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  What is the brain? Th ough many answers have 
been suggested, we simply do not know at this 
point in time. Let’s compare the situation with 
other organs. We know what the heart is; the 
heart is an organ that pumps blood. We know 
what the stomach is; it is a digestive organ that 
extracts the relevant nutrients from food. And 
one could expand that list to other organs. 

 Let’s compare the current situation in neu-
roscience to the following imaginary scenario 
about the heart. Imagine that we do not know 
yet that the heart is a pumping organ. All we 
know is that the heart is a muscle, that it uses 
much energy to run that muscle, and that plenty 
of blood is accumulated periodically in the heart. 
But—and this is essential—we cannot yet ascribe 
any purpose to all of this; we know plenty of 
the details, but we cannot make sense of them. 
We do not know, for instance, why the heart 
is designed as muscle and why it accumulates 
blood periodically. 

 Even more important, this lack of insight into 
the heart’s purpose may prevent us from having 
not only a better understanding of the heart’s 
overall purpose and role in the organism, but 
also a more detailed insight into its physiologi-
cal processes. For instance, we do not investigate 
the rhythmic nature of the heart’s contractions 
and its underlying electrophysiological activity; 
that makes sense only if we know that the heart 
is continuously contracting in order to maintain 
its pumping function. Accordingly, the lack of an 
answer to the “what” question may be not only 

philosophically but also empirically relevant, 
and thus physiologically relevant, in order to get 
a better grip on the heart’s “how.” 

 I now argue that current neuroscience is in 
exactly the same state with regard to the brain as 
just stated in the thought experiment about the 
heart. We currently know a lot about the brain’s 
regions, its networks and their metabolic, hor-
monal, and immunological processes, and their 
genetic regulation. In contrast, we do not know 
why these neuronal processes and various mech-
anisms take place in the way they do and thus 
what overall purpose they serve. 

 Accordingly, we currently have plenty of 
knowledge about the “how” of the brain but still 
lack an answer to the “what” of the brain. We 
thus remain blind to its main and overarching 
purpose. Once we get a tighter grip of the brain’s 
main and overarching purpose, the “what,” we 
may also be able to more specifi cally tailor our 
experimental designs to better investigate its 
various functions—the “how.” 

 My starting point in this book is the brain 
itself: what the brain is, and, even more impor-
tant, what the brain does. I  postulate that, in 
order to understand what the brain does, we need 
to investigate the features that defi ne the brain  as  
brain. Th ese intrinsic features include the brain’s 
neural code and its intrinsic activity, as I suggest. 
Th is volume is about the brain’s intrinsic features 
and more specifi cally how the brain’s neural code 
and its intrinsic activity operate and impact the 
subsequent neural processing of extrinsic stimuli 
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from body and environment. Why do I put such 
emphasis on the intrinsic features of the brain, 
its resting-state activity and neural code, here in 
Volume I? Only by revealing the brain’s intrinsic 
features will we be able to understand what the 
brain is and why and how the brain does what 
it does. 

 What is analogous to the heart’s pumping of 
blood in the case of the brain? I suppose that the 
heart’s pumping of blood may fi nd its analogue 
on the brain’s side in its ability to associate its 
own neural activity with consciousness. Th at will 
be the focus in Volume II. To understand that, 
though, we fi rst need to understand the brain 
itself and how it encodes its neural activity. Th is 
is the focus in this volume. Accordingly, Volume 
II complements the neuronal groundwork laid 
in Volume I  by showing how the brain and its 
intrinsic features predispose the generation of 
consciousness. 

 I want to thank several people. First and fore-
most, I  want to thank Catharine Carlin from 
Oxford University Press, who supported me 
very much in the early stages by giving excellent 
advice. Her editorial role was taken over later 
by Joan Bossert, who was extremely support-
ive of this rather complex project. Many thanks 
to Joan and her excellent help and advice! Her 
assistants, Jennifer Milton and Miles Osgaard, 
provided excellent support and encouragement 
in the later stages. A big thank-you to all of you 
for making possible such a complex project with 
two volumes. 

 Several anonymous reviewers also need to 
be thanked for providing very thoughtful com-
ments, with one of them even suggesting I split 
my ideas into two volumes. My institution, the 
Institute of Mental Health Research in Ottawa, 
Canada, and its generous director, Zul Merali, 
shall also be thanked for the freedom and men-
tal space they provide me to tackle such a com-
plex organ as the brain in such extensive ways. 
I also want to explicitly thank Xuchu Weng and 

his Center for Cognition and Brain Disorders 
at Hangzhou Normal University/China for the 
generous support and the many inspirations. 
A great thank you also goes to Dr Xuehai Wei in 
Shanghai who introduced me to the clinical phe-
nomenology of vegetative state patients which 
served as basis for several ongoing collaborative 
studies on the loss of consciousness. Th e same 
generosity was also made possible in Bologna 
and Dr Marina Farinelli where we conduct EEG 
studies on vegetative state patients. 

 My friend and dear colleague Jaak Panksepp 
should also be thanked. I  cherish my discus-
sions with him, his out-of-the-box thinking 
and his excellent ideas and understanding. 
Th ank-you, Jaak. Th e members of my research 
group also deserve a big thank-you for their 
wonderful discussion of my ideas in their oft en 
wild and immature  gestalt ; hence, my special 
thanks go to Pengmin Qin, David Hayes, Niall 
Duncan, Takashi Nakao, Christine Wiebking, 
Zirui Huang, and Chao-Yi. Others who must be 
thanked are Timothy Lane, Alexander Heinzel, 
Simone Grimm, Alexander Sartorius, Jianfeng 
Zang, Shihui Han, and Fan Yan. 

 For excellent support in some editorial work, 
my thanks goes to Giles Holland, my research 
coordinator, who took pains to go through the 
proofs with me and to make suggestions for fur-
ther improvement. For fi nancial support, I have 
to thank the Canada Institute of Health Research 
(CIHR) and the Michael Smith Foundation, 
who granted me two endowed chairs. Further, 
I have to thank the Hope of Depression Research 
Foundation (HDRF) for fi nancial support. 
Finally, I  need to give a big thank-you to my 
partner, John Sarkissian. He has to endure my 
rather frequent mental (and physical) absence 
when my own brain’s intrinsic activity “prefers” 
to drift  away from the outer world and let me 
muse about the inner world of the brain by asso-
ciating its own purely neuronal states with a phe-
nomenal state; that is, consciousness.     



     PRELUDE I: WHY DO WE NEED TO KNOW 
THE BRAIN’S NEURAL CODE?   

 We know much about the brain these days. 
Neuroscience has explored its various molecu-
lar, cellular, and biochemical mechanisms. Much 
progress has also been made in understanding 
the regional and network levels of neural activ-
ity. Functional imaging allows us to investigate 
how the neural activity of specifi c regions and 
networks is related to particular sensory, motor, 
aff ective, cognitive, or social functions. Th is has 
even brought consciousness and other mental 
features, whose neural correlates we search for 
intensely, into the realm of neuroscience. 

 One feature of the brain remains elusive, 
however. We do not know the brain’s neural 
code: the currency the brain uses to generate and 
process its neural activity. Th is may hinder prog-
ress and block our insight into the brain’s various 
functions. 

 We recall from biology Francis Crick and 
James Watson’s discovery of the DNA molecule, 
as the genetic code has opened new pathways in 
our understanding of life and has put biology 
on a new platform. Analogously, unraveling the 
brain’s neural code may enable us to understand 
why the brain works in the way it does and how 
it can generate the various sensory, motor, aff ec-
tive, cognitive, and social functions. To put it in a 
nutshell, the detection of the brain’s neural code 
may provide a novel, much-needed ground for 
neuroscience.  

    PRELUDE II: CODE AS COMMON METRIC 
OR MEASURE OF DIFFERENT KINDS OF 
NEURAL ACTIVITY   

 What does the term “code” stand for? Th e term 
“code” is oft en used to mean a metric or measure 
that captures and refl ects purposeful and biolog-
ically or teleologically meaningful activity in a 
system (DeCharms and Zador 2000; Friston and 
Dolan 2000). As such, the term “code” describes 
a specifi c processing algorithm or instruction set 
according to which information is processed in 
a system. 

 Such processing algorithm as metric or mea-
sure remains purely formal by itself; this means 
that it is as yet devoid and prior to the constitu-
tion of any contents such as, for instance, sensory, 
motor, cognitive, aff ective, or social contents as 
related to the respective functions of the brain. 
Th e term “code” is used from here on in a purely 
formal way (see also Freeman 2007, 2011). Taken 
in this sense, a code allows the transformation 
of information from one particular form into 
another form in order to make possible the sub-
sequent processing of that information. 

 For instance, the computer codes any kind of 
incoming stimuli according to 0 and 1, a format 
that allows the computer to further process the 
stimuli and their information. While we do know 
very well the basic code and its format in the case 
of the computer, we are currently at a loss when 
it comes to the basic code of the brain, the “neu-
ral code,” and the kind of format it entails. To put 
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it in a nutshell, we currently lack the knowledge 
of the neural code—that is, the metric or mea-
sure—the brain applies to the encoding and pro-
cessing of its own neural activity. 

 I propose that such a basic metric or mea-
sure applies to any neural activity in the brain, 
whether it is stimulus-induced activity or the 
brain’s resting-state activity (see later sections 
in this introduction for more details on that dis-
tinction). Th e basic metric or measure provides 
a common code or, more metaphorically put, a 
common currency or language for all kinds of 
neural activities in the brain. Th is makes pos-
sible, for instance, the direct interaction between 
the diff erent associated functions (sensory, 
motor, aff ective, cognitive, social, etc.) and their 
respective neural networks as it is oft en observed 
these days in functional brain imaging in aff ec-
tive, cognitive, and social neuroscience.  

    PRELUDE III: DIFFERENT SUGGESTIONS FOR 
THE NEURAL CODE OF THE BRAIN   

 Matters are far from simple, however. Searching 
for the term “neural code” in the current Internet 
databases will reveal an abundant and almost infl a-
tionary use of this term. Th e term “code” is used 
on diff erent levels, ranging from the molecular to 
the cellular, and population levels to the regional 
and network levels of the brain’s neural activity. 

 Most oft en the term “neural code” is intended 
to describe activity changes at the cellular level 
as observed in single- or multi-unit electrophysi-
ological recordings. Th is is, for instance, the case 
in the concept of  rate coding  that describes the 
carrying (and representing) of information in 
the neurons’ fi ring rates as the rate of the latter 
varies with the changes in the former (see Singer 
1999, 2009; Friston 2009; and see Parts I and IV 
of this volume for a more detailed discussion). 

 Th e term “neural code” is also oft en used 
to describe the temporal constellation of neu-
ral activity especially on the population level 
of neural activity. Th is is, for instance, the case 
when one speaks of “temporal” or “synchrony 
coding”:  temporal coding  describes the neuronal 
synchronization of diff erent neuron populations 
and regions across time as observed in recording 

studies in both primates and humans (Singer 
1999, 2009; Engel and Singer 2001; Rodriguez 
et al. 1999; Lutz et al. 2002; and see Part IV of 
this volume for details). 

 Th e situation is even more complex, however. 
While oft en being associated with the cellular 
and population levels of neural activity, the term 
“code” can also be used on the level of regions 
and neural networks:  the regional and network 
level. One recent example is the concept of  pre-
dictive coding  that is oft en used in the context of 
functional imaging of diff erent regions during 
reward and mirror neurons, for example (see 
Friston 1995, 1997, 2000, 2010; Montague et al. 
2006; see Chapters 7–9 in this volume for details 
and references). 

 Th e concept of predictive coding postulates 
that neural activity in particular regions like the 
ventral striatum (as for instance during reward) 
stems from the comparison between predicted 
and actual inputs. Th e measure or metric deter-
mining neural activity on a regional level thus 
pertains to a diff erence: predictive coding implies 
that the neural activity in particular regions is 
based on the encoding of a diff erence, the diff er-
ence between predicted and actual input.  

    PRELUDE IV: NEURAL CODE AS “COMMON 
CURRENCY” BETWEEN THE DIFFERENT LEVELS 
OF NEURAL ACTIVITY   

 How do these diff erent forms of neural coding 
stand in relation to each other? Rate coding, tem-
poral coding, and predictive coding are sugges-
tions for a neural code on specifi c levels of neural 
activity—cellular, population, and regional. 

 What remains unclear, though, is how these 
diff erent levels of neural activity can communi-
cate and interact with each other. For that, they 
must share the same code so that, for instance, 
the single cell’s number of spikes translates 
into population activity and ultimately into the 
activation of a specifi c region or even network. 
Hence, the interaction between diff erent levels of 
neural activity requires what may be described as 
a “common currency.” 

 What does this “common currency” consist 
of? Such a common currency needs to link the 
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diff erent levels of the brain’s neural activity—cel-
lular, population, and regional (and network)—
in order to make possible their direct interaction. 
Only if (metaphorically put) the diff erent levels 
of the brain’s neural activity “speak the same 
language” and “use the same currency” can they 
interact with each other. What is the “common 
currency” or “language” of the brain that links 
and glues its diff erent levels of neural activity 
together? We currently do not know.  

    PRELUDE V: ENCODING VERSUS 
DECODING   

 We have so far determined the concept of the 
neural code as a purely formal measure/metric 
and as “common currency” between the diff er-
ent levels of neural activity. Th ere is yet another 
feature that needs to be mentioned. Th e concept 
of the neural code can be understood in terms of 
either “encoding” or “decoding” (Naselaris et al. 
2009, 2011; Kay et al. 2008; Friston 2010; Haynes 
2009, 2011). 

 Th e concept of “encoding” concerns how 
stimuli and their features are transformed and 
translated into neural activity. Th e focus is here 
on how information from the outside of the brain, 
as from the world, generates neural activity: How 
must the neural activity in the inside of the brain 
be generated in order to contain some informa-
tion about the stimuli and their features from the 
outside world? Accordingly, encoding describes 
the strategy the brain itself applies to generate its 
own neural activity during the encounter with 
stimuli from the outside of the brain. 

 Th is is diff erent in “decoding.” Unlike in 
“encoding,” the focus here is not so much on the 
generation of neural activity by stimuli from the 
outside of the brain. Instead, decoding focuses 
on the information that is contained in the 
brain’s neural activity itself (see Haynes 2009, 
2011; Friston 2009). Th e guiding question here 
is:  What information about the outside world 
and their stimuli and features is contained in the 
brain’s neural activity? 

  Decoding  refers to the information about the 
outside world as it is contained in the brain’s neu-
ral activity. Th is distinguishes it from  encoding . 

Rather than focusing on the information itself 
as it is contained in neural activity, encoding 
searches for how the neural activity itself is gen-
erated. Th e brain must generate and thus encode 
its neural activity in a particular way in order 
to contain some information about the outside 
world. Encoding thus precedes decoding in very 
much the same way the older twin precedes the 
younger one. 

 Th e diff erence between encoding and decod-
ing goes along with diff erent methodological 
strategies in, for instance, the analysis of brain 
imaging data like that obtained from functional 
magnetic resonance imaging (fMRI). Th is is well 
expressed in the following quote by Naselaris 
et al. (2011, p. 401):  
  Most current understanding has been achieved 
by analysing fMRI data from the mirror per-
spectives of encoding and decoding. When ana-
lysing the data from the encoding perspective, 
one attempts to understand how activity varies 
when there is concurrent variation in the world. 
When analysing data from the decoding per-
spective, one attempts to determine how much 
can be learned about the world (which includes 
sensory stimuli, cognitive state, and movement) 
by observing activity.   

 For instance, Kay and colleagues (2008) 
observed that the three-dimensional space of the 
stimuli from natural scenes, the “input space,” is 
mirrored in the space of the stimulus-induced 
diff erent activity (the voxels as measured in 
fMRI) in visual cortex, the “activity space.” How 
is the transformation of the “input space” and 
thus the natural scenes into the “activity space” 
of the brain’s neural activity possible? Kay et al. 
(2008) assume what they describe as “feature 
space” that, on the basis of the feature of the 
stimuli and their encoding by the neurons, pro-
vides the transformation between stimuli and 
neural activity (see Chapter  1–3 for details as 
well as Naselaris et al. 2009).  

    PRELUDE VI: NARROW VERSUS 
WIDE VERSION OF ENCODING   

 One may distinguish between “narrow” and 
“wide” versions of the concept of encoding. Most 
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generally, encoding describes a formal measure 
or metric for how neural activity is generated 
in relation to stimuli and their features. Usually, 
these stimuli and their features are understood 
to originate in the environment, thus concern-
ing exteroceptive stimuli (see Kay et  al. 2008; 
Naselaris et al., 2009, 2011). Th is is the narrow 
version of encoding that concerns the encoding 
of exteroceptive stimuli into neural activity. 

 In addition to exteroceptive stimuli from the 
environment, the interoceptive stimuli from 
one’s own body also generate neural activity and 
thus need to be encoded, too. Furthermore, as it 
will become clear later, the intrinsic activity in 
the brain itself, its spontaneous or resting-state 
activity (see Chapters 4–6), is undergoing con-
tinuous changes that also need to be encoded 
into neural activity. Accordingly, besides extero-
ceptive stimuli from the environment, intero-
ceptive stimuli from the body and the intrinsic 
activity changes within the brain itself require 
some kind of encoding. 

 Th is means that the encoding of neural activ-
ity cannot be restricted to exteroceptive stimuli 
alone. Instead, we need to understand the con-
cept of encoding in a wider way that includes all 
extrinsic stimuli, intero- and exteroceptive, from 
both the body and the environment. In addition, 
we also need to consider the encoding of activity 
changes that are induced by the brain itself and 
its intrinsic activity. We therefore need to opt for 
a wide version of encoding that pertains to any 
kind of neural activity generated in the brain, 
independently of its origin in either environ-
ment, body, or brain. 

 Th e overarching aim in this volume is to 
investigate how the brain generates and thus 
encodes neural activity. Rather than focusing 
on decoding information from neural activity, 
my focus is on the encoding and thus generation 
of neural activity. Th is pertains to neural activ-
ity in general, irrespective of its origin in either 
brain, body, or environment. I  thus presuppose 
the wide version of the concept of encoding 
throughout this volume. 

 Th erefore, I  will investigate how diff er-
ent forms of neural activity are generated. Part 
I concerns the encoding of exteroceptive stimuli; 
Part II focuses on the encoding of the brain’s 

intrinsic activity changes; Part III touches upon 
the encoding of the body’s interoceptive stimuli; 
and Part IV discusses the encoding of extrinsic 
activity: namely, stimulus-induced activity.  

    FUGUE I: ENCODING OF DIFFERENCES 
INTO NEURAL ACTIVITY ON THE 
 CELLULAR  LEVEL   

 In music, every prelude is followed by a fugue. 
Th e famous composer Johann Sebastian Bach 
told us that the fugue is supposed to spell out and 
develop the material introduced in the prelude. 
I consequently have to determine the nature of 
the neural code and to spell out the exact mecha-
nisms by means of which the brain generates 
neural activity. 

 Th e purpose of the next few sections will be 
to introduce a particular hypothesis about the 
brain’s neural code. I propose that the brain’s neu-
ral activity is based on the encoding of spatial and 
temporal diff erences between diff erent (or the 
same) stimuli into neural activity, rather than on 
encoding the single stimuli themselves in an iso-
lated and independent way. Such encoding of dif-
ferences between stimuli rather than the stimuli 
themselves is supposed to hold true on diff erent 
levels of neural activity: on cellular, population, 
and regional levels. Th erefore, I will now go into 
some empirical detail by discussing paradigmatic 
examples from the single-cell level, the popula-
tion level, and the regional level of neural activity. 

