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THEJOURNAL OF SYMBOLIC LOGIC 
Volume 42, Number 1,March 1977 

MEETING O F  T H E  ASSOCIATION FOR SYMBOLIC LOGIC 

New York, 1975 

The 1975-76 Annual Meeting of the Association for Symbolic Logic was held at the Statler 
Hilton Hotel in New York City on December 28-29, 1975, in conjunction with the Annual Meeting 
of the Eastern Division of the American Philosophical Association. Invited hour lectures were 
given by Harvey Friedman, The logical strength of mathematical statements, and by Jack Silver, 
How to get rid of Jensen's fine structure. A survey lecture was given by Stephen C.  Kleene on The 
work of Kurt Godel. In addition there was a joint symposium with the American Philosophical 
Association on Sets, concepts and extensions, by David Kaplan and Charles Parsons and moderated 
by Ruth Barcan Marcus. In addition twenty-five contributed papers were read and two were 
presented by title. Abstracts follow. 

The Council met the evening of December 28. 

BRUCE M. HOROWITZ. Constructively nonpartial recursive functions and completely productive 
sets. 

Rose and Ullian [2] call a total function f ( x )  constructively nonrecursive iff for some recursive 
g(x ) ,  f ( g (n ) )  # cp, (g(n))for all n E N, where cp. is the partial recursive function with index n. We 
define a partial function f ( x )  to be constructively nonpartial recursive iff for some recursive g ( x ) ,  
f ( g (n ) )$ cp.(g(n)). We say f ( x )  is constructively nonpartial recursive via g(x ) .  

THEOREM 1. Sums and products do not necessarily preserve constructively nonpartial recursive 
functions. 

THEOREM 2. For every 1-1 recursive function g (x ) ,  there is a function f ( x )  which is constructively 
nonrecursive via g ( x ) .  

THEOREM 3. If Domain ( f ( x ) )  is productive, then f ( x )  is constructively nonpartial recursive. 
THEOREM4. If f ( x )  is constructively nonpartial recursive via an onto recursive function g ( x ) ,  

then { x / f ( x )  is undefined) is recursively enumerable, provided cp.(g(x)) defined implies f ( g ( x ) )  
undefined. 

Myhill has shown productivity is equivalent to complete productivity. It is known that every 
productive set is productive via a recursive permutation. (See Rogers [I].) However, we have: 

THEOREM 5. There exists a set which is completely productive, but via no onto recursive function. 
More illuminating is: 
THEOREM6. If A is completely productive via an onto recursive function, then A is creative. 
Theorem 6 may also be proven directly, without reference to constructively nonpartial recursive 

functions. In fact, by modifying a suggestion of Rogers [I], we obtain the converse: 
THEOREM 7. If A is creative, then A is completely productive via an onto recursive function. 

REFERENCES 

[I]  H.  ROGERS, JR., Theory of recursive functions and effective computability, McGraw-Hill, 
N.Y., 1967. 

[2] G .  ROSE and J. ULLIAN, Approximations of functions on the integers, Pacific Journal of 
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SY FRIEDMAN. Recursion theory and Jensen's 0'-principle. 
An effectivized version of Jensen's principle 0' is used to solve Post's Problem for many 

nonadmissible ordinals. 
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Let p be an ordinal such that L, is primitive-recursively closed. @-RE = H I  over L,. @ *= X I -
projectum o f  @ = py (3 a 1-1 X I  over L, function f :  @ +y). I f  @ *  < @, then L,k "@* is a 
cardinal". Let (K,),,, be a canonical indexing of  sets o f  ordinals in L, (@-finite sets). For A ,  B C @, 
define A 5 ,B i f f  there is a @-RE set R such that 

K, C A c*3S13Sz[(S ,  S,, S2,0)E R A K6 C B A K@C B C ] ,  

A <,B i f f  A C,B and B $,A. Let C = the complete @-RE set. Post's Problem: Is there a @-RE 
set A such that 0 <,A <, C? 

THEOREM1 (SACKS-SIMPSON). If @ is HI-admissible, there are @ - R E  sets A ,  B such thar A $, B, 
B $,A. 

THEOREM2. If @ * < @, and L, C "@ * is a successor cardinal ", then there exist @ - R E  sets A ,  
B C @ * such that A $, B, B $,A. 

Theorem 2 uses the following effective version o f  Jensen's 0'-principle: 
LEMMA.(Same hypotheses as Theorem 2.) There exists a sequence (S,),,,. E L, such that 
(1) S, c 2Y n L,. 
(2) L, k S, has cardinality < @ *. 
(3) For any @ - R E  set A ,  A n y E S, for unboundedly many y. 
The proof o f  the Lemma is identical to the proof o f  ordinary 0' for a successor cardinal o f  L. 

Theorem 2 uses the Lemma, an effective version o f  Fodor's Theorem, and recursion-theoretic ideas 
similar to those used in the proof o f  Theorem 1. 

GEORGEBOOLOS. On deciding the truth of certain statements involving the notion of consistency. 
L is the normal axiomatic modal propositional logic whose sole special axiom schema is 

17(17A+A)+17A. (The 0-ary connectives 1and T count as sentences o f  L ;  U p  +p is not one o f  
its axioms.) 

THEOREM D E  J O N G H ,1 (KRIPKE,  SAMEIN),.k r O A  +1717A, all A .  
Let t be any mapping of  sentences o f  L into those o f  Peano Arithmetic that commutes with 

connectives and is such that (17A)' = Bew, ('At-). 
THEOREM2. If k L A ,  then kPAAi .  
DEFINITION.An atom is a sentence O n  1,n 2 0. 
THEOREM3. For any variable-free sentence G there is a truth-functional combination H of 

atoms such that k L  G t.H. 
Define # by: Con # = -171; let # commute with connectives; Con ( 4 )# = -17 -4 # . (C f .  

problem 35 o f  H .  Friedman, One hundred and two problems in mathematical logic, this JOURNAL,  
vol. 2 (1975), p. 117.) Then if  4 is in Friedman's E, k ,  6t.(Jt, where (J is some truth-functional 
combination of  atoms such that k L  4 # t.(J. Since B' is false i f  B is an atom, the truth-value o f  any 
+* can always be effectively determined, and so Friedman's 35th problem has an affirmative 
solution. 

