95% confidence interval: 134.6 and[71.82, 197.3] against fitness;
−0.0006875 and [−0.0123, 0.01092] against colordiff.
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Figure 14: Fitness and Colordifference against cluster coefficient in random network.
Slope and 95% confidence interval: −78.63 and [−260.7, 103.5] against fitness; 0.01359
and [−0.002423, 0.02959] against colordiff.

A.4 Fitness in time
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Figure 15: Evolution of mean fitness in resp hierarchical, non-hierarchical and random
network in non-propagation model
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Figure 16: Evolution of mean fitness in resp hierarchical, non-hierarchical and random
network in propagation model

A.5 Plots maximize synergy model

A.5.1 with no propagation
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Figure 17: Fitness against degree in resp hierarchical, non-hierarchical and random net-
work
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Figure 18: Fitness against cluster coefficient in resp hierarchical, non-hierarchical and
random network
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A.5.2 with propagation
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Figure 19: Fitness against degree in reps hierarchical, non-hierarchical and random net-
work
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Figure 20: Fitness against cluster coefficient in resp hierarchical,non-hierarchical and
random network
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