 Let us start with the cellular level of neural 
activity. Fiorillo and colleagues (2008) consider 
the single neuron and characterize it by the neu-
ral coding of diff erences. Based on the neuron’s 
biophysical properties, like its K +  and Cl –  chan-
nels, Fiorillo and colleagues (2008, pp.  3–4) 
argue that the single neuron in general will 
“integrate current information about its stimulus 
from one pool of ion channels and synapses, and 
prior information from another pool. Its mem-
brane potential signals prediction error.” Th e 
single cell’s actual membrane potential—that 
is, its activity—is determined by the diff erence 
between current and prior states; this is signaled 
by the diff erences in activity levels between dif-
ferent ion channels and synapses (see also Rolls 
and Treves 2011). 
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 Fiorillo and colleagues (2008) thus apply and 
extend the concept of predictive coding (see 
earlier discussion and Chapters  7–9) beyond 
the regional level to the level of the single neu-
ron. Analogous to the regional level of neural 
activity, the single neuron’s goal is to minimize 
prediction error and thus to keep the diff erence 
between anticipated and actual activity levels 
(i.e., between predicted and actual input) as low 
as possible (see Chapter 8 for details). Even the 
selection of both prior and current information 
sources is very much oriented to keeping this 
diff erence low. Only the actual inputs from the 
various stimuli that can contribute to minimiz-
ing the diff erence between anticipated and actual 
activity levels are selected. Th is implies that the 
neuron produces output signals (as changes in 
its activity level) only when there is a diff erence 
between anticipated and actual activity level:  if 
the actual activity level is higher, exceeding its 
prediction or anticipation, the output signal is 
positive, while in the reverse case the output sig-
nal may be negative. Th e single cell’s activity, its 
membrane potential, is thus based on the encod-
ing of a diff erence, the diff erence between previ-
ous/predicted and actual inputs.  

    FUGUE II: ENCODING OF DIFFERENCES INTO 
NEURAL ACTIVITY ON THE  POPULATION  LEVEL   

 Let’s move on from the cellular level to the popu-
lation level, and more specifi cally to the neurons 
in the motor cortex. Georgopoulus and colleagues 
(1986) demonstrated that the activity of a given 
motor cortical neuron is changed depending 
on the function of other motor neurons. While 
each single neuron from the primary motor cor-
tex encodes a given, or preferred, direction of a 
movement, it encodes this in relation to the other 
neurons’ preferred directions. Th is means that 
the single neuron also contains at least some of 
the information from the respective others via 
encoding its own activity relative to them. 

 Th is is further supported by Grammont and 
Riehle (2003). Th ey demonstrated that each 
motor cortical neuron within a neuronal assem-
bly depends on its relationship to its respective 
neighboring neuron. Whether, for instance, the 
single neuron might synchronize its activity with 

the other neurons’ activity depends on the single 
neuron’s relationship to its respective neighboring 
neurons, while the latter’s degree of synchroniz-
ing activity depends, in turn, on the activity of 
the former, and so on. Accordingly, the single 
neuron’s activity cannot be considered by itself, 
independent of and in isolation from the other 
neurons. Instead, the single neuron’s activity can 
be understood only when considering its relation-
ship to, that is, diff erence from, the other neurons. 

 Another example for the encoding of diff er-
ences into neural activity is a study by Selezneva 
and colleagues (2006) that concerns the sensory 
rather than the motor cortex. Th ey undertook 
single-cell recordings in monkey’s auditory 
cortex during a decision task where only cer-
tain stimuli were associated with reward. Th e 
data were analyzed in two diff erent ways. Th e 
single-cell recordings were fi rst analyzed and 
grouped across trials, categorized according to 
the diff erent stimuli. Since this did not yield any 
correlation between the recorded neuronal activ-
ities and the behavioral eff ects (i.e., the decisions 
about rewarding trials), they analyzed their data 
in a diff erent way. Th ey no longer grouped the 
neuronal activities according to the diff erent cat-
egories of stimuli presented across trials. Instead, 
they calculated the ratios between the actual and 
the respectively preceding trials in a serial way. 

 Interestingly, the ratios—that is, the diff erences 
in the fi ring rates between actual and preceding 
trials—correlated with the behavioral, or reward-
ing, eff ects. Th is means that what is behaviorally 
relevant is not so much the neural activity associ-
ated with a particular stimulus by itself, but the 
diff erence in neural activity between actual and 
preceding stimuli. In short, behavioral relevance 
is here encoded in terms of diff erences rather than 
in terms of the stimuli themselves independent 
and isolated from each other (see Chapter 3 for 
more detailed discussion of this study and how it 
relates to diff erence-based coding).  

    FUGUE III: ENCODING OF DIFFERENCES INTO 
NEURAL ACTIVITY ON THE  REGIONAL  LEVEL   

 Let us move on from the cellular/popula-
tion level to the regional level of neural activ-
ity. Kayser and colleagues (2005) investigated 
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cross-modal interaction in monkeys using func-
tional magnetic resonance imaging. Th ey tested 
for the eff ects of tactile stimuli on neural activity 
in auditory cortex while concurrently presenting 
auditory stimuli. Signifying cross-modal inter-
action, neural activity, especially in the auditory 
cortex, was signifi cantly enhanced by the con-
current presentation of tactile stimuli. 

 Most importantly, the resulting neural activ-
ity in auditory cortex was higher than could be 
accounted for by the mere addition or super-
position of the ones associated with each—that 
is, tactile and auditory—stimulus alone. Th ey 
concluded that there must be some non-linear 
interaction in the auditory cortex during the 
concurrent presentation of tactile and auditory 
stimuli. 

 How is such non-linear interaction pos-
sible? “Non-linear” interaction implies that the 
resulting neural activity during the interaction 
between two (or more) diff erent stimuli is either 
stronger or weaker than the activity associated 
with each stimulus alone. Th is implies that the 
resulting neural activity cannot be based on the 
encoding of the single stimulus alone and the 
mere addition of the diff erent stimuli’s activities 
during their interaction. Such non-linear inter-
action implies that there must be some extra 
ingredient that allows, enhances, or weakens 
the resulting stimulus-induced activity beyond 
the mere addition or summation of the diff er-
ent stimuli’s activities. Where does this extra 
ingredient come from? It cannot come from the 
stimuli themselves. Instead, it must come from 
the interaction itself: how the two stimuli inter-
act with each other and how their interaction is 
encoded into neural activity. 

 Th e only way for their interaction to yield 
non-linear stimulus-induced activity is by 
encoding the spatial and temporal diff erences 
between the diff erent stimuli, the tactile and 
auditory stimuli, into the neural activity of the 
auditory cortex. Th e encoding of the spatial and 
temporal diff erences between the auditory and 
tactile stimuli may thus make possible the obser-
vation of non-linear changes in the subsequent 
stimulus-induced activity. 

 In contrast, this would remain impossible if 
both stimuli, auditory and tactile, were encoded 

into neural activity by themselves in an inde-
pendent and isolated and way. Accordingly, 
non-linear interaction during cross-modal inter-
action presupposes the encoding of diff erences 
between stimuli into neural activity on a regional 
level rather than the encoding of the stimuli 
themselves (see Chapters  10–12 for extensive 
discussion of non-linearity and diff erence-based 
coding).  

    FUGUE IV: ENCODING OF SPATIAL AND 
TEMPORAL  DIFFERENCES  BETWEEN DIFFERENT 
STIMULI INTO NEURAL ACTIVITY   

 What do these diff erent examples share? Th ey all 
concern the encoding of diff erences into neural 
activity by linking and binding diff erent stimuli. 
In the case of the cell, diff erent ions were inte-
grated and computed against each other. On the 
population level, the spatially separated and/or 
temporally preceding inputs or stimuli from the 
other neurons were integrated into the neural 
activity of the single neuron. Finally, auditory 
and tactile stimuli were integrated and encoded 
against each other in the auditory cortex on the 
regional level of neural activity. 

 What is common among the various exam-
ples is the encoding of diff erences between diff er-
ent inputs or stimuli into neural activity. Rather 
than encoding the stimuli themselves indepen-
dently and isolated from each other, the diff er-
ences between diff erent stimuli are encoded into 
neural activity. By encoding their diff erences 
into neural activity, the diff erent stimuli are 
linked and integrated like, as in our examples, 
the stimuli from the preceding trial, the stimuli 
from other motor neurons, or the stimuli from 
another sensory modality. 

 How are such linkage and integration 
between diff erent stimuli possible? Th e stimuli 
occur at diff erent points in physical space and 
time. Th is means that their underlying diff erent 
points in physical time and space must be linked 
and integrated in order to encode the diff erence 
between diff erent stimuli into neural activity. 

 Rather than the discrete points in physical 
time and space themselves, the spatial and tem-
poral diff erences between the diff erent stimuli 
and their discrete points in physical time and 
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space are then encoded into neural activity. 
Accordingly, the diff erences encoded into neural 
activity can be further specifi ed as temporal and 
spatial diff erences between the diff erent stimuli’s 
discrete points in physical time and space. 

 Before going on, we have to make a brief 
remark about the notion of “physical time 
and space” as understood here. When I  speak 
about “diff erent stimuli’s discrete points in 
physical time and space,” I  presuppose a very 
simple determination of the concept of “physi-
cal time and space.” Physical time and space 
are here meant to denote the way we observe 
the stimuli in time and space from the outside 
in a third-person perspective in an objective 
way. Th is means that the concept of “physi-
cal time and space” is closely tied to objective 
third-person observation. 

 Th at is to be distinguished from the way 
physics investigates and considers the various 
processes of how time and space themselves are 
generated as such. Th roughout this and the sec-
ond volume, the concept of “physical time and 
space” is supposed to signify an observer-based 
notion, while it does not pertain to the genera-
tion of time and space as investigated in physics.  

    FUGUE V: LOW-FREQUENCY FLUCTUATIONS 
AND FUNCTIONAL CONNECTIVITY ENCODE 
SPATIAL AND TEMPORAL  DIFFERENCES  ON THE 
 REGIONAL  LEVEL OF NEURAL ACTIVITY   

 How can the brain encode temporal and spatial 
diff erences between diff erent stimuli into its neu-
ral activity on a regional level? I postulate that this 
is possible by neuronal measures like functional 
connectivity and low-frequency fl uctuations that 
operate in the spatial and temporal dimensions 
on the regional level of neural activity. 

 I suggest that low-frequency fl uctuations 
are one neuronal measure that encodes tem-
poral diff erences between diff erent stimuli into 
neural activity. Th e phrase “low-frequency 
fl uctuations” describes spontaneous changes or 
fl uctuations in the neural activity in a frequency 
range from around 0.001 to 1Hz. By showing 
such a low-frequency range, low-frequency fl uc-
tuations can be characterized by relative long 
phase durations, which may be ideally suited to 

integrate and thus encode temporal diff erences 
between diff erent stimuli into neural activity. We 
will see later that such temporal integration is 
indeed central in constituting the brain’s intrin-
sic activity (see Chapter 5) as well as conscious-
ness, especially “inner time consciousness” (see 
Chapters 14 and 15). 

 In addition to temporal integration, there 
is also spatial integration, for which functional 
connectivity may be central. Functionally,  con-
nectivity  describes the correlation between 
two or more diff erent, spatially distant regions’ 
neural activities across time. Such correlation, 
or functional connectivity, can, as I  suggest, be 
considered the result of prior encoding of spatial 
diff erences between diff erent stimuli into neural 
activity (as it will be detailed in Chapters 4 and 
11; see also Chapter 16 in Volume II with regard 
to consciousness).  

    FUGUE VI: DIFFERENCE-BASED CODING 
AS  “COMMON CURRENCY”  OF THE BRAIN’S 
NEURAL ACTIVITY ON DIFFERENT LEVELS   

 One may now wonder why I described these dif-
ferent examples. Despite describing diff erent lev-
els—cellular, population, and regional—they all 
share the characteristic that the resulting neural 
activity is based on the encoding of diff erences 
between diff erent stimuli rather than being based 
on the stimuli themselves. Diff erences may thus 
be the shared and common metric or measure 
between the diff erent levels of neural activity. 
Th erefore, one may speak of “diff erence-based 
coding” (see   Fig. I1-1a  ).      

 What do I  mean by “diff erences” as com-
mon metric or measure? Th e notion of diff er-
ence applies to diff erent kinds of diff erences: the 
diff erence between diff erent stimuli, as in 
cross-modal interaction; the diff erence between 
previous and actual states of the single cell; or 
the diff erence between diff erent cells. Th ough 
describing diff erent levels of neural activity, the 
formal metric or measure determining and con-
stituting the respectively resulting neural activity 
is the same in all instances. Accordingly, spatial 
and temporal diff erences are the formal metric 
or measure that applies throughout the diff erent 
levels of neural activity. 



INTRODUCTIONxx

 

Time

Space

Occurrence of
different stimuli at
different discrete
points in time and
space

Coding of differences
between single stimuli
and their discrete points
in time and space into
neural activity 

(a) Difference-based coding
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(b) Stimulus-based coding

   Figure I1-1      Diff erent Models of Neural Coding.  Th e fi gure depicts two diff erent models of neural 
coding: diff erence-based coding ( a ) and stimulus-based coding ( b ). Th e upper part in each fi gure illus-
trates the occurrence of stimuli across their diff erent discrete points in physical time and space, indi-
cated by the vertical lines. Th e lower part in each fi gure (with the bars) stands for the action potentials/
fi ring rates/regional activity levels as elicited by the stimuli, with the blue arrow describing the link 
between stimuli and neural activity. ( a ) In the case of diff erence-based coding, the stimuli and their dis-
crete points in physical time and space are compared, matched, and integrated with each other. In other 
terms, the spatial and temporal diff erences between the diff erent stimuli are computed as indicated by 
the dotted lines. Th e degree of spatial and temporal diff erence between the diff erent stimuli’s spatial 
and temporal positions does in turn determine the degree of the resulting neural activity. Th e diff er-
ent stimuli are thus dependent on each other during their encoding into neural activity. Hence, there 
is no longer a one-to-one correspondence but rather a many-to-one relationship between stimulus and 
neural activity. ( b ) Th is is diff erent in the case of stimulus-based coding. Here each stimulus, includ-
ing its respective discrete point in physical space and time, is encoded into the brain’s neural activity. 
Most importantly, unlike in diff erence-based coding, each stimulus is encoded by itself, isolated and 
independent of the respective other stimuli. Th is results in one-to-one matching between stimuli and 
neural activity.   
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 Based on these considerations, I  suggest the 
following hypothesis. I postulate that spatial and 
temporal diff erences between diff erent stimuli 
rather than the stimuli themselves are the com-
mon measure or metric in the brain’s encoding of 
neural activity. Th is amounts to what I describe 
as  diff erence-based coding  as the brain’s general 
encoding strategy. Diff erence-based coding can 
thus be considered the “common code,” “com-
mon currency,” or “common language” between 
the diff erent levels of neural activity. 

 Let me explicate what exactly I  mean by 
“common code” or “common currency.” It does 
not matter whether the encoding concerns the 
diff erence between two regions’ neural activi-
ties, the diff erence between preceding and actual 
states, the diff erences between diff erent cells, the 
diff erences between rest and stimuli, and so forth. 
What instead is important here is the purely for-
mal measure or metric that the brain applies to 
all kinds of stimuli, levels, and functions in order 
to encode them into neural activity. 

 I suppose diff erence-based coding to be such 
a formal measure or metric. Th erefore, I postu-
late that diff erence-based coding applies to the 
diff erent levels, the diff erent functions, and all 
kinds of stimuli during their generation of neu-
ral activity. In short, I  suggest that any neural 
activity in the brain is generated on the basis of 
diff erence-based coding. 

 How can we illustrate the central role I attri-
bute to diff erence-based coding as the brain’s 
neural code? Let us consider an analogous exam-
ple from biology. Th e DNA molecule is consid-
ered  the  genetic code, the code that transmits 
the information of our genes and, to be more 
precise, how any kind of information is encoded 
into our genes. In short, DNA is the “currency” 
of our genes. As we all know, this opened the 
door for us to understand the nature of life. 

 Analogously, I  regard diff erence-based cod-
ing to be  the  neural code, the code that transmits 
and transfers and therefore encodes any kind of 
information into the neural activity of the brain. 
Such encoding of spatial and temporal diff erences 
into neural activity needs to be distinguished 
from the encoding of the stimuli themselves, 
which would amount to stimulus-based coding 
(see Chapter 1 and 2 in this volume). 

 To put this in a nutshell, diff erences rather 
than stimuli are the “currency” of our brain’s 
neural activity. Th is will open the door for us 
to understand, not only the nature of our brain, 
but also how it generates consciousness, as I will 
claim in Volume II.  

    OBJECTION IA: DIFFERENCE-BASED CODING 
VERSUS STIMULUS-BASED CODING   

 How, now, can we distinguish diff erence-based 
coding from other forms of neural coding? 
Diff erences as formal measures or metrics are 
characterized by linking and connecting diff er-
ent discrete points in physical time and space; the 
encoded neural activity is thus based on spatial 
and temporal diff erences. Such encoding of tem-
poral and spatial diff erences into neural activity 
is the hallmark feature of what I  described as 
diff erence-based coding. 

 However, neural activity could also be 
encoded in ways other than in terms of spatial 
and temporal diff erences. Instead of being based 
on the spatial and temporal diff erences between 
diff erent discrete points in physical time and 
space, neural activity may rather be traced back 
to the discrete and single points themselves as 
they are related to the occurrence of the stim-
uli. Th e encoded neural activity would then be 
based on the single stimuli themselves rather 
than on their spatial and temporal diff erences. 
Th is entails stimulus-based coding rather than 
diff erence-based coding. 

 What is “stimulus-based coding”? Th e con-
cept of stimulus-based coding posits that the 
formal metric or measure that encodes neural 
activity is the stimulus itself. Very much like 
the concept of diff erence (see earlier), the term 
“stimulus” applies here to diff erent levels, func-
tions, and stimuli of diff erent origins. Th e notion 
of “stimulus” is thus understood here in a purely 
formal way, in the sense of an input. 

 Unlike diff erence-based coding that refers to 
temporal and spatial diff erences between diff er-
ent stimuli, stimulus-based coding is based on 
the encoding of the single stimuli:  Th is means 
that the single stimulus’ discrete temporal 
and spatial point in physical time and space is 
encoded by itself, independently of other stimuli 
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and their respective spatial and temporal posi-
tions (see   Fig. I1-1b  ). 

 Is such stimulus-based coding empirically 
plausible? Given the examples discussed earlier, 
one is inclined to opt in favor of diff erence-based 
coding rather than stimulus-based coding. Th is 
will be further supported by the various examples 
I  will cite and describe throughout this volume 
that all serve the purpose of lending empirical 
plausibility to the hypothesis that diff erence-based 
coding is the neural code of the brain.  

    OBJECTION IB: BALANCE BETWEEN 
DIFFERENCE-BASED CODING AND 
STIMULUS-BASED CODING   

 However, as we all know only too well, nothing is 
easy when it comes to the brain. Diff erence-based 
coding can occur in diff erent degrees and thus 
in a “more-or-less” and continuous way, rather 
than in an all-or-nothing way. Th is means that 
there may neither be 100% diff erence-based cod-
ing and 0% stimulus-based coding, nor 0% and 
100% stimulus-based coding. We will see later 
that diff erence-based coding may indeed occur 
in diff erent degrees and is thereby reciprocally 
related to the degree of stimulus-based coding. 
Th eir balance is supposedly modulated by the 
resting-state activity level that provides a thresh-
old for the possible degree of diff erence-based 
coding (see Chapter 11). 