DEFINITION.  is a Rosser sentence ifR 

THEOREM4. If G is variable-free, then G' is equivalent to no Rosser sentence. 
DEFINITION.A sentence A ( p )  with sole variable p .is fully modalized i f  every occurrence o f  p 

lies within the scope o f  some occurrence o f  0. 
THEOREM5. If A ( p )  is fully modalized, k L O(p  - A  ( p ) )+(Up c*O A  ( T ) ) .  
Theorem 5 gives a decision procedure for provability for diagonalizations o f  predicates in a 

certain natural class containing Bew ( x ) ,  -Bew ( x ) ,  Bew(neg ( x ) ) ,  etc. 

CHARLESLANDRAITIS.Definability and well quasi-ordered classes of structures. 
Let K be a class o f  structures, R a well quasi-ordering on K (as in R.  Laver, On Fraisse's order 

type conjecture, Annals of Mathematics, 1971, pp. 89-111). Let L be a language for K closed under 
finite conjunction and containing a set S o f  sentences such that for 91, B in S, B R %  if  and only i f  
for every 4 in S % k 4 implies B C 4. 
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THEOREM. For any ?I in K, there is (I in L such that for any B in K, Bk (I if and only if BR3. 
For an application, let C be the class of countable structures (A, < , P o , .. . , P.-,) where < 

linearly orders A, the P, are unary predicates, the language is L,,, S is the set of universal L,,, 
sentences, and R is the relation of embeddability between structures. 

COROLLARY. For each % in C there is a (universal) sentence (I of L,,, such that for B in C, 
B C  I)I if and only if B is embeddable in 91. 

The proof uses (what follows from) the main theorem of Laver's paper, cited above: C is well 
quasi-ordered under R. 

D. FAUST, W. HANF, and D. MYERS. The Boolean algebra of formulas. 
Let F,(T) be the Boolean algebra of formulas (modulo equivalence in the theory T )  of first 

order logic with equality and nonlogical predicates specified by the similarity type y. F,(Tl) and 
F,(T,) are said to be recursively isomorphic if there is a recursive correspondence of the formulas 
of the two languages such that the implication of two formulas is a theorem of TI iff the implication 
of the corresponding formulas is a theorem of T,. We make use of a dual isomorphism condition 
formulated by representing a pair of models as  reducts of a combined model. In this way a set of 
ordered pairs of models, and in particular, a function between model spaces, can be regarded as a 
set of structures. Using this representation, it can be shown that two theories are recursively 
isomorphic iff there is a certain type of homeomorphism between their model spaces which, when 
regarded as a set of structures, is an axiomatizable class. The recursive saturation method of 
Barwise and Schlipf is used to replace a hard-to-verify condition, that the homeomorphism 
preserve elementary equivalence, by a simpler condition that it preserve isomorphism. 

We use interpretations of a model 91 in a model B whose universe B = A X A (and thus a pair of 
free variables ranging over A corresponds to a single free variable ranging over B )  to show that 
F,(> 1) is recursively isomorphic to F,,,(> 1) where y is any undecidable finite similarity type (i.e. 
pi 2 2 for some i )  and where > 1 is the theory of all structures of the given similarity type which 
have at least two elements. The axiom > 1 is used to insure that the Boolean algebras are atomless 
and therefore classically isomorphic; the full Boolean algebra F, has a finite number of atoms, the 
number depending on the number of relations specified by y. 

JOHN J.  YOUNG. A disputed thesis of the logic of subjunctive conditionals. 
Let subjunctive conditionals of the form 

If p were the case, q would be the case, 

and 

If p had been the case, q would have been the case, 

be represented as 

and 

respectively. Although there are exceptions there has been widespread acceptance of the view that 
a necessary condition of the truth of conditionals of the form (1) and,(2) is the falsity of their 
antecedent: that is, (1) and (2) entail 

Let us call any such view a "Falsity of the Antecedent Thesis" (or "FA Thesis"). 
If some version of the F A  thesis is correct, then it should be reflected in theories which purport to 

capture the logic of these conditionals. So, any such logic should contain theses like 
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Although Burks [2] accepts a version of the F A  Thesis, a number of other accounts of 
subjunctive conditionals [I], [3], [4] fail to acknowledge or include those like (I,) and (I,). 

Failure to resolve this disagreement rests in part on the fact that formulation of the F A  Thesis 
varies. At least two patterns of analysis can be found: (i) "Implication" versions like (I,) and (I,), 
and (ii) "Conjunction" versions which take the general form 

where "S" stands for either "S1" or  "S," and ">" is a nontruth-functional conditional connective. 
Once various versions of the F A  Thesis are stated clearly, it is shown that serious difficulties beset 
any version of the F A  Thesis which resembles (I,), (I,) or (C). 

The role of the subjunctive mood is then briefly examined. The relation of the syntactic feature 
of mood to the semantics of these conditionals is discussed. It is suggested that the F A  Thesis 
captures a pragmatic feature of subjunctive conditionals which has no  bearing on their logical 
structure. 

REFERENCES 

[I]  R. B. ANGELL, A propositional logic with subjunctive conditionals, this JOURNAL, vol. 27 
(1961), pp. 327-343. 