 Higher degrees of diff erence-based coding 
entail lower degrees of stimulus-based coding, 
and vice versa. While this may be not impor-
tant in the healthy subjects, it may, however, 
be highly relevant in neurological and psychi-
atric disorders. For instance, psychiatric disor-
ders like schizophrenia and depression may be 
characterized by an abnormal balance between 
diff erence-based coding and stimulus-based 
coding (see Chapters  22 and 27 in Volume II). 
I  will hypothesize that the balance between 
diff erence- and stimulus-based coding may be 
central in generating the kind of rather bizarre 
behavior and symptoms that schizophrenic 
patients, especially, show (see Chapter 22). 

 Besides such behavioral relevance, the balance 
between diff erence- and stimulus-based cod-
ing may also be phenomenally relevant; that is, 

relevant for consciousness. A neurological disor-
der like the vegetative state (VS), where patients 
lose consciousness, may be characterized by an 
abnormally high degree of stimulus-based cod-
ing. Th e degree of diff erence-based coding and 
its balance with stimulus-based coding may thus 
be highly relevant for consciousness; that is, phe-
nomenally relevant. Why that is so and how this 
is neuronally mediated will be discussed in full 
detail in Chapters 28 and 29 in Volume II.  

    OBJECTION IIA: DUALISM BETWEEN 
DIFFERENCE- AND STIMULUS-BASED CODING   

 One may now be rather puzzled that I suppose 
the brain’s neural activity to be based on diff er-
ences across various, discrete points in physi-
cal time and space rather than on the stimuli 
themselves and their single discrete points in 
physical time and space. Why is that puzzling? 
It sounds rather counterintuitive that the brain 
encodes its neural activity in terms of diff erences 
between stimuli rather than encoding the stimuli 
themselves. 

 Why counterintuitive? One would intuitively sug-
gest that the stimuli are fi rst encoded by themselves, 
for example, in a stimulus-based way, on the lower 
level of the sensory cortex before any diff erences 
between stimuli, such as diff erence-based coding, 
can be generated as, for instance, on a higher level of 
neural activity in prefrontal cortex. Stimulus-based 
coding must precede diff erence-based coding. In 
other words, diff erence-based coding may well be 
possible, but only in higher-order regions on the 
basis of prior stimulus-based coding in lower-order 
regions. One would thus propose dualism between 
diff erence- and stimulus-based coding rather than 
diff erence-based coding as the sole neural code of 
the brain. 

 Does stimulus-based coding indeed precede 
diff erence-based coding? No!. I  will argue that 
there is diff erence-based coding right from the 
very beginning of the brain’s neural processing. 
Th is implies that any neural activity is encoded 
(to a higher or lower degree) in terms of spatial 
and temporal diff erences. To recruit empirical 
support for that rather radical hypothesis, I will 
discuss various lines of evidence on both the cel-
lular and the regional levels of neural activity 
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in this volume. Th is will lend support to the 
hypothesis that diff erence-based coding already 
holds in sensory cortex during the encoding of 
sensory stimuli (see Chapters 1–3 and 10–12).  

    OBJECTION IIB: DIFFERENCE-BASED 
CODING IS A STATISTICALLY BASED 
ENCODING STRATEGY   

 What is encoded into neural activity in sensory 
cortex is not the single stimulus itself and its 
distinct features in an isolated and independent 
way. Instead, what is encoded into sensory corti-
cal activity (and any kind of neural activity by 
default, as I suggest) are the spatial and temporal 
diff erences between the same or diff erent sen-
sory stimuli (and their features). 

 Th e encoding of spatial and temporal dif-
ferences mirrors the statistical frequency dis-
tribution of the stimuli and thus their “natural 
statistics” (Barlow 2001; and see Chapter  1 in 
this volume for details). I  will show in detail 
in Chapters  1 and 2 how such encoding of the 
stimuli’s natural statistics is possible only on the 
basis of the encoding of spatial and temporal dif-
ferences—that is, diff erence-based coding—into 
neural activity on the cellular level. 

 I postulate that the encoding of neural activ-
ity in terms of diff erence-based coding is closely 
aligned with the encoding of the stimuli’s sta-
tistical frequency distribution, their natural sta-
tistics. Th erefore diff erence-based coding must 
be considered a statistically based encoding 
strategy. 

 Th is is to be distinguished from stimulus-based 
coding. Rather than encoding the stimuli’s natu-
ral statistics, the stimuli themselves and their 
physical features are here encoded into neural 
activity. Stimulus-based coding can thus be char-
acterized as a physically based encoding strategy 
as distinguished from a statistically based encod-
ing strategy.  

    OBJECTION IIIA: DIFFERENCES CANNOT 
ENCODE THE BRAIN’S NEURAL ACTIVITY   

 One may want to bring forth another argument 
against diff erence-based coding by reverting to 
physics. Since the brain is a physical organ and 

determined by physical processes, it must con-
form to the laws of physics. Usually, one would 
assume that physical processes and activities are 
based on the encoding of single physical vari-
ables and their respective physical measures in 
an isolated and independent way. For instance, 
one would expect that single discrete points in 
time and space are encoded separately and inde-
pendently of each other. Th e respective physi-
cal variables are this encoded as isolated and 
non-relational entities. 

 What does this imply for the neural code 
within the context of the brain? Since the brain’s 
neural activity is physical, the neural code 
must abide to the laws of physics and encode 
the stimuli as isolated and non-relational enti-
ties into neural activity. Th at, however, is pos-
sible only when presupposing stimulus-based 
coding rather than diff erence-based coding 
as a relationally determined encoding strat-
egy. Accordingly, physics itself seems to make 
the assumption of stimulus-based coding 
necessary. 

 Th is, however, is to neglect the fact that phys-
ics is not as simple as we oft en think. Physical 
processes and activities can well be based on 
relations between diff erent physical variables 
and thus be relationally determined. Th is is well 
described in the following quote by Wolfgang 
Koehler (1887–1967), the founder of Gestalt 
psychology, who was born in Germany and 
moved later to the United States:  

  “I will therefore add that relationally determined 
processes are extremely common in physics. For 
instance, if temperatures diff er in two parts of a 
system, a current of heat energy is established 
which tends to equalize the temperatures. Th e 
direction of the fl ow depends upon the direc-
tion of the diff erence, and in the absence of any 
diff erence, there is no fl ow. Similarly, if a solu-
tion which contains certain molecules is sur-
rounded by a second solution which contains 
these molecules in a diff erent concentration, 
a current of diff usion will be observed, unless 
the solutions are separated by an impermeable 
barrier. Th e current fl ows as long as the con-
centration diff er[s] . Th us it is again a relation of 
inequality between the two parts of the system 
which maintains the process.” (W. Koehler 1967, 
pp. 209–210)    
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    OBJECTION IIIB: DIFFERENCE-BASED 
CODING IS A RELATIONALLY DETERMINED 
ENCODING STRATEGY   

 What does the quote from Koehler tell us? He is 
saying that physical processes and their respec-
tive activities can well be constituted by and 
based on diff erences and thus be relationally 
determined. Most important, we can apply that 
lesson to the brain. In the same way as physical 
activity can be relationally determined, the brain 
can encode its neural activity in a relationally 
determined way. 

 Such relationally determined encoding strat-
egy is suggested by diff erence-based coding 
when it postulates the encoding of spatial and 
temporal diff erences that signify the relations 
between diff erent stimuli into neural activity. In 
sum, physics does not exclude diff erence-based 
coding as a relationally determined encoding 
strategy but rather supports it, by showing the 
existence of relationally determined processes 
and activities in the physical world. 

 How about the counterintuitive nature of 
the relationally determined nature of the brain’s 
neural activity? Th e encoding of neural activ-
ity in terms of spatial and temporal diff erences 
between diff erent stimuli may seem rather 
repugnant to common sense. Why is this? Before 
diff erences between stimuli can be yielded in 
neural activity, the single stimuli themselves 
must be encoded into neural activity. 

 Stimulus-based coding should thus precede 
diff erence-based coding. Th at, however, is nei-
ther empirically implausible as indicated earlier, 
nor is it really counterintuitive, given that both 
quantum mechanics and general relativity the-
ory in physics are supposed to be highly counter-
intuitive to common sense (see the philosopher 
P. M. Churchland 2012, p. 274, who makes this 
argument).  

    OBJECTION IVA: “THEORY OF BRAIN 
ACTIVITY” VERSUS “THEORY OF 
BRAIN FUNCTION”   

 My focus in this volume is on how the brain’s 
neural activity is generated by using a particu-
lar encoding strategy:  diff erence-based coding 

as distinguished from stimulus-based coding. 
As detailed earlier, I  suppose that any kind of 
neural activity is generated by encoding spa-
tial and temporal diff erences between diff erent 
stimuli rather than the stimuli themselves and 
their diff erent discrete points in physical time 
and space. Since it concerns the generation of 
the brain’s neural activity as such, my hypothesis 
of diff erence-based coding amounts to a “theory 
of brain activity.” 

 What do I  mean by “theory of brain activ-
ity”? Th e concept of “theory of brain activity” 
describes how the brain generates and encodes 
neural activity. Th e theory of brain activity is 
thus about neural activity as such. A  theory of 
brain activity in this sense must be distinguished 
from a “theory of brain function.” Rather than 
concerning the generation and encoding of neu-
ral activity, a theory of brain function focuses 
on how the brain’s neural activity generates 
and constitutes diff erent functions like sensory, 
motor, cognitive, and aff ective functions, as well 
as consciousness. 

 Recent theories of brain function include, 
for instance, re-entrant processing (Edelman 
2003, Seth et al. 2006); information integration 
(Tononi 2004; Tononi and Koch 2008); global 
workspace and global neuronal workspace 
(Baars 2005; Dehaene and Changeux 2011); the 
concept of free energy (Friston 2010); prediction 
generation (Llinas 1998, 2002; Friston 2010); 
and neuronal synchronization (Crick and Koch 
2003; Singer 1999, 2009; Llinas 1998), to name 
just a few. Since most of these theories of brain 
function have been developed in close relation-
ship to consciousness, I  will discuss them and 
how they stand compared to diff erence-based 
coding in Volume II of  Unlocking the Brain .  

    OBJECTION IVB: “THEORY OF BRAIN 
ACTIVITY” PRECEDES “THEORY OF 
BRAIN FUNCTION”   

 How does a “theory of brain function” stand 
in relation to a “theory of brain activity”? Any 
theory of brain function presupposes a certain 
kind of neural activity, since, without the brain’s 
neural activity, no function including conscious-
ness could be performed at all. By focusing on 
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how the brain yields the various functions like 
sensory, motor, cognitive, or aff ective functions, 
their neural activity is simply taken for granted 
and thus, as given. 

 Th e mechanisms and encoding strategy that 
allow the generating of the observed neural 
activity during these functions are thus neglected 
and not investigated by themselves in a theory 
of brain function. Th is is diff erent in a “theory 
of brain activity.” Here, the brain’s neural activ-
ity and how it is generated and encoded come 
under scrutiny by themselves. For that purpose, 
diff erent encoding strategies like diff erence- and 
stimulus-based coding are discussed and investi-
gated with regard to their empirical plausibility; 
that is, their neuronal plausibility. 

 Moreover, we will investigate whether the 
observed behavior and the various sensory, 
motor, aff ective, and cognitive functions of the 
brain and their respective stimulus-induced or 
task-related activities presuppose a particular 
encoding strategy. Th e diff erent functions of the 
brain can thus serve to illustrate the brain’s encod-
ing strategy. Th is distinguishes a “theory of brain 
activity” from a “theory of brain function” where 
the brain’s various functions are by themselves 
the primary target and thus the departure point.  

    OBJECTION V: CRITERIA FOR A 
FUTURE THEORY OF BRAIN ACTIVITY   

 How could a future theory of brain activity look 
like? I want to briefl y discuss the hallmark fea-
tures and criteria for a future theory of brain 
activity. Following David Marr (1982), a “general 
computational theory of the nervous system” 
should meet three criteria:    

    (1)    Th e theory needs to determine a single com-
putational mechanism; that is, a specifi c neu-
ral code, that is broad and general enough 
to apply to the nervous system across diff er-
ent domains and levels (see also Logothetis 
2008, 2010; Logothetis et al. 2009).  

   (2)    Th e theory should be specifi c enough to 
defi ne such a computational mechanism in 
terms of both format and algorithm so as to 
account for how any kind of neural activity is 
realized and implemented.   

   (3)    Th e theory should suffi  ciently specify the 
cellular, biochemical, molecular, and physi-
cal processes underlying the observed neural 
activity with respect to the postulated com-
putational mechanism (that is, the proposed 
coding mechanism).     

 Th e hypothesis of diff erence-based coding 
aims to tentatively meet the following three 
criteria:    

    (1)    It is broad and general enough to apply to 
the diff erent levels of neural activity—cellu-
lar, population, and regional—of the brain. 
Th is is possible because it does not describe 
specifi c contents (see Chapters  18 and 19 
in Volume II for a more exact determina-
tion of the notion of “content”) but rather a 
formal metric or measure (i.e., spatial and 
temporal diff erences) as the computational 
mechanism that constitutes and generates 
and thus encodes any kind of neural activity 
in the brain.  

   (2)    At the same time, diff erence-based coding is 
specifi c enough to describe the neuronal and 
computational mechanisms that are at work 
in the diff erent functions of the brain:  sen-
sory, motor, cognitive, aff ective, and social. 
While this will not be described here in a 
systematic way, it at least will be illustrated 
by various examples from diff erent functions 
throughout this (and the second) volume of 
 Unlocking the Brain .  

   (3)    Finally, I  postulate that diff erence-based 
coding in this sense is constituted by the 
excitation-inhibition balance (EIB), which 
biochemically is closely related to the bio-
chemical substances GABA and glutamate 
(see Chapters  2, 6, and 12 of this work). 
I  postulate that GABA and glutamate are 
central in constituting spatial and temporal 
diff erences, so I will here focus on these two 
transmitters. In contrast, I  will neglect the 
many others transmitter (serotonin, dopa-
mine, acetylcholine, etc.) that may modulate 
the degree of diff erences rather than consti-
tute the encoding of spatial and temporal 
diff erences by themselves (as GABA and 
glutamate) into neural activity.      
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    OBJECTION VI: NO NEED FOR “THEORY” IN 
THE “THEORY OF BRAIN ACTIVITY”   

 One may now want to complain that 
diff erence-based coding as the brain’s neural 
code is way too abstract and theoretical and thus 
too removed from the empirical data. However, 
reading through the diff erent parts of this book 
will put the hypothesis of diff erence-based cod-
ing as the brain’s neural code into a more empiri-
cal context. I will provide more empirical detail 
in the four parts in this volume whereas its rel-
evance for consciousness will be discussed in 
Volume II. 

 But why start with all the theory instead of 
just describing the empirical data? Any theory is, 
aft er all, only as good as the empirical data that 
support it. However, it is oft en forgotten that the 
reverse holds true, too; namely, that the empiri-
cal data are only as good as the theory. 

 Despite the enormous increases in empirical 
data in neuroscience these days, we still lack a 
coherent theory, a theory of brain activity. Such 
theoretical defi cit has been observed by some of 
the most prominent neuroscientists of our time, 
like N.  Logothetis (2010), G.  Buzsáki (2006, 
pp. xii–xiii), E.  R. John (2006), W.  J. Freeman 
(2007, 2011), and R.  G. Shulman (van Eijsden 
et  al. 2009). As Nikos Logothetis puts it:  “But, 
as I  said in the beginning, in the end what we 
need are not necessarily more data but a theory 
and a plausible theoretical context within which 
data can be better (and more intelligently) inter-
preted” (2010, p. 175). 

 Th erefore, sometimes it may be better to 
think about the theoretical background assump-
tions than to conduct the next experiment. Why? 
Th is is not just to resolve a defi cit in theory and 
to interpret the same data in diff erent ways. Even 
more importantly, it is to reveal some hidden 
presuppositions that may lead to novel and dif-
ferent kinds of experimental designs. Th at is the 
prime and major aim of this book:  to let novel 
hypotheses and diff erent experimental ideas 
evolve from theoretical refl ection about the 
brain’s encoding of neural activity. 

 We recall from physics at the beginning of the 
twentieth century. At that time, ground-breaking 
empirical discoveries were closely linked with 

novel theoretical assumptions, as, for instance, 
in the relativity theory and quantum physics. 
Another example of the tight linkage between 
theoretical refl ection and empirical discoveries 
is the science of the other organs of the body. 
Once we had an established theory of the heart 
as a pumping organ, or a theory of the kidney’s 
function as blood-washing organ, we could 
much better understand why the heart and the 
kidney do what they do, which in turn led to 
novel experimental designs and research. 

 I now propose the same to hold in the case 
of the brain. Here, too, empirical discovery and 
theoretical refl ection have to go hand-in-hand. 
Th is is the aim and purpose of this volume. Th at 
in turn provides the groundwork for a novel 
approach, both experimentally and theoretically, 
to consciousness as one of the main puzzles and 
mysteries in current neuroscience. Th is will be 
the focus in Volume II.  

    APPROACH TO THE BRAIN IA: EXTRINSIC 
VERSUS INTRINSIC  FEATURES  OF THE BRAIN   

 I characterize the brain by the application of a 
particular encoding strategy, diff erence-based 
coding as distinguished from stimulus-based 
coding. Such an encoding strategy must be traced 
back to the brain itself: it is the input that the brain 
itself provides to the generation and processing of 
its own neural activity. Since it can be traced back 
to the brain itself, its encoding strategy—namely, 
diff erence-based coding—must be considered an 
intrinsic feature of the brain. 

 Th e brain’s intrinsic input to its neural activ-
ity must be distinguished from the intero- and 
exteroceptive stimuli and their origin in the 
body and the environment. Since they origi-
nate outside the brain, their input can be char-
acterized as extrinsic rather than intrinsic. Th e 
stimulus-induced activity as related to the vari-
ous stimuli and functions must therefore be 
considered an extrinsic rather than intrinsic 
feature of the brain. While the extrinsic features 
of the brain, and thus its stimulus-induced or 
task-related activity, are extensively investigated 
these days, my focus is more on the brain’s intrin-
sic features and how they impact the extrinsic 
features. 
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 What are the intrinsic features of the brain? 
Th e intrinsic features are the characteristics or 
aspects of the brain’s neural processing (like its 
encoding strategy) whose origin must be traced 
back to the brain itself and its insides. Th is is to 
be distinguished from extrinsic features whose 
origin is “located” outside of the brain, as in 
body or environment (see also the Introduction 
in Volume II of this book for more details on the 
distinction between intrinsic and extrinsic fea-
tures of the brain). 

 Th ere is yet another intrinsic feature of the 
brain besides its encoding strategy. Th e brain 
shows spontaneous activity that remains inde-
pendent of any extrinsic stimulus input. Such 
spontaneous activity has also been called 
“intrinsic activity” or “resting-state activity” (see 
Chapter 4 for conceptual and empirical details). 
Th e brain’s resting-state activity has recently 
become particularly relevant, especially in the 
context of neuroimaging and its detection of 
the default-mode network (DMN) (see Raichle 
et  al. 2001; Raichle 2009, 2010; Northoff  et  al. 
2010; Northoff  and Bermpohl 2004)  (and see 
Chapter 4 for details). 

 Since it originates in the inside of the brain 
and remains independent of extrinsic stimuli, 
the brain’s intrinsic activity may be consid-
ered an intrinsic feature of the brain. Th e 
exact role and function of the brain’s intrinsic 
activity and how it is related to its extrinsic 
activity, the stimulus-induced or task-related 
activity, remain unclear these days, however. 
Interestingly, the debate about their relation 
can be traced back to diff erent views of the 
brain in neuroscience at the turn of the nine-
teenth–twentieth century.  

    APPROACH TO THE BRAIN IB: EXTRINSIC 
VERSUS INTRINSIC  VIEWS  OF THE BRAIN   

 One view of the brain, favored by the British 
neurologist Sir Charles Sherrington (1857–
1952), proposed the brain and the spinal cord to 
be primarily  refl exive . “Refl exive” means that the 
brain reacts in predefi ned and automatic ways to 
stimuli: the stimuli from the outside of the brain, 
originating extrinsically in either body or envi-
ronment, are assumed to determine completely 

and exclusively the subsequent neural activity. 
Th e resulting stimulus-induced activity, and 
more generally, any neural activity, in the brain 
is then traced back to the extrinsic stimuli. One 
may therefore speak of what I  describe as the 
“extrinsic view” of the brain (see   Fig. I12-a  ).      

 An alternative view, however, was already sug-
gested by one of Sherrington’s students, Th omas 
Graham Brown. In contrast to his teacher, he 
suggested that the brain’s neural activity—that 
is, in spinal cord and brain stem—is not pri-
marily driven and sustained by extrinsic stimuli 
from the outside of the brain; that is, the body 
and environment. Instead, he held that the spi-
nal cord and brain stem do show spontaneous 
activity that originates within the brain and thus 
intrinsically. 

 Other neuroscientists, like Karl Lashley, 
Kurt Goldstein, and Wolfgang Koehler, fol-
lowed Brown’s line of thought and proposed 
that the brain shows intrinsic activity. Th is leads 
me to speak of an “intrinsic view” of the brain. 
Th e distinction between extrinsic and intrinsic 
views of the brain is nicely illustrated in the fol-
lowing quote by the early German neurologist 
Kurt Goldstein in his book  Th e Organism , which 
appeared originally in 1934 (Goldstein 2000):
  Th e system is never at rest, but in a continual state 
of excitation. Th e nervous system has oft en been 
considered as an organ at rest, in which excita-
tion arises only as a response to stimuli. Th is was 
due to the fact that only those phenomena that 
became particularly pronounced on stimulation 
were considered as expression of the processes in 
the nervous system. Th e fact that the nervous sys-
tem is continuously under the infl uence of stim-
uli and is continually excited was overlooked. It 
was not recognized that events that follow a defi -
nite stimulus are only an expression of a change 
of excitation in the nervous system, that they 
represent only a special pattern of the excitation 
process. Th is assumption of a system at rest was 
especially favoured by the fact that only the exter-
nal stimuli were considered. Too little attention 
was given to the fact that the organism is con-
tinuously exposed, even in the apparent absence 
of outward stimuli, to the infl uence of inter-
nal stimuli—infl uences that may be of highest 
importance for its activity, for example, the eff ect 
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Stimulus-induced activity: Result
of Stimulus-Stimulus interaction 

Brain itself has No SAY in
what happens in the brain! 

(a)

Stimulus-induced activity : Result
of Rest-Stimulus Interaction 

Brain itself has a Strong SAY
in what happens in the brain!  

(b)

Neural code

Intrinsic (resting
state) activity 

   Figure I1-2      Extrinsic Versus Intrinsic View of the Brain.  Th e fi gure illustrates two views of the brain, 
the brain’s neural activity as purely determined by the extrinsic stimuli ( a ), and by both the brain’s 
intrinsic activity and the extrinsic stimuli from the environment ( b ). Th e painting on the left  in both fi g-
ures shall illustrate the stimuli from the environment, while the brain in the middle stands for the brain. 
Th e grey line within the brain itself in ( b ) shall symbolize the brain’s intrinsic activity, its resting-state 
activity, which as such remains independent of extrinsic stimuli from the environment. Th e bar diagram 
on the far right on both fi gures stands for the neural activity we observe once the person and its brain 
encounter the stimuli from the environment. ( a ) In the case of a purely extrinsic view of the brain, 
the observed stimulus-induced activity is exclusively and completely determined by the stimulus itself; 
the brain is passive and functions more or less like an automatic and refl ex-like machine. Any neural 
activity in the brain can be traced back to stimuli and their interactions with each other; i.e., stimulus–
stimulus interaction. Th e brain itself has thus no say in what happens in the brain. ( b ) Th is is diff erent 
once one assumes intrinsic activity in the brain itself; i.e., in the resting state. In this case, the observed 
stimulus-induced activity results from the interaction between brain and stimuli amounting to rest–
stimulus interaction. Th e brain itself has thus a strong say in what actually happens in the brain during 
its encounter with extrinsic stimuli from the environment (and the body).   
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of stimuli issuing from the blood, the importance 
of which was particularly pointed out by Th omas 
Graham Brown. Our view has received support 
by the investigation of the action currents of the 
brain, for as has been shown that even while the 
organism is not exposed to any external stimuli 
regular excitation processes occur in the brain. 
Stimulation appears in the curves rather as a 
disturbance of the regularity of the currents. 
(Goldstein 2000, pp. 95–96).   

 Why is the distinction between intrinsic 
and extrinsic views of the brain relevant? Th e 
assumption of intrinsic activity generated inside 
the brain itself has major implications for how 
we conceive of, view, and approach the brain’s 
neural activity. What we as outside observ-
ers describe as “stimulus-induced” activity and 
usually associate with the extrinsic stimulus 
itself must, from the inside of the brain itself, 
be regarded as the hybrid result of a specifi c 
interaction between the brain’s intrinsic activ-
ity and the extrinsic stimulus. In other words, 
stimulus-induced activity must be traced back 
to what we recently described as “rest–stimulus 
interaction” (see Northoff  et  al. 2010; see also 
Chapters  11 and 12 in this Volume for details) 
(see   Fig. I12-b  ). 

 Which view of the brain do I  follow here? 
Rather than subscribing to either the intrinsic 
or extrinsic view, my aim is to understand the 
brain’s intrinsic features and thus how the brain 
encodes neural activity in general and how that 
aff ects both intrinsic and extrinsic activity. I pos-
tulate that we can understand the brain’s extrin-
sic features, its stimulus-induced or task-related 
activity, only when we suffi  ciently investigate its 
intrinsic features; that is, its encoding strategy 
and intrinsic activity. Th is, I claim, will not only 
shed a novel light on the brain’s neural activity 
but also on consciousness and how it is yielded 
by the brain, as will be discussed in Volume II.  

    APPROACH TO THE BRAIN 
IIA: ENERGY AND INTRINSIC ACTIVITY   

 Th is has been a rather abbreviated history of 
neuroscience. How about the present? Th e 
dichotomy between intrinsic and extrinsic views 

of the brain is still as controversial and has most 
recently resurfaced, especially in functional 
brain imaging (see, for instance, Raichle 2009, 
2010). Let’s start with the extrinsic view. 

 Many domains of neuroscience, ranging from 
cellular, to regional, to behavioral levels of the 
brain, rely on the experimental application of 
specifi c stimuli and tasks to probe neural activ-
ity. By comparing diff erent stimuli and tasks, the 
resulting diff erences in neural activity are asso-
ciated with the respective stimuli or tasks. Th is 
means that the experimental requirements may 
predispose and pull us toward an extrinsic view. 
Th e extrinsic view has been most predominant 
in behaviorism, which, according to authors like 
Jaak Panksepp (see Panksepp 1998, 2011a and 
2011b; Cromwell and Panksepp 2011), fi nds its 
continuation in the cognitive and social neuro-
science of our days. 

 However, the extrinsic view of the brain 
has most recently been challenged on 
metabolic-energetic and neuronal (and behav-
ioral) grounds. Even in the resting state—that 
is, in the absence of any specifi c extrinsic stimuli 
from either body or environment—the brain 
shows a rather high degree of metabolic-energetic 
consumption, with about 20% of the body’s 
overall energy budget (and oxygen fraction) 
(see Shulman et  al. 2003, 2009b; Hyder et  al. 
2006; van Eijsden et al. 2009; Raichle et al. 2001; 
Raichle 2009, 2010). 

 Th is is even more remarkable given that the 
brain accounts for only 2% of the total body 
weight. Most important, the major part of that 
20%—namely, 80% of the total brain’s energy 
budget—is invested in the resting-state activ-
ity, while the stimulus-induced activity only 
requires an incremental increase of up to 20%. If 
the brain’s invests so much energy to do its own 
intrinsic activity, there must be something spe-
cial about it.  

    APPROACH TO THE BRAIN 
IIB: INTRINSIC ACTIVITY AND SPATIAL 
(AND TEMPORAL) STRUCTURE   

 Th e assumption of the special nature of the 
brain’s intrinsic activity has been further 
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propelled by the detection of a particular set 
of regions, the  default-mode network  (DMN), 
which includes various anterior and posterior 
cortical midline structures as well as the bilat-
eral posterior parietal cortex (see Raichle et  al. 
2001; Raichle and Gusnard 2005; Gusnard and 
Raichle 2001; Buckner et  al. 2008). Th e DMN 
shows high metabolism in the resting state that 
is defi ned by the absence of any specifi c extrinsic 
stimuli; such high metabolism is accompanied 
by a particular confi guration of functional con-
nectivity that distinguishes it from other neural 
networks (salience network, executive network, 
sensorimotor networks, etc.; see Menon 2011; 
see Chapters 4–6 in this volume for details). 

 However, spontaneous and thus intrinsic 
activity in the brain is not limited to the DMN. 
Other regions outside the DMN also show 
spontaneous neural activity that is indepen-
dent of any extrinsic stimuli. Th is has been, 
for instance, demonstrated in the auditory and 
visual cortex, the thalamus, the hippocam-
pus, the olfactory cortex, the cortical midline 
regions, the prefrontal cortex, the motor cor-
tex, and other subcortical regions like the brain 
stem and the midbrain (Hunter et  al. 2006; 
Wang et al. 2008; Freeman 2007, 2011; Buzsaki 
2004, 2006, 2007; Buzsaki and Draguhn 2004; 
Llinas 1998, 2002; Panksepp 1998, 2011a and 
2011b; Arieli et  al. 1996; Singer 1999, 2009; 
Fries et  al. 2007; Fries 2005, 2009; Raichle 
et al. 2001; Greicius and Menon 2004; Fox and 
Raichle 2007; Fox et al. 2005, 2006). 

 What can we take away from this quick glance 
(see Chapters 4–6 herein for more details) over 
the most recent results about the brain’s intrin-
sic activity? Th ere is plenty of empirical evidence 
for intrinsic activity throughout the whole brain. 
Th e intrinsic activity seems to show though 
a certain spatial structure as it is evidenced by 
diff erent neural networks like the default-mode 
network, the sensorimotor network, the salience 
networks, and the central executive network (see 
for instance Menon 2011 as well as Chapter  4 
in this volume). Furthermore there seems to be 
a temporal structure where low and high fre-
quency fl uctuations of neural activity are linked 
and integrated with each other (see Lakatos et al. 
2008 as well as Chapter 5 for details). 

 Th e intrinsic activity’s spatial and temporal 
structure remains to be determined, as it will be 
the focus in Chapters 4 through 6. Most impor-
tantly, I will postulate in Volume II that the spa-
tial and temporal structure of the brain’s intrinsic 
activity proves crucial in understanding how the 
brain can associate consciousness and its phe-
nomenal features with the otherwise purely neu-
ronal stimulus-induced activity.  

    APPROACH TO THE BRAIN III: 
“INTRINSIC-EXTRINSIC VIEW” OF THE BRAIN   

 Which view holds—the intrinsic or the extrin-
sic one? Rather than cashing out one view at the 
expense of the other, the brain itself may force us 
to go beyond and reconcile both views. Any given 
neural activity in the brain may be suggested to 
result from the interaction between the brain’s 
intrinsic activity and the extrinsic stimuli from 
either the body—that is, interoceptive stimuli; or 
the environment—that is, exteroceptive stimuli. 
What I  previously described as “rest–stimulus 
interaction” (Northoff  et al. 2010), the neuronal 
mechanisms underlying the encounter between 
resting state and stimulus may thus be central 
in understanding the brain’s neural activity in 
general. 

 Why is such rest–stimulus interaction so 
important? Th is question can be answered 
from both sides, the side of the resting-state 
activity and the side of the stimulus (and its 
stimulus-induced activity). Let us start with the 
resting-state activity itself. 

 Even in an apparent resting state, such as dur-
ing sleep, the seemingly intrinsic activity of the 
brain is nevertheless still exposed to continuous 
extrinsic input from the body, or interoceptive 
stimuli, and the environment, or unspecifi c sen-
sory stimuli (from all sensory modalities except 
the visual sense). For instance, the continuous 
action of our heart sends interoceptive stimuli 
to the brain during sleep, as do the continuous 
tactile, auditory, olfactory, and gustatory inputs 
from the environment. 

 Th e brain’s resting-state activity may thus not 
be as purely intrinsic in its origin as is suggested 
by the term “intrinsic activity” (see Chapter  4 
for the discussion of the concepts of “intrinsic 
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activity” and “resting state”). Instead, the brain’s 
resting activity may be hybrid rather than purely 
intrinsic, in that it results from a particular con-
stellation between diff erent stimuli from diff er-
ent origins:  brain, body, and environment. Th e 
hybrid nature of the brain’s resting-state activity 
will be pivotal in understanding why and how it 
constitutes some kind of spatial (and temporal) 
structure, as indicated earlier (see Chapters  4 
and 5 for details). 

 Conversely, any extrinsic stimulus fi rst 
encounters the brain’s intrinsic activity before it 
can be processed at all and associated with sen-
sorimotor, aff ective, cognitive, and social func-
tions. Th e resulting stimulus-induced activity 
can therefore not be associated exclusively with 
the particular stimulus or task alone. Instead, the 
stimulus-induced activity must be considered a 
hybrid that results from the relationship of the 
stimulus in question to the other stimuli that are 
processed in the brain’s resting-state activity at 
that particular point in time. Analogous to the 
brain’s resting-state activity, the stimulus-induced 
activity is therefore hybrid rather than being 
purely extrinsic (see Chapter  12 for details on 
the hybrid nature of stimulus-induced activity). 

 What does the hybrid characterization of 
both resting-state and stimulus-induced activ-
ity imply for the view of the brain? Rather than 
opposing intrinsic and extrinsic views, we may 
need to investigate how the brain’s resting-state 
activity and the extrinsic stimuli from body and 
environment interact with each other during 
both resting-state and stimulus-induced activ-
ity. What we described as rest–stimulus inter-
action in the empirical context may thus fi nd 
its conceptual analogue in what I refer to as an 
“intrinsic-extrinsic view” of the brain.  

    APPROACH TO THE BRAIN IVA: NEED FOR A 
“COMMON CURRENCY” BETWEEN INTRINSIC 
ACTIVITY AND EXTRINSIC STIMULI   

 Th e “intrinsic-extrinsic view” postulates direct 
interaction between the brain’s intrinsic activity 
and the extrinsic stimuli from body and envi-
ronment. Both intrinsic activity and extrinsic 
stimuli are very diff erent, however. Despite their 
diff erences, both intrinsic activity and extrinsic 

stimuli can nevertheless directly interact with 
each other. 

 How is such direct interaction possible? For 
that, both intrinsic resting-state activity and 
extrinsic stimuli must be encoded into neu-
ral activity in the same format, utilizing the 
same metric or measure. Only if both intrinsic 
resting-state activity and extrinsic stimuli are 
processed in the same format, i.e., metric or 
measure, are they compatible and therefore able 
to directly interact with each other. 

 If, in contrast, they are not computed in 
the same format, like two diff erent computer 
soft ware programs, they remain incompatible, 
which makes their direct interaction impossible. 
More metaphorically put, there must be a “com-
mon code” working as a “common currency” or 
“common language” between the brain’s intrinsic 
activity and the extrinsic stimuli from body and 
environment. 

 How can we further illustrate the need for 
such a “common currency”? For that, I  turn to 
the example of a market and two merchants. One 
merchant coming from the city may use money 
as currency for exchanging the bread he wants 
to trade, with one loaf costing, for instance, $5. 
Another merchant coming from the mountains 
uses chickens as currency for trading the meat, 
with 1 kilo of meat for 5 chickens. 

 How, now, is it possible for the two to do 
business? Th e mountain merchant needs bread, 
while the one from the city wants the meat. How 
can they exchange their goods? Th ey are lacking 
a common currency unless they are able to nego-
tiate the value of both bread and chicken relative 
to a common standard or measure.  

    APPROACH TO THE BRAIN IVB: 
DIFFERENCE-BASED CODING AS “COMMON 
CURRENCY” BETWEEN INTRINSIC ACTIVITY 
AND EXTRINSIC STIMULI   

 How does the example with our two merchants 
relate to the brain? Th e distinction between the 
two trading merchants corresponds to the dis-
tinction between intrinsic activity and extrinsic 
stimuli. In the same way the two merchants want 
to interact and trade their goods, the extrin-
sic stimuli from body and environment “want 
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to interact and trade” with the brain’s intrinsic 
activity. 

 Th e analogy goes even further. Th e two mer-
chants meet on a common ground, the market 
place, to trade their goods. What is the com-
mon ground, the “market place,” in the case of 
the encounter between intrinsic activity and 
extrinsic stimuli? Very simply, it is the brain itself 
where the encounter between intrinsic activity 
and extrinsic stimuli takes place. 

 Th is, however, is the point where the com-
monalities end and the diff erences start. Unlike 
in the case of our two merchants with their 
incompatible currencies, intrinsic activity and 
extrinsic stimuli are well able to directly interact 
with each other: “they can trade their informa-
tion to the respective other and converge and 
merge with each other.” Th is is possible, though, 
only because intrinsic activity and extrinsic 
stimuli share a “common currency,” something 
our poor merchants are lacking. 

 What does this “common currency” consist 
of? In the case of today’s merchants, it is easy. 
Money is the “common currency” in our mar-
kets. What now is the “common currency” that 
allows us to “trade and cash in” intrinsic activ-
ity and extrinsic stimuli with each other in the 
marketplace called “brain”? We currently do 
not know. 

 I suppose that the “common currency” 
between intrinsic activity and extrinsic stim-
uli can be found in what I earlier described as 
diff erence-based coding. Th e brain encodes the 
diff erences between diff erent discrete points 
in physical time and space; that is, spatial and 
temporal diff erences into neural activity. I now 
postulate that such diff erence-based cod-
ing applies to the encoding of both the brain’s 
intrinsic activity (see Chapters  4–6) and the 
extrinsic stimuli from body and environment 
(see Chapters 1–3). 

 Both intrinsic activity and extrinsic stimuli 
are encoded into neural activity in the same 
way:  namely, in terms of spatial and temporal 
diff erences. Such spatial and temporal diff er-
ences may then be constituted not only within, 
but also across intrinsic activity and extrinsic 
stimuli. What is then encoded during rest–stim-
ulus interaction are the spatial and temporal 

diff erences between the intrinsic activity and the 
extrinsic stimuli (see Chapters 10–12 for details). 

 Diff erences as encoded into neural activity 
via diff erence-based coding are consequently the 
“common currency” between intrinsic activity 
and extrinsic stimuli. Th is means that diff erences 
as “common currency” provide the very basis for 
the here advocated “intrinsic-extrinsic view” of 
the brain.  

    APPROACH TO THE BRAIN V: 
“CODE- VERSUS CONTENT-BASED VIEW” 
OF THE BRAIN   

 My hypothesis is a rather strong one, since it 
claims that  any  neural activity in the brain, 
whether resting-state or stimulus-induced activ-
ity, is encoded in terms of diff erence-based cod-
ing rather than stimulus-induced activity. Th is 
means that I  consider diff erence-based coding 
the neural code of the brain, the code that signi-
fi es and characterizes the brain as distinguished 
from, for instance, other organs like heart, kid-
ney, etc., as well as from the computer (see my 
Epilogue in this volume for the comparison of 
the brain to other organs). In short, I  consider 
diff erence-based coding to characterize and 
defi ne the brain and its specifi c way of generat-
ing and processing neural activity. 