[2] ARTHUR BURKS, The logic of causal propositions, M i 4  vol. 60 (1951), pp. 363-382. 
[3] DAVID LEWIS, Counterfactuals, Harvard University Press, 1973. 
[4] ROBERT STALNAKER, A theory of conditionals, Studies in  logical theory (Nicholas Rescher, 

Editor), Basil Blackwell, Oxford, 1968, pp. 98-112. 

RAYMONDD. GUMB. A n  extended joint consistency theorem for free logic with equality. 
A version of the Craig, Lyndon, and Robinson theorems is reported in free logic with equality, 

using techniques developed by Hintikka. Let C(S) be the set of all and only those individual, 
predicate, and sentence parameters occuring in S. The theorem is: S,  U S, is inconsistent if and only 
if there is a wiT B such that 

(1) S, U{B)  and S2U{ -B )  are inconsistent; 
(2) C(B) c c ( s l )  nc(s,); 
(3) each predicate or sentence parameter f EC(B)  occurs (a) negatively in S, and positively in S2if 

it occurs positively in B and (b) positively in S, and negatively in S, if it occurs negatively in B. 
It is indicated that the following theorem of standard first order logic with equality does not hold 

in free logic with equality: if S,  U S, is inconsistent, neither S, nor S, is inconsistent, and ' = ' occurs 
in neither S, nor S,, ' = ' does not occur in F. 

ROBERT F. BARNES and RAYMOND D. GUMB. The completeness of presupposition-free tense 
logic. 

A novel construction is employed to provide a Henkin-style completeness proof for the system 
QK: = ,an axiomatic version of presupposition-free tense logic with equality in which neither the 
tensed versions of the Barcan formula nor their converses are theorems. The construction 
combines the truth-value semantics of Leblanc, Makinson's device of temporal attendants, and a 
modification of Henkin's construction to provide, for any deductively consistent set of wffs of 
QK: = ,an interpretation on which the wffs of the given set are all true. The construction proceeds 
iteratively, with three stages in each iteration: 

(a) a "bookkeeping" stage, in which a set of index numbers is enlarged by adding new indices; 
(b) a "generation/push-forward" stage, in which: 

(i) for each newly added index, an "initial partial Makinson attendant" is created, and 
(ii) for each of the previous indices, the corresponding partial attendant is enlarged by adding 

new wffs derived from its "ancestor"; 
(c) aUpull-back" stage, in which each partial attendant is enlarged by adding new wffs derived 

from all its attendants. 
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This provides a tree-ordered collection of maximally consistent, omega-complete (in suitably 
generalized senses) sets of wffs, which is then utilized to provide the desired interpretation. The 
completeness of Q K :  = and of QK:,  the comparable logic without equality, then follows. 

An especially interesting feature of the construction, which contrasts with previous tableau- 
based proofs, is that the temporal-succession relation is not defined during, but after, the 
construction itself. This feature gives the present method a more uniform and general character, 
thus permitting its application to stronger logics as well. For this reason, the construction may also 
be applied to presupposition-free modal or combined tense-modal logics, especially those with a 
symmetrical possible-world relation, which have typically been recalcitrant to Henkin-style proofs. 

R. BRADSHAWANGELL. Three systems of first degree entailment. 
In this paper I examine relationships between the sets of theorems derivable in three systems of 

logic so far as they claim to capture the notion of entailment between formulae of the sentential 
calculus. The three systems involved are: (1) Anderson and Belnap's system E (for "entailment"), 
(2) Parry's system A1 (for "analytic implication") and (3) my own system AC (for "analytic 
containment"), which is as follows: Primitives: '.', ' - '  and ' o ' ;  with other truth-functional 
connectives defined as usual and '(A +B)-=,,r(A o (A.B) ) -  and interpreted as 'A entails B '  in 
the sense of 'A analytically contains B'; and Axiom schemata: 

ACI. (A c* - -A), AC6. ( ( A o B ) > ( - A o  -B)), 
AC2. (A ++(A. A)), AC7. ((A oB)  3((A. C)  o(B. C))), 
AC3. ((A. B )  ++ (B. A)), AC8. ((A oB )  > ((BoC )  > (A oC))), 
AC4. ((A.(B.C))o((A.B).C)), AC9. ( ( A o B ) > ( B o A ) ) ,  
AC5. ((A v (B.C))o((A v B).(A v C))), AC10. ((A +B )  > (A 3B)). 

Rule of inference: If k A and kr(A >B)- then k B. 
Parry's A1 contains AC, and the first degree entailment theorems of E include all first degree 

entailment theorems of AC. All three systems contain standard sentential logic and preserve the 
principle that if A entails B then A truth-functionally implies B while eliminating all of the 
"paradoxes of strict implication" which are theorems in C.I. Lewis's systems and in standard logic. 

Anderson and Belnap have shown that in E, T(A +B)7  is a theorem, where A and B are 
truth-functional, if and only if a certain effectively decidable relation holds between a disjunctive 
normal form of A and a conjunctive normal form of B. In Parry's system, '(A o B ) -  is provable 
whenever A is any truth-functional formula and B is either its "full" disjunctive normal form or its 
"full" conjunctive normal form. In the system AC, I have shown elsewhere that '(A oB)? will be 
a theorem if and only if the "maximum ordered conjunctive normal form" of A contains every 
conjunct which occurs in the "maximal ordered conjunctive normal form" of B. On the basis of 
these normal form theorems and derivations within these systems, we show that the following 
relationships hold (where the subscript 't' signifies the set of valid first degree formulae of the forms 
(A +B) or (A + + B )In the given system): 

(E, n A I , ) = ( A C + ( A + ( A  v -A))),, 

E, = (AC + (A +(A v B))),, 

AI, =(AC+((A v B ) + ( - A  vA))+((A v(B.-B))+A)),, 

(C, UAI , )= (AC+( (A v B ) + ( - A  vA) )+( (A  v (B . -B) )oA) ) , .  