 I therefore base the characterization of the 
brain and its neural activity on a particular code, 
diff erence-based coding. One may thus want 
to speak of a “code-based view of the brain.” 
A  code-based view of the brain characterizes 
the brain by a particular code rather than some 
other features such as, for instance, behav-
ioral, phenomenal, or mental contents (see the 
next paragraphs). We must thus distinguish the 
here-suggested “code-based view of the brain” 
from a “content-based view of the brain” (see 
  Fig. I1-3  ).      

 What do I  mean by “content-based view of 
the brain”? In that case, the brain and its neu-
ral activity are no longer characterized by a 
particular code but by the kinds of contents 
and their associated functions and neural net-
works. Th e brain’s neural activity triggers vari-
ous kinds of behavior—aff ective, sensorimotor, 
cognitive, or social—that are associated with the 
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corresponding functions and their underlying 
neural networks (and modules) in the brain. Th e 
diff erent functions and their respective neural 
networks thus constitute behavioral contents. 

 However, the constitution of such behav-
ioral contents by the various sensorimotor, 
aff ective, cognitive, and social functions and 
their respective neural networks is very much 
dependent on the brain’s resting-state activity 
and how it interacts with the various stimuli 
and tasks (see especially Chapter  11 for details 
on that). Th is means that the constitution of 
behavioral contents is based on and presupposes 
a particular kind of encoding strategy; namely, 
diff erence-based coding, as I  will argue. Before 
pursuing a “content-based view of the brain,” we 

therefore need to address the “code-based view 
of the brain.” 

 In addition to behavioral contents, one may 
also want to consider phenomenal and mental 
contents in order to signify a “content-based 
view of the brain.” Th ough not yet fully under-
stood, consciousness and both its phenomenal 
contents (like subjective experience) and mental 
contents (like our thoughts) are these days oft en 
taken as hallmark features of the brain and its 
neural activity. 

 As in the case of behavioral contents, I argue 
that phenomenal and mental contents do very 
much presuppose a particular encoding strategy 
in the generation of the brain’s neural activity in 
order for them to be possible. More technically 
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   Figure I1-3      Content- Versus Code-Based Approach to the Brain.  Th e fi gure illustrates the compari-
son between a content- and code-based approach to the brain. Th e fi gure presents a summary of the 
main features discussed and outlined in this introduction. Th is general theoretical overview will be 
supported by specifi c empirical data in the diff erent parts of this volume.   
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put, I propose diff erence-based coding as neces-
sary condition of possible consciousness and its 
phenomenal and mental contents. Th is leads me 
to develop what I describe as the “coding hypoth-
esis of consciousness,” which will be elaborated 
in full detail in Volume II.  

    APPROACH TO THE BRAIN VI: “WHAT 
THE BRAIN ITSELF DOES TO THE STIMULI” 
VERSUS “WHAT THE STIMULI THEMSELVES 
DO TO THE BRAIN”   

 Th e focus in this volume is on developing a 
“code-based view of the brain” on a purely 
neuronal basis, independent of its behavioral, 
phenomenal, and mental functions. I  therefore 
discuss how both stimuli from body and envi-
ronment (see Chapters  1–3) and the brain’s 
resting-state activity (see Chapters  4–6) are 
encoded into neural activity. Th is is comple-
mented by showing how their interaction, rest–
stimulus interaction, is encoded into neural 
activity (see Chapters 10–12) and, most impor-
tantly, predisposed by the resting-state activity 
itself (see Chapters 7–9). 

 Rather than focusing on particular functions 
and their respective neural networks, I  discuss 
the neuronal mechanisms underlying the encod-
ing of spatial and temporal diff erences into neu-
ral activity; that is, diff erence-based coding. For 
that purpose, I will discuss several diff erent func-
tions and neural regions and networks, taking 
them as paradigmatic examples of how neural 
activity is encoded in terms of diff erence-based 
coding. 

 My approach to the brain taken in this vol-
ume diff ers from the one usually taken these 
days. Th e commonly accepted approach starts 
with particular stimuli or tasks from body and 
environment and investigates how they aff ect 
the brain’s various functions and networks. Th e 
movement is thus from stimuli and tasks to the 
brain. Th is is diff erent in my approach. Rather 
than starting with the extrinsic stimuli (and 
tasks), I start with the brain itself and its intrinsic 
features. To put it slightly diff erently, I start with 
the code rather than the contents of the brain, 
thus pursuing a code- rather than content-based 
approach to the brain. 

 Neuronally, such a code-based approach to 
the brain entails a shift  from stimulus-induced 
activity to resting-state activity in order to inves-
tigate how the latter aff ects the encoding of the 
former. Th erefore, I start with the investigation of 
the brain’s resting-state activity itself and its par-
ticular way of encoding (see Chapters  4–6 and 
7–9) before turning to stimulus-induced activity 
(see Chapters 10–12) that then, as I claim, can be 
understood as a “natural outfl ow” of the former. 

 Such a characterization of stimulus-induced 
as the “natural outfl ow” of the ongoing 
resting-state activity and its particular spa-
tial and temporal structure has already been 
espoused by one of the earlier major neuroscien-
tists, Karl Lashley (1949):
  A second point of major importance is that the 
nervous system is not a neutral medium on 
which learning imposes any form of organiza-
tion whatsoever. On the contrary, it has defi nite 
predilections for certain forms of organization 
and imposes these upon the sensory impulses 
which reach it. . . . In its functional organisation 
the nervous system seems to consist of schemata 
or basic patterns within which new stimuli are 
fi tted. (Lashley 1949, p. 35)   

 Following Lashley’s footsteps, and putting it 
metaphorically, I  am more interested in “what 
the brain itself does to the stimuli” than in “what 
the stimuli themselves do to the brain.” Th is will 
open a novel door to our understanding of the 
brain:  namely, why and how it works the way 
it does rather than in some other way. Most 
important, this will also open the door to reveal 
the neuronal mechanisms that make possible the 
association of consciousness and its phenom-
enal features to the otherwise purely neuronal 
stimulus-induced activity.  

    OUTLINE OF THE BOOK I: PARTS I AND II   

 Th e main and overarching aim of this book is to 
discuss the hypothesis of diff erence-based coding 
as  the  neural code of the brain. As outlined in this 
introduction, this makes necessary a shift  in our 
view on the brain from a content- to a code-based 
approach. In order to investigate the brain’s 
neural code and, more specifi cally, its encod-
ing of neural activity, I  will discuss the brain’s 
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neural activity in diff erent stages, ranging from 
its encounter with extrinsic stimuli (Part I), to its 
intrinsic activity (Part II), to its own preparation 
to extrinsic stimuli (Part III), and to its modula-
tion by extrinsic stimuli (Part IV) (see   Fig. I1-4  ).      

 In Part I, I  discuss how the brain encodes 
its neural activity when encountering stimuli. 
Single recordings in especially sensory cortical 
regions observed that stimuli are not represented 
one-to-one in neural activity. Instead, the neu-
ral activity of, for instance, one neuron may be 
involved in the representation of more than one 
stimulus, implying a many-to-one relationship 
between stimuli and neurons. Th is is possibly 
only when the neural activity is temporally and 
spatially made sparser compared to the number 
of stimuli, which has led to the hypothesis of 
 sparse coding  (Olshausen and Fields 1996). 

 Sparse coding implies a many-to-one rela-
tionship with regard to the number of neurons 
recruited per stimulus; this implies that a lower 
number of neurons is actually recruited com-
pared to the number of those that could possibly 
be recruited. Th is means that the resulting neural 
activity is spatially and temporally “sparsened,” 
refl ecting what is described as “lifetime sparsen-
ers” and “population sparseness” (Part I). 

 Sparse coding has been predominantly inves-
tigated on the cellular level. I  will here extend 
its central claim to the regional level, taking 
results from perceptual decision-making as the 
paradigmatic example. As on the cellular level, 
the fi ndings suggest that neural activity on the 
regional level can only result when encoding 
the diff erence between diff erent stimuli rather 
than the stimuli themselves. Hence, I  will 
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Coding extrinsic activity:
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   Figure I1-4     Overview of the Brain   Th e fi gure illustrates the main parts of the book and how they 
are based on each other. On the far left , the main assumption is described by assuming intrinsic activ-
ity in the brain; i.e., resting-state activity. Th is in turn is supposed to entail a particular way of neu-
ral coding:  diff erence-based coding as distinguished from stimulus-based coding. Th at means that 
any change in neural activity must be encoded relative to the brain’s actual resting-state activity level. 
Hence, what is encoded is the virtual diff erence between the actual resting-state activity level and the 
possible neural activity elicited by the stimulus independently of any resting-state activity. I propose 
that diff erence-based coding is the basic code of the brain,  the  neural code. If so, diff erence-based coding 
should be manifested in the various neural operations of the brain and thus in its diff erent forms of neu-
ral activity. Th is is indicated on the far right. First, I show that diff erence-based coding must underlie 
the encoding of stimuli from the environment into the brain’s neural activity; this will be discussed in 
Part I. Second, I propose diff erence-based coding to be central in encoding spontaneous changes in the 
resting-state activity itself; this will be discussed in Part II. Th ird, I suggest diff erence-based coding to 
make possible the encoding of predictions or anticipations of possible stimuli from the environment in 
the brain’s neural activity; this is currently subsumed under the theory of predictive coding, which will 
be discussed in Part III. Finally, I demonstrate that diff erence-based coding allows for the direct interac-
tion of the brain’s intrinsic activity with the extrinsic stimuli from body and environment amounting to 
rest–stimulus interaction; this will be discussed in Part IV.   
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propose that sparse coding on both cellular and 
regional levels is possible only when presup-
posing diff erence-based coding (rather than 
stimulus-based coding). 

 Th e second part shift s the focus from the 
encoding of stimuli by the brain to the brain 
itself and its intrinsic activity. I  will here focus 
exclusively on the brain’s intrinsic activity, which 
recently has been much debated, especially in 
the functional imaging literature. Th e descrip-
tion of the brain’s resting state and its high 
metabolic-energetic and neural activity has led 
to much research into the spatial and temporal 
features of the resting-state activity as manifested 
in functional connectivity and low-frequency 
fl uctuations. 

 My focus is especially on the neuronal mech-
anisms of how such functional connectivity and 
low-frequency fl uctuations are generated. What 
kind of neuronal processes and coding strate-
gies must be presupposed in order to make pos-
sible the kind of functional connectivity and 
low-frequency fl uctuations we observe in the 
brain’s resting state? Th is leads me to describe 
the spatiotemporal dynamics of the resting state. 

 I  postulate that the resting state is a highly 
dynamic, that is, non-static state wherein plenty 
of interactions across diff erent discrete points 
in physical time and space are going on. Th ere 
are, for example, interactions across the diff erent 
regions in the resting state itself, as refl ected in 
functional connectivity. And there is continuous 
interaction between diff erent frequency ranges 
(like low-frequency fl uctuations and gamma 
oscillations; see Chapter  5 in this volume for 
details). In short, there is plenty of continuous 
interaction across diff erent discrete points in 
physical time and space in the intrinsic activity 
and thus in the resting state itself. 

 Following my main hypothesis, I hypothesize 
that the resting state and its encoding of neural 
activity can be characterized by diff erence-based 
coding. I  will show that the brain’s intrinsic 
activity is encoded in terms of spatial and tem-
poral diff erences between diff erent discrete 
points in physical time and space. Th is pre-
supposes diff erence-based coding rather than 
stimulus-based coding in the encoding of the 
brain’s resting-state activity.  

    OUTLINE OF THE BOOK II: PARTS 
III AND IV   

 Aft er having discussed the encoding of extrinsic 
stimuli (Part I) and the more intrinsic activity (Part 
II) into neural activity, we next shift  our focus to 
how both of them, and especially the brain’s intrin-
sic activity, impact subsequent stimulus-induced 
activity. Th is will be investigated in two diff er-
ent steps:  fi rst, how the brain’s intrinsic activity 
“prepares itself ” for its potential encounter with 
extrinsic stimuli; this is discussed in the current lit-
erature under the concept of  predictive coding  (see 
Part III). Such predictive coding sets the stage for 
the actual interaction of the extrinsic stimuli with 
the brain’s intrinsic activity, which is supposed to 
be based on diff erence-based coding (see Part IV). 

 Part III focuses on predictive coding and 
how it stands in relation to diff erence-based 
coding. Predictive coding claims that neural 
activity results from the matching and compari-
son between a predicted input and the actual 
input, with this diff erence being the predic-
tion error. Th e amount of prediction error may 
then determine the degree of the subsequent 
stimulus-induced activity. Th is makes it clear 
that the prediction error is based on the encod-
ing of spatial and temporal diff erences, the diff er-
ence between predicted and actual input. Hence, 
predictive coding is not only well compatible 
with diff erence-based coding but presupposes it. 

 How, though, is the predicted input gener-
ated? Th e theory of predictive coding implies a 
hierarchical model of organization wherein each 
layer functions as either predicted or actual input 
for the respectively next-higher and -lower layers 
(see Part III for details). Th is neglects, however, 
the central role of the brain’s intrinsic activity. 

 I will here target those neuronal mechanisms 
that are central in generating the predicted 
input on the basis of the brain’s intrinsic activ-
ity and the encoding of its own neural activity in 
terms of spatial and temporal diff erences; that is, 
diff erence-based coding. Since reward is one of 
the main functions where predictive coding has 
been demonstrated, I  devote two chapters (see 
Chapters 8 and 9)  to it, in which I will discuss 
how diff erence-based coding and predictive cod-
ing complement each other. 
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 How about the actual stimulus-induced activ-
ity by itself? Th is is the focus in Part IV. Volume 
I ends with the discussion of the neuronal mech-
anisms underlying stimulus-induced activity 
and more specifi cally rest–stimulus interaction 
as the interaction between extrinsic stimuli and 
intrinsic activity. Th e insights from the interac-
tion between diff erent stimuli—that is, stimulus–
stimulus interaction (see Chapter 10)—serve as a 
template to gain insight into the neuronal mech-
anisms underlying rest–stimulus interaction (see 
Chapter  11). I  suppose that such rest–stimulus 
interaction, including its behavioral (and phe-
nomenal) eff ects, is possible only by encoding 
the extrinsic stimulus into neural activity relative 
to the actual level of the brain’s intrinsic activ-
ity, thus presupposing diff erence-based coding 
rather than stimulus-based coding. 

 I propose that the excitation-inhibition bal-
ance (EIB) is central in making possible the 
encoding of spatial and temporal diff erences into 
stimulus-induced activity during rest–stimulus 
interaction. Since the EIB is based on GABA and 
glutamate, I discuss the most recent results on how 
resting-state levels of both GABA and glutamate 
predict the degree of stimulus-induced activity and 
its associated behavioral eff ects (see Chapter 12). 

 I postulate that the EIB is central in constitut-
ing spatial and temporal diff erences and their sub-
sequent encoding into any kind of neural activity. 
Without the interplay and balance between 
GABA and glutamate and thus between neural 
inhibition and excitation, the brain would remain 
unable to constitute spatial and temporal diff er-
ences at all and thus to use diff erence-based cod-
ing as its basic coding strategy. I  therefore focus 
on the role of GABA and glutamate in diff erent 
neuronal contexts during stimulus-induced activ-
ity (Chapter 2), resting-state activity (Chapter 6), 
and rest–stimulus interaction (Chapter 12).  

    OUTLINE OF THE BOOK III: EPILOGUE 
AND APPENDIX   

 Th e book concludes with an epilogue. 
Comparing the brain to other organs of the 
body like the stomach, the heart, and the kid-
ney, I summarize the main points and hypoth-
eses postulated here. For that I use some basic 

questions regarding the what, how, where, and 
why of the brain as a template, which helps me 
in sketching a fi rst tentative outline of a future 
“theory of brain activity.” 

 In addition to the four parts, the book 
also contains four appendices. Each appen-
dix discusses a particular theoretical issue rel-
evant for a more thorough understanding of 
diff erence-based coding. Appendix 1 extends 
Chapters 10–12 when discussing the presumed 
relationship between resting-state activity and 
stimulus-induced activity, thereby assuming 
what I describe as “continuity hypothesis.” 

 Appendix 2 picks up the question of localiza-
tionism versus holism as an important theoreti-
cal debate that has long lingered and still is highly 
prevalent in neuroscience in general and func-
tional imaging in particular. Finally, Appendix 3 
raises some epistemological questions concern-
ing the relationship between brain and observer, 
including some principal experimental and epis-
temological limits in our possible investigation 
and knowledge of the brain.  

    READING INSTRUCTIONS I: INDIVIDUAL 
PREFERENCES   

 Th is Volume I contains four parts. Each part of 
the book can be read on its own, however. If read-
ers are mainly interested in sparse coding, for 
instance, they may want to focus on the fi rst part. 
In the case of a strong interest in the resting state, 
the brain’s intrinsic activity, readers may want to 
read Part II and, if their interest extends further, 
Part IV, which focuses on rest–stimulus interac-
tion. Readers focusing on predictive coding may 
fi nd Part III of interest. Finally, those who are 
more interested in stimulus-induced activity may 
fi nd the most useful material in Part IV. 

 More theoretically inclined readers from, 
for instance, neurophilosophy or philosophy 
may want to focus more on the sections where 
I  discuss conceptual issues. While being rather 
infrequent and scattered within the main text, 
these issues are discussed in more detail in the 
four appendices. Th e empirically minded reader 
may be sometimes puzzled about why I discuss 
and raise these more conceptual and theoretical 
issues in either the main text or the appendices. 
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 As I  said before, I  am convinced that neu-
roscience needs to tackle these theoretical and 
conceptual issues if it ever wants to fi nd out how 
the brain works and encodes stimuli and its own 
resting state into neural activity. Neuroscience 
may here want to learn its lesson from, for exam-
ple, physics and biology, where experimental 
discoveries and theoretical-conceptual refl ec-
tions went hand in hand. 

 To give the reader some signposts in each 
chapter, I  indicate by the title what each sec-
tion is about. I  therefore distinguish diff er-
ent sections:  “Neuronal Findings,” “Neuronal 
Hypothesis,” “Neuroempirical Background.” 
Th is and the respective section titles serve to 
orient the reader to what each section is about. 
Moreover, each chapter starts with a summary 
and the key concepts and topics, while it ends 
with a section that addresses open questions. 

 If the reader wants to get a general overview, 
I recommend reading the Introduction and the 
Epilogue. Th e Introduction will provide a gen-
eral overview of the kind of future theory of 
brain activity I envision here. Rather than sum-
marizing the main empirical fi ndings in the 
Epilogue, I there discuss more theoretical issues 
like the what, how, and why of the brain and its 
characterization as distinguished from other 
organs like the heart, stomach, and kidney.  

    READING INSTRUCTIONS II: GENERAL 
LIMITATIONS   

 While I raise many issues, the number of ques-
tions and fi ndings I  leave out is much greater. 
First, I  do not discuss higher-order cognition 
such as attention, executive functions, memory, 
and so forth, in detail. Since my focus is more 
on neuronal mechanisms and coding strategies, 
I intend to reveal what must happen in the brain 
underpinning all of these cognitive functions. 
However, future investigations may show how 
the neuronal mechanisms and coding strate-
gies discussed here may apply and predispose to 
cognitive and other functions. Th is, however, is 
beyond the scope of this book. 

 Second, I do not go into detail about cellular 
and molecular processes, since this would sim-
ply transcend the context of this book. Moreover, 

my biochemical account is rather limited, focus-
ing only on GABA and glutamate while neglect-
ing the many other transmitters like dopamine, 
serotonin, and so on. I am well aware that these 
aspects require attention in the future. 

 More specifi cally, I  would hypothesize that 
cellular, molecular, and biochemical processes 
function according to the same principles out-
lined here, meaning that they are also subject to 
diff erence-based coding. Th is will be a task for the 
future, and I am sure that the regional level as the 
main target here will surely benefi t from such inves-
tigation of the cellular-molecular-biochemical 
and microscopic levels. 

 Th ird, coding specialists may miss math-
ematical models and formulae that are essential 
to account for a particular coding strategy. I here 
focus on describing diff erence-based coding in 
various contexts, while leaving out completely 
the mathematization of diff erence-based cod-
ing (see, for instance, Friston and Dolan 2010). 
Th is must be left  for future specialists, who are 
versatile in mathematical and subsequent neural 
network modeling. 

 Fourth, it should be mentioned that due to 
the wide range of topics covered here, I will not 
be able to cover the whole literature on each 
topic. Instead of giving a full-blown overview 
(which is the purpose of review papers), I  will 
oft en point out certain examples that I consider 
to be paradigmatic. Th at being said, as I oft en do 
not provide examples without competing data, 
one may therefore accuse me of “cherry picking” 
by focusing on certain viewpoints only, while 
neglecting competing ones. However, a discus-
sion of all viewpoints would simply exceed the 
context of this book. 

 Hence, the focus here is on developing my 
own ideas about how the brain could possibly 
function. For that, I rely on several studies, which 
I oft en discuss in a paradigmatic way. Explication 
of my main hypothesis of diff erence-based cod-
ing is accompanied by the hope that it will stir 
plenty of controversial discussions in the future 
and, even more importantly, experimental test-
ing of the many hypotheses I  suggest. In the 
meantime, I  have to beg the forgiveness of all 
authors whose data and positions I neglect and 
do not give suffi  cient credit.  



INTRODUCTION xxxix

    READING INSTRUCTIONS III: CODING 
AND CONSCIOUSNESS   

 Finally, one may wonder how this Volume I, 
about the brain’s neural code, is related to Volume 
II, about consciousness. In short, Volumes I and 
II share the work. Volume I focuses only on neu-
ronal processes and how the brain must process 
and encode its neural activity in order to yield 
the kind of neuronal (and behavioral) results we 
observe. With this in mind, functions like per-
ception, reward, and perceptual decision-making 
serve only to illustrate the neuronal mechanisms 
in question. 

 Th e focus changes in Volume II from such 
purely neuronal account of the brain to the phe-
nomenal features of consciousness. I  focus no 
longer on the purely neuronal mechanisms but 
on how these yield the kind of phenomenal (and 
ultimately mental) features that characterize 
consciousness; that is, phenomenal conscious-
ness and its various features (see Introduction in 
Volume II for a more detailed description). 

 Th ereby I  propose that diff erence-based 
coding, as hypothesized in Volume I, pre-
disposes the association of the brain’s purely 
neuronal states during either the resting state 
or stimulus-induced activity with conscious-
ness and its phenomenal features. Accordingly, 
Volume I  lays the groundwork, the purely neu-
ronal fl oor, without which the phenomenal fur-
niture called consciousness could not possibly be 
set in Volume II. 

 To understand the full implications of the 
here-suggested neural code, diff erence-based 
coding, the reader should not limit herself 
or himself to Volume I  but take at least a look 
into Volume II—for instance, its Introduction 
and Epilogue. From there on, you may decide. 
Either you immerse yourself in the purely neu-
ronal fl oor of the brain itself and its neural code 
in Volume I; or, you prefer to explore right away 
the phenomenal (taken both literally and fi gura-
tively) furniture of consciousness in Volume II 
and how it stands on the neuronal fl oor of the 
brain and its neural code.            
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      GENERAL BACKGROUND:  

   Th e brain is exposed to  continuous stimulation 
from the environment. What does the brain 
do with all of these stimuli? Th e brain reacts to 
stimuli by modulating its intrinsic neural activ-
ity. Such changes in neural activity yield what 
we as observers call “stimulus-induced activity.” 
Now the question is how the brain translates and 
transforms the stimuli from the environment 
into neural activity. 

 What are the rules and principles that guide 
the translation and transformation of mere stim-
uli into neural activity? How does the brain itself 
determine and modulate its own neural activity? 
Which features of the stimuli are central to the 
brain’s determination of its own neural activity? 

 Th ese questions touch upon a common 
theme, the kind of neural algorithm or neural 
code the brain itself applies in order to encode 
and determine its own neural activity when 
being exposed to the stimuli from the environ-
ment. Th e question of the neural code is a cen-
tral theme in current neuroscience, especially on 
the cellular level of single and multiple neurons, 
as it will be discussed in this and subsequent 
chapters. 

 However, the importance of the question of 
the brain’s neural code extends far beyond that, 
into almost philosophical relevance. By deci-
phering the kind of neural code the brain itself 
applies to encode stimuli from the environment 
(and the body), we learn much about the brain 

and how it can—and, even more important, 
cannot—process stimuli from the environment. 
Th is will tell us not only about the brain’s neu-
ral functions but also much about the kind of 
relationship the brain can (and cannot) establish 
in relation to its environment (and the body of 
which the brain is a part). 

 Such an understanding of the brain’s neural 
(or “neuro-ecological,” if one wants to say so) 
code is important in order to understand the 
various functions that are usually associated with 
the brain, like sensory, motor, aff ective, cogni-
tive, and even social functions (see Part IV in this 
volume for some discussion in this regard). Most 
important, deciphering the neural code of the 
brain will, as we will see in Volume II, also prove 
vital to understanding how the brain can associ-
ate its purely neuronal stimulus-induced activity 
with consciousness and its phenomenal features. 

 Let us, though, return to the brain’s neural 
code independent of any particular function. 
Th e question of the neural code is oft en raised in 
the context of the investigation of single neurons 
and a population of neurons using single- and 
multi-cell recordings. Recent investigations show 
that what is encoded into the single neuron’s 
(and a population of neurons’) stimulus-induced 
activity is not the single stimulus by itself, iso-
lated and independent of other stimuli. Th is 
means that the single discrete point in physical 
time and space as associated with a particular 
stimulus does not seem to surface as such—in a 
one-to-one way—in the encoded neural activity. 

         PART I 
Encoding Extrinsic Stimuli   
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 Instead, the stimulus-induced activity seems 
to encode the single stimulus’ frequency of occur-
rence across diff erent, discrete points in physical 
space and time in relation to other stimuli. Th is 
means that the statistical frequency distribu-
tion of the stimulus, its so-called natural statis-
tics, rather than the stimulus’ physical features 
themselves, that is its discrete points in physical 
time and space, is encoded in stimulus-induced 
activity. Th erefore, the relationship between the 
number of the stimuli’s discrete points in physical 
time and space on one hand, and the number of 
the encoding neurons on the other is no longer 
one-to-one but rather many-to-one, with many 
stimuli being encoded in the activity of one neu-
ron. Th ere is thus a rather sparse representation of 
the stimulus in the activity pattern of the neurons, 
amounting to what is called “sparse encoding.” 

 How is such sparse encoding of the stimuli’s 
statistical frequency distribution into the neu-
rons’ activity possible? For that, as I will argue, 
the neurons must encode the spatial and tem-
poral diff erences between the diff erent discrete 
points in physical time and space as associated 
with the diff erent stimuli. Such encoding of spa-
tial and temporal diff erences rather than the sin-
gle stimulus’ discrete points in physical time and 
space themselves; i.e., stimulus-based coding, 
signifi es what I  described as “diff erence-based 
coding” (see Introduction for a defi nition). In 
short, I  postulate that sparse coding presup-
poses diff erence-based coding rather than 
stimulus-based coding.  

    GENERAL OVERVIEW:     

Th e goal of Part I  of this volume is to discuss 
the empirical fi ndings supporting sparse cod-
ing, including its more precise neuronal mecha-
nisms. Th is serves as a starting point to develop 
the fi rst major hypothesis: that sparse coding is 
possible only on the basis of diff erence-based 
coding, as described in the Introduction. 

 Chapter  1 focuses on the neuronal mecha-
nisms underlying sparse coding in single cells 
and a population of neurons and how that pre-
supposes diff erence-based coding. 

 Chapter 2 extends sparse coding to the bio-
chemical dimension, focusing especially on 
GABA and glutamate as the main constituents of 
the “excitation-inhibition balance” (EIB); espe-
cially GABAergic-mediated neural inhibition is 
shown to have a central role in sparsening neu-
ral activity in response to stimuli. While the fi rst 
two chapters remain almost completely on the 
level of single cells and a population of neurons, 
the third chapter aims to apply the principles 
underlying sparse coding to the regional level. 

 Chapter 3 therefore focuses on empirical evi-
dence from recent imaging studies on perceptual 
decision making (taken as paradigmatic exam-
ple). Th e reported regional activation pattern 
observed in these studies is shown to be possible 
only on the basis of diff erence-based and sparse 
coding on a regional level, while they are not 
compatible with stimulus-based coding and a 
non-sparse form of neural coding (like local or 
dense coding).    
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    Summary   

 Th e brain is exposed to continuous sensory 
input from the environment (and the body). 
How does the brain encode such continuous 
sensory input and translate it into neural activ-
ity; for example, stimulus-induced activity? 
Results from cellular recordings show that sin-
gle neurons and a population of neurons repre-
sent the stimulus in a rather sparse way so that 
many stimuli are represented in one neuron’s 
(or one population of neurons’) activity. Th is 
amounts to a many-to-one relationship between 
stimuli and neurons entailing sparse coding. As 
such, sparse coding must be distinguished from 
other coding strategies like dense and local cod-
ing that imply a one-to-many and one-to-one 
relationship between stimuli and neurons. How 
is such sparse coding possible? Th e neurons’ 
(and population of neurons’) activity seems to 
encode the statistical frequency distribution of 
stimuli across their diff erent discrete points in 
physical time and space; that is, their natural 
statistics. However, this is possible only when 
presupposing that diff erences between the stim-
uli’s diff erent discrete points in physical space 
and time are encoded into neural activity. In 
other words, spatial and temporal diff erences 
(between the diff erent discrete points in physi-
cal time and space) must be encoded into neural 
activity in order for sparse coding as a many-to-
one relationship between stimuli and neurons 
to be possible. Th is is empirically supported 
by empirical fi ndings of single neuron and by 
population recordings that show “stretching” 
and “adaptive rescaling” of neuronal activity 
in response to the stimuli’s temporal (veloc-
ity) and spatial (classical and non-classical 
receptive fi elds) features. Such stretching and 

adaptive rescaling can occur only within the 
maximal and minimal possible biophysical 
and computational limits, signifying what I call 
the “biophysical-computational spectrum” 
of the neurons (and the population of neu-
rons), which may vary between diff erent spe-
cies. I  therefore postulate the degree of sparse 
coding to be dependent on and related to the 
biophysical-computational spectrum of the par-
ticular organism, i.e., species. Taken together, 
I demonstrate empirical evidence for the close 
linkage of sparse coding to diff erence-based 
coding in both spatial and temporal terms on 
a single-neuron and population level of neural 
activity.    

    Key Concepts and Topics Covered   

 Coding strategies of sensory input, sparse 
coding, local coding, dense coding, single 
neuron and population level, non-linearity, 
biophysical-computational features of neurons, 
schizophrenia, diff erent species   

    NEUROEMPIRICAL BACKGROUND IA: 
ENCODING OF STIMULI IN TERMS OF 
SPARSE CODING 

   We are bombarded with a multitude of inputs 
from the environment:  for instance, sensory 
stimuli, such as various forms of light inten-
sity and changes in sound pressure; gustatory 
and olfactory stimuli; and so on. How does 
the brain process all of these stimuli? Diff erent 
possibilities exist. 

 Th e brain could, for instance, process each 
stimulus by itself, independently of any others. In 

      CHAPTER 1 
 Sparse Coding and Natural Statistics       
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this case, the multitude of stimuli would corre-
spond to the number of active neurons, implying 
a one-to-one relationship between stimuli and 
neurons. Such a coding strategy is described as 
“local coding.” Roughly, the concept of local cod-
ing describes that each stimulus and, more spe-
cifi cally, its physical features like color, motion, 
and so on, are encoded separately in diff erent 
neurons. Local coding thus implies a one-to-one 
relationship between the number of stimuli and 
the number of active neurons. 

 However, as I will demonstrate later in detail, 
such a one-to-one relationship between stim-
uli and neurons cannot be observed in nature. 
Instead, the various sensory stimuli are repre-
sented by a relatively small number of simultane-
ously active neurons when compared to the large 
number of neurons present in the brain. Th us, 
there is a many-to-one relationship between 
sensory stimuli and active neurons, amounting 
to what is called “sparseness” in the neuronal 
representation of sensory input. Th e sensory 
inputs are processed and coded in a sparse way; 
that is, by a number of active neurons lower than 
the number of stimuli, entailing what is called 
“sparse coding” (for reviews, see Simoncelli 
and Olshausen 2001; Rolls and Treves 2011; 
Olshausen and Fields 2004; Jacob et  al. 2012; 
Molotchnikoff  and Rouat 2012). 

 Let us now describe sparse coding in further 
detail (see later discussions for more empirical 
details) and, in particular, let us explore why 
such sparse encoding of sensory stimuli may 
be benefi cial. When encountering our environ-
ment, our brain is confronted with a multitude 
of stimuli. Not every stimulus is relevant to the 
organism, however. 

 If, for instance, we hear a bird singing the 
same tone over and over, it is relevant the fi rst 
time (if at all) but becomes increasingly irrel-
evant with each repetition. Th ere are thus 
plenty of irrelevant stimuli; that is, redundan-
cies. Coding each of these redundant stimuli on 
a one-to-one basis, as described in local coding, 
would be highly ineffi  cient. One could hear the 
brain saying (if it could speak by itself): “Why 
should I  waste my precious neural and ener-
getic resources on stimuli that are irrelevant for 
my owner?”  

    NEUROEMPIRICAL BACKGROUND IB: 
REDUNDANCY OF SENSORY INPUTS AND 
DIFFERENT POSSIBLE ENCODING STRATEGIES   

 How does our brain deal with redundancies in 
sensory input? British neuroscientist Horace 
Barlow, born in 1921 and a great-grandson 
of Charles Darwin, focused on this question. 
Barlow (1972, 2001)  suggests that such redun-
dancies in sensory inputs are central and provide 
important knowledge about our environment 
that is processed and coded in the activity 
changes of the brain and more specifi cally in the 
sensory cortex. 

 Th is model, however, makes it even more 
diffi  cult for the brain. Th e brain is confronted 
with a “diffi  cult choice,” as one may want to say 
in a fi gurative way:  Th ere is plenty of redun-
dancy in the sensory inputs that needs to be 
reduced, but at the same time, such redun-
dancy may contain some useful information. 
Th e brain is thus torn between discarding 
redundant information and retaining informa-
tion that could be relevant. 

 How can the brain “deal” with the contradic-
tory requirement of discarding and retaining 
information at the same time? We already dis-
carded local coding as one possible option, since 
it requires too much eff ort to encode seemingly 
redundant information. 

 Another possible coding strategy could be 
to select or compress the multitudes of sensory 
inputs, amounting to what Barlow calls “selective 
coding” or “compressive coding” (see Barlow 
2001, p. 243). Such selective coding retains cer-
tain inputs while discarding others. Th is entails 
that the latter ones, the discarded inputs, are 
lost irreversibly; this is problematic, however, 
because these inputs may potentially be relevant 
in the future. Hence, “selective or compressive 
coding” may be an insuffi  cient coding strategy to 
deal with the problem of redundancy.  

    NEUROEMPIRICAL BACKGROUND IC: 
ENCODING OF THE STIMULI’S “NATURAL 
STATISTICS” IN SPARSE CODING   

 Barlow suggests an alternative strategy to both 
“local and selective coding.” Rather than coding 
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each stimulus by itself, as in local coding, or 
selecting stimuli, as in selective coding, he sug-
gests that the brain codes and represents chunks 
of stimuli and their details together; for exam-
ple, as “gathered details” (Barlow 2001, p. 248). 
Let us explain what exactly is meant by “gath-
ered details.” Th ese gathered details may, for 
instance, concern the sensory inputs’ frequency 
of occurrence across the diff erent discrete 
points in physical time and space. In our ear-
lier example of the singing bird, this raises the 
question of whether the stimulus occurs with a 
certain temporal regularity (i.e., the same tone 
over and over again) and whether the bird’s tone 
occurs in conjunction with other stimuli, such 
as the moving of leaves (due to the bird’s eff orts 
while singing). 

 How can we specify such an encoding strat-
egy? Let us start with what is  not  encoded into 
neural activity, since that will make it easier for 
us to better understand the brain’s actual encod-
ing strategy. Barlow proposes that the sensory 
cortex does not encode each tone by itself, 
including its respective discrete point in physi-
cal time and space; that is, its respective tempo-
ral and spatial position. Th e single tone and its 
respective spatial and temporal features are not 
encoded by themselves and thus separately and 
in isolation from the other tones, as described in 
local coding. 

 Aft er having shown how the brain does 
not encode, we now we can turn our focus to 
the brain’s actual encoding strategy. Instead of 
encoding single stimuli by themselves, the brain 
seems to encode the distribution of the stimulus, 
the tone during the bird’s singing, across its dif-
ferent discrete points in physical time and thus 
the frequency distribution of the tone. And the 
brain may also encode the spatial position of 
the bird’s tone relative to, for instance, the tree’s 
moving leaf. 

 What is encoded into neural activity is thus 
the statistical frequency distribution of  stimuli— 
the tone—across diff erent discrete points in 
physical time and space. Th is is what Barlow 
describes as the encoding of the stimuli’s “natural 
statistics,” the statistical frequency distribution 
of a stimulus across diff erent discrete positions 
in time and space.  

    NEUROEMPIRICAL BACKGROUND ID: 
INEFFICIENCY OF DENSE AND 
LOCAL CODING   

 Encoding of the stimuli’s natural statistics 
implies that several stimuli are encoded by 
the neural activity of one neuron, entailing a 
many-to-one relationship and thus sparse cod-
ing. Accordingly, sparse coding can tentatively 
(at this point) be defi ned as the neural coding 
of the stimuli’s natural statistics across diff erent 
discrete points in physical time and space. Before 
going into empirical detail, I will briefl y contrast 
sparse coding with other possible coding strat-
egies with regard to how they stand in relation 
to the earlier mentioned problem of redundancy 
(see   Fig. 1-1  ).      

 Instead of only a few neurons’ being recruited 
during multiple sensory inputs, a higher num-
ber of neurons may respond to most stimuli. 
For instance, one stimulus may then induce the 
activity of several neurons. Th is implies a one-to-
many relationship between stimuli and neurons 
and amounts to what is called “dense coding” 
(see Vinje and Gallant 2000). 

 However, such dense coding is highly redun-
dant in that it codes the same sensory input in 
the activities of many neurons while each neu-
ron contains only a little information. Th e high 
redundancy and the little information encoded 
in the neurons’ activity make such dense coding 
rather ineffi  cient (see Vinje and Gallant 2000). 
One may thus want to speak of the “informa-
tional ineffi  ciency” of “dense coding.” 

 Alternatively, each sensory input may be 
coded separately by one specifi c neuron in a 
one-to-one way, amounting to what is described 
as “local coding” (see Vinje and Gallant 2000). 
Th e neurons would then be tuned to give highly 
selective responses to extremely specifi c sensory 
inputs. Given the almost unlimited number of 
possible sensory inputs, this would require an 
implausibly large number of neurons. 