ROBERT E. MAYDOLE. On whether the general comprehension principle is consistent in the 
Jukasiewiczian logics. 

Let J!,, be the nondenumerable-valued Lukasiewiczian first order logic with the binary predicate 
letter ' E ' as the only predicate letter. Let C, be the two-valued classical first order logic with 'E ' 
as the only predicate letter. Consider the Generalized Principle of Comprehension, GPC: 

where F(z, y, x,, . . . ,x.) is a wff with at most z, y, x,, .. . ,x. as free. Is GPC model-theoretic 
consistent in Z,,? 
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GPC will be model-theoretic inconsistent in Z,, if there is a transformation function g between 
the d s  of C 2and Z,,such that Thesis I and Thesis I1 are true. (We let 'con' stand for any wff which 
is contradictory in both C 2  and EM.) 

THESIS I. For every d A, if (A +con) is valid in C2,  then (g(A )+con) is valid in Z,,. 
THESIS 11. There are d instances A and B of GPC such that (i) (A +con) is valid in C 2 ;  and 

(ii) if there is a model m of R such that J BI"= 1, then there is a model n of Z,, such that 
lg(A)I"= 1. 

In this paper we examine what appears to be a promising way of constructing a function g such 
that Thesis I and Thesis I1 are true. While we fail to construct such a function, and while the 
question of the model-theoretic consistency of GPC in Z,,is left open, we believe that the methods 
and negative results of our investigation are worth discussing. 

REFERENCES 

[I] ROBERTE. MAYDOLE, Many-valued logic as a basis for set theory, Ph.D. Thesis, Boston 
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[21 -,Paradoxes and many -valued set theory, Journal of Philosophical Logic, vol. 4 (1975), 
pp. 269-291. 

EMERSONC. MITCHELL. A model of set theory with a universal set. 

Let T be the theory of the language of set theory saying that: 

(1) Sets are extensional. 
(2) Every set has a universal complement, i.e. given a set x there is a set y such that every set z is 

a member of y if and only if it is not a member of x. 
(3) Every set x has a power set containing exactly the subsets of x. 
(4) The result of replacing every member of a wellfounded set by some set is a set. 
(5) The wellfounded sets form a model of Zermelo-Fraenkel set theory. 

Then within the universe V of Zermelo-Fraenkel set theory there is a definable internal model of 
T. The members of the internal model are chosen by an inductive definition within V, and then a 
new membership relation is inductively defined such that the members of the internal model with 
the defined membership relation satisfy T. It happens that the members of the internal model 
which are wellfounded on the defined membership relation form an isomorphic copy of V. Thus 
one can regard the construction as an extension of V to a model of T. 

COROLLARY.T is consistent if and only if Zermelo-Fraenkel set theory is consistent. 
This paper constitutes the author's dissertation to be submitted to the University of Wisconsin- 

Madison. It was inspired by the author's hearing Alonzo Church give his paper Set theory with a 
universal set, Proceedings of the Tarski Symposium, Proceedings o f  Symposia in Pure Mathematics 
XXV, 1974, pp. 297-308. 

FREDERICB. FITCH. Excluded middle and the paradoxes. 
Whenever two-valued logic with an unrestricted abstraction rule (comprehension axiom) gives 

rise to a paradox, such as the Russell paradox, there is a circular dependence of a proposition on 
itself, and this is indeed true in all cases of impredicative reasoning. Two-valued logic can be 
slightly weakened, however, so that such self-dependent propositions fail to satisfy excluded 
middle (or at least fail to satisfy strong excluded middle in the sense described below), while 
propositions that are not self-dependent do satisfy strong excluded middle, since they depend 
ultimately on atomic propositions that satisfy strong excluded middle. By thus slightly weakening 
excluded middle (and so deviating slightly from two-valued logic), a system is obtained that has 
unrestricted abstraction and that is demonstrably consistent. This system, C T ,  is an extension of my 
system CA and is adequate as a foundation for the more essential parts of mathematics, including 
Riemann integration and the theory of continuous functions. The Skolem paradox does not arise 
since Cantor's theorems on nondenumerability fail because of their impredicative nature. Godel's 
incompleteness result for elementary arithmetic also fails owing to the presence of a rule of 
w-completeness, a rule which can be shown to fit into the overall consistency proof. A modal 
operator 17 for necessity is definable in such a way that 17p = [[ = = = ] = p ] , where the equality 



149 ABSTRACTS OF PAPERS 

symbol stands for a special equality relation. The property D of satisfying strong excluded middle 
is definable in such a way that Dp = O[p v -p] .  Then D(17p) and D(Dp)  are derivable as 
theorems. Propositions can be found which satisfy excluded middle but not strong excluded middle, 
e.g. ZZ where Z a  = [ - (aa)&D(aa)] .  Here - (D(ZZ)) is provable, and so - (ZZ)  is also 
provable, as well as ZZ v - (ZZ). 

RUDOLFV.B.RUCKER. Talking about the class of all sets: Large cardinals and Takeuti's nodal 
transfinite type theory. 

The class of all sets is not a set; and thus it is not the form of a possible thought. How then are we 
to interpret talk about such concepts as C (the class of all sets), or R (the class of all ordinals), or 
R,+, or (to be more extreme) (pa)[for every ZF-term T and for every x E C, a E  ?[x,R]J, etc.? 
Consider the following suggestive fact: If C is a model of ZF, then for any ZF-formula @ and any 
x E C ,  C +  @[XI iff { a :  R, k @[XI) is stationary in R. 

Some years ago, G.  Takeuti presented [4] a way of extending the reflection result just cited to 
higher-order sentences in the context of a theory called NTT. My presentation of NTT will differ 
slightly from Takeuti's. NTT has an unusual language (the language of "transfinite type copy", 
which has variables of what would seem to be every nameable type,) a constant symbol R ,  and a 
new primitive unary predicate N. The axioms groups are roughly: (i) N is a normal filter on 0 ,  (ii) 
For any ZF-formula @ and any x E R,, @[XI++ +[x]'~"), and (iii) For any 4 in the language of 
transfinite type theory and any x E R,, +[x, R] ++{a: +[x, a]} E N. The idea behind (iii) is to use N 
to provide a semantic (set) interpretation of syntactic talk about higher types (concepts). Thus, e.g., 
R,+,+ T becomes { a :  R,+,k T)  E N. If schema (iii) is only assumed for ZF-formulae one gets a 
weak theory, NTT'. Solovay has shown in Z F  that if there is a measurable cardinal, then NTT' is 
consistent (see [4, p. 1021). 

I claim that a model of the full NTT has the form Q = (U, 0, An, N, E En,, where (i) N is a normal 
filter on 0, (ii) R, < R,, < . . . < U, and (iii) For any ZF-formula @ and any x E R ,  
@[x, 0, A,, A,, . . . , A.]'u'++{a: @[x, a ,  0, A,, . . .,An_,]'"') E N. Note that U isa model of ZF, that we 
assume U is transitive, and that we do not require N E U. The intention here is that 0 represents 
the class of all ordinals, and A ,  represents the A which Reinhardt [2, p. 2001 calls "all possible 
R-classes", and A, represents the ordinal of all the possible well-orderings beyond A,, etc.! Iterated 
applications of schema (iii) allow all talk about these increasingly imaginary concepts to be reduced 
to talk about N and the behaviour of the R,'s. E.g., if A were the Reinhardt ordinal mentioned 
above, we could carry out the reduction: 

(R is A-extendible) ++ ({a : a is R-extendible) E N )  

++({a : { P  : a is P -extendible}E N )  E N). 

THEOREM1. (ZF) If there is a measurable cardinal then there is a model of NTT. 
PROOF. Iterate the ultrapower w times. 
Takeuti showed in [4] that NTT is consistent with V = L, so we cannot expect a full converse to 

Theorem 1. However we do have the following partial converse. 
THEOREM.2. (ZF) If there is a model % = (U, 0, An, N, E En,, of NTT, then there is a model 

% * = (U*,  0, A :, N, E En,_ of NTT for which N is a U*-ultrafilter (in the sense of [I ,  p. 181)). 
PROOF. Let U* = L(U)//(O+ 1 U {A": n E w)), and let A '. = I'A.. (This notation is from [3].) If U 

happens to be a model of V = OD, then U can be used in place of L"" in the definition of U*. 
THEOREM3. (ZF) If there is a model of NTT, then there is a model of Z F +  "There is an  

ineffable cardinal which is u-indescribable for arbitrarily large v". 
PROOF. It can be shown that 0 has the desired properties in the U* of Theorem 2. The 

arguments depend on schema (iii), (iii)'~ consequence that {$,A,, A,, . . .) is a set of indiscernibles, 
and the fact that the objects of rank 2 0 have names with set and indiscernible parameters in U*. 
Given that concepts should have only a syntactic existence, U* is a "natural" model of NTT. 

THEOREM4. The U* of Theorem 1 is a model of ZF which has a nontrivial elementary 
embedding j into itself such that 0 is the first ordinal moved. 

PROOF. We let jlr[x, 0, A,, . . . , An]= ~ [ x ,A,, A,, . . . , A,,,] for ZF-terms 7. 

This j, of course, cannot be defined over U* as one would then be able to see that the ordinal of 
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U *  has cofinality w. Theorem 3 implies that 8 is a fortiori "extendible" in U * ,although again the 
projection maps will not lie in U * .  
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STEPHEN G .  SIMPSON. First-order theory of the degrees of unsolvability. 
Let (D, U ) be the upper semilattice of  degrees of unsolvability (cf. Kleene and Post, Annals of 

Mathematics, vol. 59 (1954), pp. 379-407). It is shown that the first-order theory of (D, U ) i s  
recursively isomorphic to the second-order theory of the natural numbers with plus and times. Also 
presented are results concerning first-order definability in (D, U , j) where j is the jump operator. 

JOEL FRIEDMAN. The Universal Class has a Spinozistic partitioning. 
This paper is the sequel to a previous paper, in which it was shown that the set of finitely ranked 

sets has a Spinozistic partitioning, in a technically defined sense. 
In this paper it is shown that the Universal Class, V ,has a strongly Spinozistic partitioning, which 

may be defined as a partitioning with an absolutely infinite number of partition classes such that 
each partition class is E-isomorphic to V (and hence to  each other). 

The proof' requires a Godel-type exhaustion argument, in order to show the exhaustive property 
of the partitioning, as well as the following lemma, in order to  show the disjointness property of the 
partitioning. 

LEMMA. There exists a proper class V'  distinct from Vsuch that V '  is E -isomorphic to V, 4 E V ' ,  
and V' is pseudotransitive. 

A quasi-exhaustive sequence of elements z, is then recursively defined, and the partition classes 
A ,  are defined as follows: 

DEFINITION.A .  = V' ,  A D  = V1(zg/4) (where X ( z / + )  is the result of replacing 4 by z in X).  
From this we see that a nontrivial settheoretical theorem may be directly suggested by a 

metaphysical system (nontrivial in the nonimmodest sense). 
Moreover, this Spinozistic partitioning can, I believe, be built up to a full-fledged settheoretical 

model of my formalization of Spinoza's metaphysical system, (Part I of his Ethics). This would then 
amount to a consistency proof for that formalized system (to appear). 

' I  am indebted to Professors R. Solovay and J. Silver for certain key ideas in the proof, as well as 
helpful suggestions required to complete the proof. 