 In addition, each neuron would also need to 
show extremely specifi c computational proper-
ties as being tuned to only one particular sensory 
input, if not to only one specifi c physical feature. 
However, this is not only empirically implau-
sible but also highly ineffi  cient with regard to 
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the number of required computations and the 
amount of energy needed for each of the diff er-
ent computations. “Informational ineffi  ciency” 
may thus be closely linked to “computationally 
and energetically ineffi  ciency.”  

    NEUROEMPIRICAL BACKGROUND IE: SPARSE 
CODING AS EFFICIENT ENCODING STRATEGY   

 Th e ineffi  ciency of both dense and local coding 
must be distinguished from the apparent effi  -
ciency of sparse coding. Sparse coding allows for 
maximum information to be encoded when gen-
erating neural activity on the basis of the natural 
statistics and thus the spatiotemporal structure 
across sensory inputs, rather than encoding sin-
gle sensory inputs. Such sparse coding requires 
the recruitment of only a few neurons that 
encode the sensory inputs’ statistical structure. 

 Unlike dense and local coding, sparse coding 
may therefore be considered a rather effi  cient 
way of neural coding by allowing for a good if 

not maximally high ratio between the amount 
of coded information and the number of neu-
rons that need to be recruited. Since it allows 
for maximal information transfer and minimal 
involvement of active neurons, sparse coding 
is also described as “effi  cient coding” (see, for 
instance, Olshausen and Field 1996; Simoncelli 
and Olshausen 2001; Lewicki 2002; Olshausen 
and O’Connor 2002). 

 Such “informational effi  ciency” of sparse 
coding may be closely linked to both “compu-
tational and energetic effi  ciency.” Th e number 
of computations required for the processing of 
stimuli is lower than the number required in 
both local and dense coding, so sparse coding 
may be more computationally effi  cient. Th at in 
turn implies lower energy demands and thus 
“energetic effi  ciency.” 

 Accordingly, sparse coding may be described 
as “effi  cient coding strategy” in informational, 
computational, and energetic demands. Aft er 
this more general overview, we now need to into 

 

Number of
stimuli

Number of active
neurons

Relationship between
stimuli and neurons

Many-to-one
(sparse)

Sparse
Coding

One-to-many
(dense)

Dense
Coding

One-to-one
(local)

Local
Coding

   Figure 1-1     Diff erent coding strategies of sensory input.  Th is fi gure shows diff erent possible strategies 
of encoding stimuli into the neurons’ activity. Th ereby, the relationship between the number of stimuli 
and the number of active neurons is central. If their relationship is one to one, one speaks of “local cod-
ing.” If the number of active neurons exceeds the number of stimuli in a. one-to-many way, one speaks of 
“dense coding.” If the reverse is the case, the number of stimuli exceeding the number of active neurons 
in a many-to-one way, sparse coding must be proposed. Finally, all three forms of coding occur more or 
less on a continuum, as discussed in Figure 1-5.   
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empirical detail to better understand how exactly 
sparse coding works on a cellular and population 
level of neural activity.  

    NEURONAL FINDINGS IA: ENCODING 
OF THE STIMULI’S STANDARD DEVIATION 
INTO NEURAL ACTIVITY IN VISUAL CORTEX   

 How can we lend empirical support to sparse 
coding? Most work on sparse coding has been 
done in the visual domain and hence in the visual 
cortex (see Olshausen and Field 1996; Simoncelli 
and Olshausen 2001; Lewicki 2002; David et al., 
2004; Olshausen and O’Connor 2002; Zylberberg 
et  al. 2011; Lörincz et  al. 2012; Willmore et  al. 
2011; Rozell et  al. 2008). To better understand 
the neuronal mechanisms underlying sparse 
coding, I focus on the visual cortex in this chap-
ter and discuss other sensory and non-sensory 
regions in the second and third chapters. Let 
me here proceed with a study by Brenner et al. 
(2000) as an example of sparse coding on the cel-
lular and population level (while not going into 
detail on the other studies cited earlier; see also 
Friedlander and Brenner 2009). 

 Brenner et al. (2000) recorded activity in the 
H1 neurons in the visual system of the blowfl y. 
H1 neurons are sensitive to horizontal motion 
across the visual fi eld. Th ese neurons generate 
action potentials during motion in the preferred 
direction, whereas motion in the opposite direc-
tion inhibits the neurons. Th e spike trains of 
H1 thus carry information about the horizontal 
velocity across time. Experimentally, Brenner 
et al. (2000) stimulated the H1 neurons with bar 
patterns whose velocity and acceleration were 
varied in order to test how the action potentials 
of H1 react to such changes. 

 In a fi rst step, Brenner et al. (2000) manipu-
lated the velocity (and later the acceleration) of 
the stimulus to which the fl y and its H1 neuron 
were exposed. Th e stimulus—for example, the 
bar pattern—was presented with diff erent veloc-
ities, either rapidly or slowly varying while all 
other stimulus parameters remained the same. 
Hence, only velocity variance diff ered among 
the stimulus ensembles presented. Th is allowed 
Brenner to investigate how the H1 neurons’ 

activity reacted to the changes in the stimulus 
ensembles’ velocity variance. 

 What are their results? Th e absolute fi ring 
rate followed the velocity of the stimulus pre-
sentation, with slower velocity inducing fewer 
spikes, and higher velocity being accompanied 
by a higher number of spikes. Th e fi ring rate 
was then plotted as a function of the stimulus 
velocity; more precisely, the fi ring rate at each 
time bin was plotted as a function of the stimu-
lus velocity 30 ms earlier. Th is showed an almost 
non-linear exponential dependence of the fi ring 
rate on the velocity (and also the acceleration) 
changes of the stimulus. How about the tim-
ing relation between velocity changes and the 
neurons’ activity? Th e neurons’ activity inte-
grated velocity changes in the stimulus within 
the time range of 20–300 ms. Th e authors then 
tested whether the neurons’ activity would also 
adapt to velocity changes in the stimulus within 
a longer time frame, using the same stimulus 
ensemble with a diff erent standard deviation in 
its velocity changes. 

 Th is yielded the same neuronal response; 
for example, the same spike to time curve, i.e., a 
non-linear exponential dependence of the fi ring 
rate on the velocity as in the fi rst experiment: the 
single neurons’ activity was again dependent 
upon the standard deviation of the velocity 
changes. Th ese results indicate that the neurons’ 
activity really encodes the standard deviation 
of the stimulus’ velocity changes across diff er-
ent time frames rather than the velocity itself, as 
isolated variable, within a particular time frame.  

    NEURONAL FINDINGS IB: ENCODING 
OF THE STIMULI’S “NATURAL STATISTICS” 
INTO NEURAL ACTIVITY IN VISUAL CORTEX   

 What does the standard deviation of the 
 stimulus’ velocity changes stand for? Th e stan-
dard  deviation of the stimulus’ velocity changes 
refl ects the statistical range of the stimulus’ 
 velocity in the  environment and thus, more 
 generally, the statistical frequency  distribution—
that is,  natural statistics—of that stimulus across 
diff erent discrete points in time. Th is, more 
generally taken, allows the neuron to encode 
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stimulus’ fl uctuations within the stimulus 
ensemble standard deviations and thus to res-
cale its neural response according to the natu-
ral statistics of the stimulus. What determines 
the neurons’ activity is not so much the stimu-
lus’ physical features themselves in an absolute 
way; that is, velocity or acceleration in a par-
ticular time frame. Instead, the neurons’ activ-
ity encodes the statistical variance of the velocity 
and acceleration across diff erent time frames 
and thus the standard deviation of the stimulus 
across diff erent discrete points in physical space 
and time in a relative way. 

 Th e dependence of the neurons’ activity 
upon the standard deviation of the stimulus 
means that the former can adapt to the varia-
tions of the latter. Th is is made possible by a 
non-linear response function of the neuron, 
which allows for what Brenner et al. (2000) call 

“the stretch factor” (see also Friedlander and 
Brenner 2009). 

 Th e stretch factor allows for rescaling of the 
neurons’ activity in orientation on the stimu-
lus’ variance; for example, the standard devia-
tion. However, the stretch factor breaks down 
for very large variances where the stimulus’ 
velocities are either too fast or too slow for 
the neuron to follow because the detection of 
such extremely slow or fast velocities is beyond 
the neurons’ physical detection threshold (see 
  Fig. 1-2  ).           

 Taken together, Brenner et al. (2000) (see also 
Friedlander and Brenner 2009) demonstrate that 
the neurons’ activity adapts to the natural statis-
tics of the stimuli within the environment rather 
than encoding the stimuli themselves and their 
physical features (like its associated velocity). 
Th ere is consequently no fi xed or ideal response 
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   Figure 1-2a     Sparse coding: rescaling of responses to dynamic inputs.  Adaptive rescaling of the input/
output relations along the two leading dimensions. ( a  and  c ): Response as a function of stimulus veloc-
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or tuning curve of the neurons’ activity as fi tted 
to specifi c physical features of the stimulus (like 
velocity). 

 Instead, the neurons’ response or tun-
ing curves change—for example, stretch or 
 compress—and are thus tuned according to 
the statistical variance in the occurrence, i.e., 
frequency distribution, of the stimuli and their 
physical features (such as, for instance, veloc-
ity or acceleration). In other terms, the sensory 
stimuli’s physical features are rescaled and nor-
malized by the neurons according to the inputs’ 
standard deviation, refl ecting their statistical 
frequency distribution across diff erent discrete 
points in physical time and space; that is, their 
natural statistics.  

    NEURONAL HYPOTHESIS IA: STATISTICALLY 
VERSUS PHYSICALLY BASED ENCODING 
STRATEGIES   

 Sparse coding implies that the neurons’ activity 
adapts to the statistical frequency distribution of 
the stimulus within the environment rather than 
to the stimulus itself and its physical features (like 
velocity and acceleration at their discrete points 
in physical time and space). How is such adap-
tive rescaling possible? Th e time scales of adap-
tive rescaling and normalization may vary from 
milliseconds over seconds, to hours and years if 
not thousands of years, with the stimuli’s natural 
statistics being the common denominator in tun-
ing the neurons’ responses (and response curves). 
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   Figure 1-2b     Optimizing information transmission: information as a function of the stretch factor 
λ . Th e input/output relation measured in the experiment was artifi cially stretched or contracted by a 
factor λ, simulating the rescaling that occurs during adaptation. Th is is illustrated schematically in 
the three top panels. For each value of l, the stretched input/output relation and the distribution of 
stimuli used in the experiment determine a distribution of rates, which in turn determines the infor-
mation with Equation 2.  Th e point λ  =  1 corresponds to the stretch factor measured in the experi-
ment. Th e maximum at this point indicates that the process of adaptation selects a stretch factor that 
maximizes the information transmission.     (Reprinted with permission from Brenner N, Bialek W, de 
Ruyter van Steveninck R.  (2000) Adaptive rescaling maximizes information transmission.  Neuron . 
2000 Jun;26(3):695–702.)   
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 Brenner et al. (2000) propose that such adaptive 
rescaling across diff erent time scales may itself be 
an adaptation to the frequency in the occurrence 
of signals and inputs within the natural world (see 
also Barlow 2001). Th is adaptation is possible only 
by encoding the stimuli’s statistical features, the 
statistical frequency distribution, i.e., variance, of 
their physical features (like velocity and accelera-
tion), rather than the physical features themselves. 

 How is it possible for the neuron to encode 
the variance of the stimulus’ physical features, 
the standard deviation, rather than the physical 
features themselves? For the neurons’ activity to 
be dependent upon the stimulus’ variance, or 
standard deviation, they must encode an inte-
gral or diff erence of the stimulus’ physical fea-
tures across their occurrence at diff erent discrete 
points in physical time and space. 

 Th e encoding of the stimuli and their physi-
cal features is thus based on the statistics of 
the stimuli, for which reason one may want to 
speak of “statistically based encoding” strategy. 
As mentioned, such statistically based encoding 
implies the encoding of the integrals or diff er-
ences between diff erent discrete points in physi-
cal time and space as associated with the stimuli 
and their physical features. 

 Such statistically based encoding of stimuli 
must be distinguished from a more physically 
based encoding strategy, where the stimuli’s 
physical features themselves, including their dif-
ferent discrete points in physical time and space, 

are encoded into neural activity by themselves, 
separately and in isolation from each other 
(rather than their statistical diff erences across 
diff erent discrete points in physical time and 
space) (see   Fig. 1-3a, b  ).            

    NEURONAL HYPOTHESIS IB: ENCODING OF 
TEMPORAL AND SPATIAL DIFFERENCES INTO 
NEURAL ACTIVITY DURING SPARSE CODING   

 Let us be more detailed about the statistically 
based encoding strategy. Th e encoding of the 
stimuli’s physical features across their diff er-
ent points in physical time and space means 
that temporal and spatial diff erences or inte-
grals must be encoded into neural activity. For 
instance, the neurons must encode the temporal 
diff erence value of the physical features between 
the occurrence of the stimulus  a  at time point  x  
and its repetition at a later time point,  y . 

 Th is temporal diff erence value between the 
time points x and y refl ects the stimulus’ fre-
quency of occurrence across time: its statistically 
based temporal structure. Since the neurons 
encode this temporal diff erence value, i.e., x–y, 
their activity corresponds to and thus mirrors 
the stimulus’ statistically based temporal struc-
ture (see later for more details about the term 
“temporal [and also spatial] structure”). 

 Due to the encoding of statistically based tem-
poral diff erences, each single neuron is able to 
encode more than one stimulus into its activity. 

 

Space

Time

Stimulus’ physical features across different
discrete points in time and space 

Neural coding of statistical
frequency distribution of the
stimuli' physical features across
discrete points in time and space   

Difference between intensity,
velocity and amplitude 

Neural activity

   Figure 1-3a    Diff erence-based coding as statistically based coding strategy. Th e fi gure shows the physi-
cal features of the stimuli (gray spots) in time and space (x- and y-coordinates). What is now encoded 
from the stimuli in the brain are not the physical features themselves at their respective single discrete 
points in physical time and space, but rather the statistically based diff erences in their frequency distri-
bution across diff erent discrete points in physical time and space as indicated by the brackets. Neural 
activity is illustrated on the  right , indicating one active neuron whose action potential is related to the 
spatial and temporal diff erence in the statistical frequency distribution of the stimuli’s physical features.   
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Th is means that the number of neurons activated 
is lower than the number of stimuli, entailing a 
many-to-one relationship between stimuli and 
neurons. Th ere is thus sparseness in the number 
of the recruited neurons when compared to the 
number of stimuli. Th is entails sparse coding 
rather than local or dense coding. 

 Th e sparseness in the encoding of the stimu-
lus’ occurrence across diff erent discrete points 
in physical time corresponds on the neural 
side—that is, at the level of the single neuron—
to what is described as “lifetime sparseness.” 
“Lifetime sparseness” describes that one and the 
same neuron is only sparsely recruited during 
its lifetime when compared to the number of 
occurrences of a particular stimulus across time 
that could recruit this neuron at diff erent dis-
crete points in physical time (  Fig. 1-3c  ; Weliky 
et al. 2003).      

 In addition to the temporal diff erence, the 
neurons must also encode the spatial diff erence 
in the occurrence of the physical features of a 
stimulus  a  at the point v and the ones of stimu-
lus  b  occurring at point w. Th is spatial diff erence 
value, v–w, refl ects the stimulus’ spatial confi gu-
ration, its statistically based structure (see later 
for defi nition of the term “spatial structure”). 

 What is encoded into the neurons’ activity 
is no longer the single discrete points in physi-
cal space that are associated with stimulus  a  and 

 b  respectively, i.e., v and w.  Instead, the diff er-
ence value between the two diff erent discrete 
points in physical space as associated with the 
stimuli  a  and  b  and their respective physical fea-
tures, v–w, is encoded into the neurons’ activity. 
Accordingly, as in the temporal dimension, there 
is also sparse coding in the spatial dimension, as 
manifested in the encoding of spatial integral or 
diff erence values between two diff erent discrete 
positions in physical space. 

 Th e sparse coding of the stimulus’ statistical 
frequency distribution across diff erent discrete 
points in physical space corresponds on the neu-
ral side, that is, on the level of the single neuron, 
to what is described as “population sparseness.” 
Population sparseness describes the fact that 
only a sparse number of neurons are recruited 
from the total pool of possible neurons during 
the encoding of diff erent stimuli and their dis-
tinct discrete positions in space (  Fig.  1-3d  ; see 
also Olshausen and Field 2004).       

    NEURONAL HYPOTHESIS IC: SPARSE CODING 
PRESUPPOSES DIFFERENCE-BASED CODING   

 Taken together, the encoding of the stimu-
lus’  statistical properties is possible only when 
encoding relative values of physical parameters 
(like velocity or acceleration) rather than their 
absolute values. Th is is well refl ected in the 

 

Neural coding of each physical
feature at their discrete points in
time and space

Space

Time

Stimulus’ physical features across different
discrete points in time and space

Neural activity

   Figure  1-3b    Stimulus-based coding as physically based coding strategy. Th is fi gure illustrates 
stimulus-based coding, or more correctly, the encoding of the stimuli’s physical features at their diff erent 
discrete positions in physical time and space into the activity of the neurons. Unlike in diff erence-based 
coding, one physical feature and its respective single discrete position in physical time and space are 
encoded into the activity of one neuron; the encoding of three physical features thus entails the activity 
of three diff erent neurons, as indicated on the  right .   
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Neural activity in
different neurons
across space 

Neural coding of differences
between the stimuli‘distinct
discrete positions in space  

Stimuli across
space 

Difference-based coding
of statistical differences
across space

‘Population
sparseness’ as
spatial sparsening

Space

   Figure  1-3d    Spatial diff erence-based coding and “population sparseness. ”  Th e fi gure shows how 
diff erence-based coding operates in the spatial domain. Th e  upper  part indicates how diff erent stimuli 
occur in diff erent single discrete positions in space. Th e statistical frequency distribution is signifi ed by 
the spatial diff erences between the diff erent single discrete spatial positions are indicated in the  mid-
dle  of the fi gure by the brackets. Among the many neurons (as indicated in the  lower  part), only one 
becomes active, as indicated in the  lower  part of the fi gure; this sparseness of activity is called “popula-
tion sparseness.”   

 

Neural activity in one
neuron across time 

Neural coding of
differences between the
stimuli‘ distinct discrete
positions in time

Stimuli across 
time

Difference-based
coding of statistical
differences across time

‘Lifetime sparseness’
as temporal
sparsening

Time

   Figure  1-3c     Temporal diff erence-based coding and “lifetime sparseness.”  Th e fi gure shows how 
diff erence-based coding operates in the temporal domain. Diff erent stimuli occur across time as indi-
cated in the  upper  part. What is now encoded in the neurons’ activity is not each single stimulus at its 
specifi c single discrete point in physical time. Instead, the brain encodes the statistical frequency distri-
bution of the stimulus (and its physical features) across diff erent single discrete points in physical time 
as indicated by the diff erences and brackets in the  middle  part of the fi gure. Th at, in turn, implies that 
one neuron’s activity may integrate the stimuli’s temporal diff erences across time, resulting only in one 
activity at one particular discrete point in physical time (in the life of the neuron) ( lower  part). Hence, 
diff erence-based coding in the temporal domain goes along with sparseness of the neuron’s neural activ-
ity across time—this is called “lifetime sparseness.”   
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encoding of the physical parameter’s variance as 
shown in the study by Brenner et al. (2000). 