JOHN RICHARDS. O n  making 'sense' of Frege's functions. 
Alonzo Church's latest revision of his logic of sense and denotation is based on several changes 

in Frege's theory. Church makes the following claims: 
I .  A function is saturated. 

11. A name of a function is an object-name. 
111. A name of a function has both sense and denotation. 
IV. Although Frege would not accept any of the above, he would if we substitute "value-range 

of a function" for "function". 
Church's formulation is an explicit rejection of the Fregean theory of functions. The formulation, 
which depends essentially on the ungerade occurrence of function-names, is a theory of objects, 
not functions. 

In this paper I argue against each of these proposed changes. Most significantly, in IV there is an 
equivocation on "value-range of a function". For Church, a function is a set and the sense of a 
function-name is a property. Church is lead to  reject Frege's claim that the form of the expression 
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for a function is essential to the function. If a function is just a set of objects, then there is no sense 
in which the form of the expression is essential to  it. 

In the final section I suggest an expansion of Church's formulation in light of Frege's absolute 
dichotomy between a function and an object. Church's A function must be limited to object-names. 
Alternative (2), which makes the sense of A and B the same whenever A = B is logically valid, is 
appropriate for identity of senses of object-names. It is necessary, however, to establish a separate 
category for function-names, and a new symbol 11 to represent the relation between the sense of a 
function-name and a function. Alternative (0) (synonymous isomorphism) is a necessary and 
sufficient condition for identity of the senses of function-names. 

MICHAELD. RESNIK. A remark on Frege's class theory. 
Frege's original class theory contains the following generalization of the Russell paradox. Let f 

satisfy 

( 1 )  ( x ) ( y ) C f ( x ) = f ( y ) > x  = Y )  
and define ' R '  and ' r '  by 

(2) Rx = ( 3 F )  (x = f();Fy). - Fx), 
(3) r = fRx.  

Then by second order logic we have 

(4) Rf(r), 
while from Frege's axiom (Vb) we obtain 

(5) - Rf(r). 

Frege blocked the derivation of (5) by modifying (Vb) to 

(Vb') f F x  = )iGy 3( z )  (z # f F x  3 (Fz = Gz)). 

However, if f satisfies 

(6) ( x ) ( f ( x ) Z  x )  
in addition to 	(1) the derivation of (5) can be easily reinstated. 

By adding to Frege's system the axiom 
(7) A # V 

one can define f by f ( A ) =  V ,  f ( V ) =  A,  f ( x ) = { x }  if x #  V, x #  A and x#{x}; and f ( x ) =  
{x, V ,  A) otherwise. It can then be shown that f satisfies (1) and (6) with the result that Frege's 
"repaired" system has no  model in domains of more than one object. 

ROBERT S. TRAGESSER. Numbers. 
C .  Parson's criterion for the identity and existence of the natural numbers presented in Frege's 

theory of number is explicated. The explication of the identity criterion is "schematic" and so is 
neutral among the mutually deviating concepts of mathematical existence discussed by Parsons in 
his Ontology and mathematics. 

It is argued that the identity criterion alone is sufficient to found number theory. The existence 
criterion is superfluous. This supports and refines in a certain direction Benacerraf's thesis that 
"numbers are not objects". 

However, using a phenomenological criterion explicit in Peirce and Husserl, and implicit in 
Godel (as a foundation for his mathematical realism), it is argued that "the natural numbers" form 
an "objective domain", and in this sense have "objective reality". Some of the curious logical 
properties of objective domains are elaborated, e.g., that objects in a "domain" have no life 
independent of that domain (this makes further sense of certain points connected with Benacerraf's 
thesis), that the objects in an objective domain do not form a set (this is just as true of the domain 
of the natural numbers as it is of the domain of set theory!). These properties have foundational 
importance. What is their mathematical importance? 

The "strict finitism" of ~ s ~ n i n e - v o l p i n e  and Rashevskii is briefly discussed, as well as the views 
of Wittgenstein and N. P. White. 

JOHN GRANT. confirmation of empirical theories by observation sets. 
A model-theoretic framework is described for the study of empirical theories. An empirical 

theory is assumed to be formalized in first-order logic with equality, and an observation set consists 
of a set of observation reports. The relationship of various theories to  a fixed observation set as well 
as the relationship of various observation sets to a fixed theory are investigated. 
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A criterion is proposed for the notion of an empirical theory being confirmed or  not confirmed 
by an observation set. This criterion is more generally applicable than Hempel's criterion; it gives 
the intuitively correct result in some cases where Hempel's criterion gives counterintuitive results; 
it gives the same results as  Hempel's criterion for the paradoxes of confirmation; and it does not 
satisfy Hempel's conditions of adequacy for any definition of confirmation. A criterion is also given 
for the comparison of observation sets with regard to  how highly they confirm a theory. Finally it is 
shown that a historical aspect can be introduced into the logical theory of confirmation. 
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DONALDNUTE. The logic of causal conditionals of universal strength. 
We explore the relationship between causation and the logic of counterfactual conditionals. At 

least one author, David Lewis, has attempted a partial analysis of causal statements within a formal 
system intended to represent the counterfactual conditional of ordinary discourse. Causal 
conditionals of universal strength are a species of counterfactual conditional, but any attempt to 
define causal conditionals solely in terms of counterfactuals of ordinary discourse does not appear 
promising. Instead we undertake to investigate the logical structure of causal conditionals and the 
relationship between these and counterfactual conditionals without presupposing that one may be 
defined in terms of the other. First we outline a system of counterfactual logic which we have 
already developed in [3]. We then proceed to  extend this calculus by the addition of axioms for a 
causal conditional of universal strength. This is not a simple extension of the counterfactual logic, 
so it is necessary to provide axioms which relate the new causal connective and the original 
counterfactual connective. Completeness results are provided using model theory adapted from 
Lewis [ I ]  and Nute [2]. 
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GARREL POT~INGER. Normalization as a homomorphic image of Cut-elimination. 
We define the systems HALand HA of intuitionist propositional logic and show essentially that 

the Cut-elimination theorem for HA, is equivalent to the normalization theorem for H, and that 
the strong Cut-elimination theorem for HALis equivalent to the strong normalization theorem for 
HA.These results are obtained by (1) defining (a) reduction relations and 2 appropriate to  HAL 
and HA,respectively, and (b) a many-one mapping X from the class of HALderivations onto the 
class of HA derivations and (2) proving that, for all derivations D and E of HAL,D 2 E if, and only 
if, K(D) 2 N ( E ) .  

Our results are like those proved by a similar method for systems of intuitionist predicate logic 
and arithmetic in Zucker [1974], but they are superior to Zucker's results in the following two 
respects. (1) They apply to systems including disjunction, whereas Zucker's correspondence 
between derivations fails to yield the desired theorems for systems including disjunction. (2) ,Y is 
shown to  be a natural mapping according to the usual way of explaining the intuitive sense of 
derivations in intuitionist propositional logic, whereas Zucker does not provide an intuitive reason 
for using the particular mapping he employs. 
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JONATHANP. SELDIN. The predicate calculus in SZ2. 
The system Sz,which is essentially a type-free intuitionistic predicate calculus without 

conjunction, alternation, and negation but with quantification over propositional functions, was 
introduced and proved consistent in a weak sense by Curry in [CSC]. A proof that the system is 
consistent in a stronger sense (there called Q-consistency) appears in [QCF]. A proof that this 
stronger form of consistency holds when a restriction of Leibnitz' rule for equality is adjoined 
appears in [EFTT]. 

In this paper, the system A2is extended to include the other connectives and quantifiers. 
Systems are formed which correspond to the systems TA*, TM*, TJ*, TD*, TC*, TE*,  and TK* of 
Curry [FML, Chapter 71. The definition of  canob is extended as in [CLg. 11, 515D11, and from this 
definition the consistency result of  [EF'IT] is obtained for  all of the systems. (This result is a proof 
normalization theorem, and for the systems TD*, TC*, TE*,  and TK*, proof normalization steps of  
the kind considered in [PNG] are used.) Then a theorem corresponding to [CLg. 11, Theorem 
15D4] (which says that if MI- X is provable in one of the systems of [FML], then M, K k X, where K 
is a set of grammatical conditions as defined in [CLg. 11, p. 4241 but where we must have a = E as 
indicated in Curry [CSC, p. 4911, holds in the corresponding SZ2system) is proved. 

If Rule HZ, which is LX, L Y  k H(EXY), is replaced by LX, FXH Y k H(EXY) (so that the system 
is one of  relative canonicalness as defined in [CLg. 11, 515C5]), then the resulting systems are very 
similar to the description-free parts of the systems of Stenlund; the 4,system corresponding to 
TK* corresponds to the system of Stenlund [LDE] and the one corresponding to TJ* corresponds 
to the system of Stenlund [DIL] (provided in the latter case that Stenlund's rule IkA is replaced 
by I,A E FkA ;but I think this replacement is needed anyway to prove the theorem of 52.4). 
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THOMAS M. LESCHINE. Propositional logics determined by topological matrices: Logics with 
restricted substitution. 

Let X be a topological space and let B be any open base for the pseudo-Boolean algebra O ( X )  
of open subsets of X such that X, 0E B. The pair M(X, B )  = ([B], {XI) forms a topological matrix, 
where [B]  is the subalgebra of O ( X )  generated from B. If M is any class of topological matrices, 
let M *  be the set of propositional formulas valid in each matrix of class M, and let M * b  be the set 
of formulas b-valid in each matrix of M in the following sense: f is b-valid in M(X, B )  if those 
homomorphisms into [ B ]  which map propositional variables to  members of B satisfy f. Thus 
M *  C M*b. I and C are the sets of intuitionistically and classically provable formulas respectively. 

THEOREM1. If V is the class of all topological matrices, V* = V*b = I. 
THEOREM 2. Given any class M of matrices and  any formula f, f E M *  iff ~f E M * b  for all 

substitutions E. 

This leads to intermediate logics definable by restricted substitution when appropriate topologi- 
cal conditions on base B are not inherited by [B]. Thus let p V i p  and i i p + p  be instances of 
axiom schemes f V  if ,  iif +f respectively, in which p is a propositional variable. Then if 
M(X, B )  is any matrix, 
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THEOREM3. {M(X, B)}* = C i f f  {M(X, B)}*b = C iff B is a closed-open base. In particular, 
pV ip E {M(X, B)}*b iff B is closed-open. 

THEOREM4. l i p  - + p  E {M(X, B)}*b iff B is regular open. If B is regular open but not 
closed-open, {M(X, B)}*b# M* for any matrix class M. 

Let Cn be the matrix consequence operator defined on matrix M ( X , B )  and let the b-
consequence operator Cnb be defined be relativizing the definition of Cn to consideration of only 
those mappings used in defining b-validity above. 

THEOREM5. Consequence operator Cnb is structural iff Cnb = Cn. Cnb satisfies the cancella- 
tion property [I]. 
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PETER EGGENBERGER. Remarks on Brouwer's notions of time, mind and mathematics. 
When Brouwer talks about time he means the succession of moments of existence. Conscious- 

ness or mind starts with the perception of time. All objects including mathematical objects are 
mental and temporal creations in the sense that the mind creates them during some moment or 
series of moments of existence. Brouwer's mind should be conceived, perhaps, as mental life. The 
mind, mental life, is not itself an object. Brouwer thinks eternal o r  atemporal objects do not exist. 
The external world is a creation of the mind and it is neither eternal nor temporal. 

Time has three roles in Brouwer's notion of mathematics. Ontologically, as just stated, 
mathematical objects are temporal. Epistemologically, the fundamental concept of mathematics, 
one-twoity or succession, is abstracted from time. Constructively, mathematical objects can be 
constructed over time, i.e. moments of existence. 

Mind also has three roles in Brouwer's notion of mathematics. Ontologically, again as stated, 
mathematical objects are mental creations. Epistemologically, the properties of mathematical 
objects must be discernible by the mind. Constructively, mathematical objects are constructed by 
free acts of the mind. 

Many criticisms and elucidations of Brouwer's notion of mathematics are mistaken or misleading 
because they ignore the role of time and the mind in Brouwer's mathematics. Griss's criticisms of 
Brouwer are based upon a misunderstanding of Brouwer's fundamental concept of mathematics: 
Griss ignores the role of time. Discussions of Brouwer's creating subject tend to  treat it as an ideal 
mathematician. For Brouwer, it is the real mathematician and "empirical mathematicians" are 
"ideal objects". 

A n  adequate metamathematical interpretation of Brouwer's intuitionistic mathematics must 
start from a faithful analysis of the notions of time and mind as they appear in Brouwer's writings. 
Until we possess such an analysis we cannot be said to have an accurate intuitive or  informal 
conception of intuitionistic mathematics. 

MAEGORZATAASKANAS. O n  truth and provability in Peano arithmetic. 
We consider the following proof of Godel's Incompleteness Theorem: Assume we have a Godel 

numbering for which the function assigning to the Godel number n of a formula F.(x) the Godel 
number of F.(n) is expressible. For A C N, let A * be  the set of all n for which the Godel number 
of F.(n) is in A. If H expresses A, some formula H *  will express A *. Let h be the Godel number 
of l H * ( x )  and let p be the Godel number of 1H*(h).  Then p is the number of a true sentence of 
arithmetic iff p is not in A. Thus an expressible set-in particular, the set of Godel numbers of all 
theorems-cannot coincide with the set of Godel numbers of  all true sentences. 

We formalize this argument within Peano Arithmetic as follows. With every formula @(x) we 
associate a sentence Sat + whose meaning, intuitively, is that the set q of sentences whose Godel 
numbers lie in the set expressed by @ is the truth set. More concretely, Sat @ expresses the fact that 
9 contains all true atomic sentences, for every sentence contains either it o r  its negation but not 
both, contains a disjunction (conjunction) iff it contains at least one of the disjuncts (both 
conjuncts), and contains an existential (universal) quantification iff it contains at least one of the 
instanciations (all the instanciations). The following results can then be established: 
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THEOREM. For every formula F(x ) ,  the sentence Sat I/J +( 3 x )  ( F ( x )  = I/J(x)) is a theorem of 
Peano Arithmetic. 

MAIN THEOREM. For every formula F, l S a t  F is a theorem of Peano Arithmetic. In particular, if 
Prov expresses the set of Godel numbers of theorems, 1 S a t P r o v  is a theorem. 

We further construct two sentences Compl and o-Consist to express, respectively, completeness 
and w-consistency of arithmetic, and show 

LEMMA. The formula Compl & w-Consist+ Sat Prov is a theorem of Peano Arithmetic. 
THEOREM. l(w-Consist  &Compl) is a theorem of Peano Arithmetic. 

ALBERT A. MULLIN. On the computability of spline functions. 
This note deals with the interface between mathematical logic and numerical analysis. 
LEMMA1. The decision problem as to whether or not the graph of an arbitrary spline function in 

more than one variable contains a lattice point (Gitterpunkt in the sense of Minkowski) is recursively 
unsolvable. 

On the other hand, 
LEMMA2. There exists a Turing machine for determining all of the lattice points, if any, in the 

graph of an arbitrary convex polygon in E2. 
LEMMA3. There exists a Turing machine for determining all of the lattice points, if any, in the 

graph of an arbitrary conic section in E2. 
Proofs of Lemmas 2 and 3 use the Church-Turing Thesis. 
Problem. Does there exist a Turing machine for determining all the lattice points, if any, in the 

graph of an arbitrary spline function in one variable? 
Finally, questions of the computational complexity of B-splines are discussed informally. 

LARRY W. MILLER. The significance of the ordinals ( n ;  1) and ( n ;  R.,,). 
In [ I ] ,  I showed how to  use techniques of Veblen, Bachmann, and Isles to  form hierarchies of 

normal functions and get constructive ordinal notations for ordinals < ( n ;  1) and ( n ;  Om+,) for each 
n, where 

is the normal function R:, Q = w, and R ,  = R .  E.g., (0; 1) = EO, (0; 0)= To, (1; 1) = w(&,+,,O),and 
(1; R )  = Bachmann's H(1).In this paper, I show the significance of the ordinals ( n ;  1) and ( n;fin+,) 

by establishing the following conjectures of [ I ] .  
1. ( n ;  1) and ( n ;  R.+,) are the ordinals of Takeuti's systems of ordinal diagrams O ( n  + 1 , l )  and 

Od(n  + 1 , l )  under <,. Generally, ( n ;  t )  and ( n  - 1; n.(R.+,, - 1+ t ) )  are the ordinals of 
O ( n  + 1, t )  and O d ( n  + 1, t )  under <,. 

2. ( n ;  1) and ( n ;  R )  are the least ordinals inaccessible with respect to Feferman-Aczel iteration 
functionals of diagonalization over 0. through finite and transfinite types ( n ;  R )  is the least fixed 
point of ( n ;  x ) .  

3. ( n ;  1) and (n;R.+,) are the proof theoretic ordinals of the theories ID, of n-fold iterated 
generalized inductive definitions and ID: which is to ID. as predicative analysis ID: is to  first 
order arithmetic ID,, i.e., predicative construction given the inductively defined set. 
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