 Most important, these relative values refl ect 
spatial and temporal diff erence values that sig-
nify the occurrence of the stimulus’s physical fea-
tures across diff erent discrete points in physical 
time and space, rather than the stimulus’s physi-
cal features themselves at their single diff erent 
discrete points in physical time and space. In 
other words, the neurons’ activity must encode 
diff erences, or spatial and temporal diff erence 
values, in order to account for the stimuli’s statis-
tical frequency distribution across diff erent dis-
crete points in physical time and space, or their 
spatiotemporal structure. Th is leads to sparse 
coding as distinguished from local and dense 
coding. 

 On the whole, sparse coding presupposes 
and is therefore possible only on the basis 
of diff erence-based coding. I  consequently 
hypothesize that sparse coding presupposes 
diff erence-based coding:  sparse coding is sup-
posed to be based on the encoding of spatial and 
temporal diff erence values as extracted from the 
stimuli’s statistical frequency distribution across 
diff erent discrete points in physical time and 
space. In short, I  postulate that sparse coding 
presupposes diff erence-based coding.  

    NEURONAL HYPOTHESIS ID: DEPENDENCE OF 
THE DEGREE OF SPARSENESS ON THE DEGREE 
OF DIFFERENCE-BASED CODING 

   I hypothesize that sparse coding is based on 
encoding spatial and temporal diff erence values. 
Th ere is sparseness of the single neuron across 
time and space, amounting to “lifetime sparse-
ness” and “population sparseness.” 

 How now is such sparse coding in both spatial 
and temporal dimensions manifested in the vari-
ous functions associated with the brain, like sen-
sory function and perception? Empirical evidence 
shows that lifetime and population sparseness 
can predict the local contrast structure in natu-
ral scenes in our perception; this shall be further 
illustrated by the following empirical example. 

 Bruno Olshausen is a computational neuro-
scientist who, located in Berkeley in California, 
is one of the main driving forces behind the 

development of sparse coding. Together with a 
colleague (Olshausen and Field 1996, 1997), he 
trained a network on approximately half a mil-
lion image patches (all of the same size), which 
were extracted from whole images of natu-
ral scenes. Th e network’s receptive fi elds that 
emerged from training were spatially localized, 
oriented, and band-pass (i.e., selective to spatial 
structure) in very much the same way as it has 
been described for neurons in primary visual 
cortex, or “V1.” 

 While the neural network receives many 
visual inputs, the output is much sparser in 
both regards:  spatially, for example, number of 
recruited neurons; and temporally, activity of a 
neuron in time. Th e few or sparse outputs repre-
sent the diff erence between the various sensory 
inputs within the natural scenes rather than each 
sensory input by itself (see also Rozell et al. 2008; 
Zhao 2004; Zylberberg et al. 2011; Lörincz et al. 
2012; Willmore et al. 2011). Th is is possible only, 
as I  suppose, if there is diff erence-based cod-
ing rather than stimulus-based coding. Hence, 
for sparse coding to be possible, there must be 
diff erence-based coding. 

 Future studies are needed, however, to lend 
further empirical support to the suggested 
dependence of sparse coding on diff erence-based 
coding. One may, for instance, vary (in real or 
modeling contexts) the amount of spatial or tem-
poral diff erences between stimuli. Th e degree of 
temporal and spatial sparsening in neural activ-
ity may vary depending on the degree of spatial 
or temporal diff erences. 

 Th at may lead one to propose that larger 
spatial and temporal diff erences (within a bio-
physically and computationally realistic limit) 
in the stimuli’s statistical frequency distribu-
tion may induce larger degrees of sparse cod-
ing in the resulting neural activity. Th is suggests 
that sparse coding is indeed dependent upon 
diff erence-based coding: “Diff erence-based cod-
ing” may refer to the process of encoding, while 
“sparse coding” may rather signify the outcome 
or results of such encoding. 

 However, we should be aware that sparse 
coding is then not to be understood in an abso-
lute, all-or-nothing way, but rather in a rela-
tive, more-or-less way. Sparse coding in neural 
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activity may then occur in diff erent degrees on 
a continuum, depending on the degree of spa-
tiotemporal diff erences encoded between the 
diff erent stimuli (see later discussion for further 
details).  

    NEURONAL HYPOTHESIS IE: SPARSE 
CODING AND SCHIZOPHRENIA 

   Th e prediction of local contrast scenes by sparse 
coding raises the question of how such an encod-
ing strategy impacts our perception. While per-
ception will be discussed in more detail in Part 
IV of this volume and also in Volume II, I nev-
ertheless want to present a brief outline here. 
For that, let’s conduct a thought experiment and 
imagine the consequences of the opposite cod-
ing strategy holding sway in your brain. 

 Your neurons would not encode spatial and 
temporal diff erences between stimuli. Instead, 
your neurons would encode the exact spatial and 
temporal position of each stimulus separately 
from each other. You would be fl ooded with a 
multitude of unrelated spatial and temporal 
positions of the various stimuli. But, since they 
are coded separately from each other, you would 
not be able to link and relate them to each other. 

 What does that imply for your perception of, 
for instance, a bird on a tree? Th e bird’s spatial 
position on top of the tree would be completely 
unrelated to the tree you perceive. Because tree 
and bird always occur together, you would won-
der why they are always together. You would 
recruit your cognitive apparatus to dwell on and 
think about this and would develop some ideas 
and theories. And all this would occur because 
your brain does not encode the spatial (and tem-
poral) diff erences between the bird and the tree. 
Hence, what is usually given as evident and tacit 
knowledge in our perception becomes suddenly 
questionable and bizarre once one presupposes 
an encoding strategy other than sparse coding. 

 One may now argue that this is a purely logical 
thought experiment with no correspondence in 
empirical reality. Th is, however, may not be true, 
as I will discuss in further detail in Chapter 22 in 
Volume II. Let me briefl y explain here. Patients 
with schizophrenia suff er from perceptual 

abnormalities with fragmentation and lack 
of linkage between diff erent stimuli and their 
respective contents; this may come close to the 
aforementioned scenario (see especially Volume 
II, Chapter 22, for details on schizophrenia). 

 Th ese patients seem to encode the spatial and 
temporal features of diff erent stimuli in isolation 
from each other, rather than as spatial and tem-
poral integral or diff erence values. Hence, their 
encoding of the stimuli’s statistical frequency 
distribution across time and space may be dis-
rupted. Th is means that their degrees of both 
diff erence-based coding and sparse coding may 
be abnormally reduced, which is indeed plausi-
ble given the recent empirical fi ndings. However, 
this is, at this point, a speculative hypothesis, 
which will be discussed in full detail in Volume 
II (see Chapters  22 and 27), since it spills over 
into the phenomenal domain of consciousness.  

    NEURONAL FINDINGS IIA: STIMULATION 
OF CLASSICAL RECEPTIVE FIELDS 
AND SPARSE CODING   

 Up to this point, I have discussed how stimuli are 
encoded by the brain’s sensory cortex and have 
argued for diff erence-based coding that results in 
sparse coding. Th is shows that, instead of single 
stimuli by themselves, the brain’s sensory cortex 
encodes the stimuli’s statistical frequency distri-
bution across diff erent discrete points in physical 
time and space; that is, their natural statistics. 

 Th e encoding of the stimulus’s natural statis-
tics implies that a particular stimulus is encoded 
in relation to other stimuli that occur either at 
the same or diff erent discrete time points at a 
diff erent or the same discrete position in space. 
Th is means that what is encoded in sensory 
cortical activity is not the single stimulus itself 
(in an absolute way), but rather its diff erence or 
relationship (i.e., relative) to other stimuli. Th is 
is possible only if the brain encodes the relation-
ship and thus the interaction between the diff er-
ent stimuli across diff erent discrete points in time 
and space; I call this stimulus–stimulus interac-
tion. How does the brain encode such stimulus–
stimulus interaction? Stimuli or specifi c physical 
features of the stimuli may correspond on the 
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neural side to the receptive fi elds of the neuron. 
However, stimuli from the environment do not 
occur in isolation, but rather in a specifi c context 
entailing other stimuli that may go beyond the 
receptive fi eld of the respective neuron. If there 
is sparse coding, one would expect the context 
and its respective stimuli to impact the process-
ing of the stimulus in question. 

 Th is means that stimulation outside the 
neuron’s receptive fi eld may impact the neuro-
nal activity related to the inside of the receptive 
fi eld by sparsening it. Th e classical receptive fi eld 
(CRF) may then be modulated in a non-linear 
way by the surrounding non-classical receptive 
fi eld (nCRF), thereby promoting sparseness. 
Th is was tested and experimentally addressed by 
Vinje and Gallant (2000, 2002), which shall be 
described next (see also David et  al. 2004; Kay 
et al. 2008; Willmore et al. 2011; Naselaris et al. 
2011, for other studies from the group around 
Gallinat). Th eir results have been replicated and 
extended by others, such as, for instance, Haider 
et al. (2010) in cat’s visual cortex (see Chapter 2 
for a detailed discussion of the study by Haider 
et al. 2010).  

    NEURONAL FINDINGS IIB: STIMULATION OF 
NON-CLASSICAL RECEPTIVE FIELDS AND THE 
SPARSENING OF NEURAL ACTIVITY 

   Vinje and Gallant (2000, 2002)  recorded 61 
neurons in V1 in two awake macaques, and 
stimulated the monkeys with natural images in a 
movie. Th e size of the image patches was manip-
ulated, varying the diameter of the CRF from one 
to four so that the eff ect of stimulation outside 
the CRF on neuronal activity could be observed. 
Th e action potentials across the 61 recording 
sites were plotted in a peri-stimulus-time histo-
gram and compared between stimulation inside 
and outside the CRF. 

 Let us describe the main results. Stimulation 
inside the CRF led to a rather dense distribu-
tion of action potentials in many neurons, with a 
sparseness of 16%. Th is changed once the movie 
was presented, with stimuli four times the CRF 
diameter; here the distribution of action poten-
tials became rather sparse, with a sparseness of 

53%. How about the single neuron? Th is will be 
the focus of the next section. 
 Th e distribution of action potentials also 
becomes sparse for the single neuron. Sparseness 
is described by the variable  S ;  S  is 0% when a 
neuron responds equally to all frames or image 
patches of the movie, while  S  is 100% in the 
case of the neuron responding only to a single 
specifi c frame. 
 An increase in  S  consequently indicates an 
increase in the sparseness of the single neuron’s 
response to stimuli. Do the diff erent sizes of the 
image patches—one, two, three, or four times 
the diameter of the CRF—go along with dif-
ferent values of  S ? Sparseness values, that is,  S , 
increased from 41% over 52% and 61% to 62% 
for stimuli one, two, three, and four times the 
CRF diameter. 

 Th e shift  in sparseness between the diff erent 
stimulus’s sizes was also calculated by the ratio 
of the observed shift  in  S  to the maximum pos-
sible shift  as a function of the stimulation outside 
the receptive fi eld, the non-classical receptive 
fi eld (nCRF). Th is yielded values for the shift  
in sparseness from 18% over 32% to 36% for 
stimuli two, three, and four times the CRF diam-
eter, respectively. Hence, many neurons display a 
shift  toward sparser responses when increasing 
stimulation outside their respective CRF. Which 
purpose does the sparseness of action potentials 
and single neuron’s activity serve? By sparsening 
their responses, neurons may decorrelate their 
various neuronal responses and thus the diff er-
ent stimuli from each other. Th is may be espe-
cially necessary if there are increasing contextual 
demands, such as during stimulation outside the 
classical receptive fi eld. If so, one would propose 
that increased stimulation outside the classical 
receptive fi eld goes along with an increase in 
decorrelation.  

    NEURONAL FINDINGS IIC: STATISTICAL 
STRUCTURE OF NATURAL SCENES AND THE 
SPARSENING OF NEURAL ACTIVITY   

 To test this assumption, Vinje and Gallant (2000) 
calculated what they call the “separation angle,” 
which is inversely proportional to the similarity 
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of responses between randomly selected V1 neu-
rons as recorded in separate sessions. Th e higher 
the separation angle, the more diff erent and thus 
decorrelated the neurons’ activities during stim-
ulation. Stimulation with stimuli four times the 
diameter of the CRF led to a separation angle of 
67 degrees, while the one for stimuli inside the 
CRF, for example, generated a lower separation 
angle of only 51 degrees. 

 Hence, stimulation outside the CRF—for 
example, the stimuli four times the diameter 
of the CRF—led to increased diff erences, i.e., 
increased separation angles, and thus decorre-
lation in the neuron’s activities. Th is means that 
with the increasing size of the stimuli and their 
increasing stimulation outside the neurons’ clas-
sical receptive fi eld, neuronal activities across the 
diff erent neurons became increasingly decorre-
lated and independent from each other. 

 Only single neurons and their action poten-
tials were considered so far. How does the sparse-
ness of single neurons aff ect the population of 
neurons? For that, Vinje and Gallant (2000, 
2002)  calculated the response distribution, the 
histogram of action potentials pooled over all cells 
and all stimuli for each stimulus type: for example, 
one, two, three, and four times the diameter of the 
CRF. With increasing stimulus size, response dis-
tribution became sparser; the number of moder-
ate responses decreased across neurons, while 
smaller and larger responses increased. Th e 
sparseness of responses, as measured by Kurtosis, 
increased from 4.1 over 5.2 and 8.7 to 10.2 with 
stimuli one, two, three, and four times the CRF 
diameter (see   Fig. 1-4  ).      

 Taken together, these fi ndings clearly demon-
strate that the sparseness of neural activity—for 
example, sparse coding of both single neurons’ 
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   Figure 1-4     Sparse coding of stimulus–stimulus interaction.  Th e non-classical receptive fi eld (nCRF) 
modulates responses during natural vision. ( a ) Post-stimulus time histogram obtained from one V1 
neuron in response to a natural-vision movie confi ned to the classical receptive fi eld (CRF). Responses 
are weakly modulated by the simulated fi xations (information per second, 13.1 bits/s; information 
per spike, 0.18 bits/spike; effi  ciency, 10%; selectivity index, 13%). ( b ) Responses of the same cell to a 
natural-vision movie composed of the CRF stimulation used in ( a ) plus a circular surrounding region. 
Th e overall stimulus size was 4x CRF diameter. Stimulation of the nCRF dramatically increases varia-
tion of responses across fi xations (information per second, 28.4 bits/s; information per spike, 0.67 bits/
spike; effi  ciency, 26%; selectivity index, 51%). Responses to some stimuli are signifi cantly enhanced 
( black  bins;  p   ≤  .01). For this neuron, enhancement is concentrated in the onset transients occurring at 
the beginning of simulated fi xations. Other responses are strongly suppressed ( white  bins;  p   ≤  .01). Th e 
underbar highlights those time bins where signifi cant enhancement and suppression occur.     (Reprinted 
with permission of  Science  from Vinje WE, Gallant JL. Sparse coding and decorrelation in primary 
visual cortex during natural vision.  Science . 2000 Feb 18;287(5456):1273–6.)   
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activity and population activity—is a function of 
the stimulus size in relation to the neurons’ clas-
sical receptive fi elds. Th e more the stimulus size 
stimulates outside the neurons’ classical recep-
tive fi elds, the more the neurons’ activities and 
responses are sparsened. 

 Th is means that the neurons’ responses, such 
as the degree of sparseness of their neuronal 
activity, are matched to the statistical structure of 
natural scenes. Th e degree of sparseness is thus 
directly dependent on and thus is a function of 
the statistical structure of the stimuli in the natu-
ral scenes. Such encoding of natural scenes allows 
us to link and integrate classical and non-classical 
receptive fi elds into a single computational unit 
for which non-linear interaction seems to be 
central (see Chapter  2 for details on non-linear 
interaction, as well as Olshausen and Field 1996).  

    NEURONAL HYPOTHESIS IIA: 
DIFFERENCE-BASED CODING 
AND NON-LINEARITY 

   Th e results by Vinje and Gallant (2000, 
2002)  (and more recent ones by others like 
Haider et  al. 2010, and Park et  al. 2012a and 
2012b) highlight the crucial role of stimulus–
stimulus interaction in constituting sparseness of 
neuronal responses. Th e more complex, that is, 
spatially and  temporally extended, the  stimulus–
stimulus interaction, the higher the degree of 
sparseness of the neurons’ activities; this means 
that the degree of sparse coding on the neuronal 
side may be directly dependent upon the degree 
of spatiotemporal complexity on the side of the 
stimuli. Th e term “spatiotemporal complexity” 
describes here the degree and number of spatial 
and temporal diff erences between the diff er-
ent stimuli and their physical features at their 
respective diff erent discrete points in physical 
time and space. 

 What is encoded into the sensory cortical 
neurons’ activity is the degree of spatiotempo-
ral complexity of stimulus–stimulus interac-
tion. Th is, in turn, determines the degree of 
non-linearity during stimulus–stimulus inter-
action and ultimately the degree of sparse-
ness as encoded into the resulting neural 
activity. In short, the degree of sparse coding 

may be dependent upon the degree of spatio-
temporal complexity during stimulus–stimulus 
interaction. 

 Recall that I  proposed that sparse coding, 
the temporal and spatial sparsening of neural 
activity, is dependent on diff erence-based cod-
ing of the spatiotemporal features of stimuli. 
Th e results by Vinje and Gallant confi rm this 
hypothesis, especially in the spatial regard, due 
to their focus on the interaction between classi-
cal and non-classical receptive fi elds. 

 Stimulation in the non-classical receptive 
fi eld signifi cantly increases the degree of sparse-
ness in a non-linear way when compared to stim-
ulation inside the classical receptive fi eld. Since 
sparse coding presupposes diff erence-based 
coding, both are closely and intrinsically linked 
to non-linear interaction. How does such 
non-linear interaction work? Nonlinear interac-
tion seems to be central in constituting diff er-
ences between, for instance, the spatial positions 
of two stimuli (as in classical and non-classical 
receptive fi elds). Hence, the demonstration of 
non-linear interaction by Vinje and Gallant in 
the context of sparse coding may shed more light 
on the mechanisms by means of which spatio-
temporal diff erences between stimuli are consti-
tuted (see also Part IV).  

    NEURONAL HYPOTHESIS IIB: 
ENCODING OF DIFFERENCES AND THE 
“STRETCH FACTOR” 

   I will now elaborate on the mechanisms of how 
diff erences are constituted. How is it possible for 
the neurons to sparsen their activity temporally 
and spatially with regard to the stimuli and other 
neurons’ activity? I discussed the neurons’ encod-
ing strategy and suggested diff erence-based cod-
ing to enable and predispose such temporal and 
spatial sparsening of their activity. But I left  open 
the exact physiological mechanism. For that, 
we may want to go back briefl y to the results by 
Brenner, as described earlier. 

 Based on their results, Brenner et  al. (2000, 
p. 697) propose what they call the “stretch fac-
tor.” By exerting a non-linear rather than linear 
response function, the neurons are able to stretch 
or compress their neuronal activity maximally 
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across the whole range within their respective 
biophysical-computational spectrum. And such 
stretching or compressing of the neurons’ own 
biophysical-computational features allows the 
neuron to adapt and thus encode the statistical 
frequency distribution of the stimulus. 

 Using Brenner’s (et al. 2000) terms, the neu-
rons’ activity can be characterized by “adap-
tive rescaling” (see also Park et  al. 2012a and 
2012b; Díaz-Quesada and Maravall 2008). Such 
adaptive rescaling via the stretch factor makes 
it possible for the neurons’ activity to encode 
the stimulus’s statistical frequency distribu-
tions rather than their (i.e., the neurons’) own 
biophysical-computational features (as induced 
by stimuli with the same physical features as the 
respective neurons). 

 Adaptive rescaling in orientation on the 
stimulus’s statistical frequency distribu-
tion is possible, however, only within the 
biophysical-computational range of the neu-
rons. At the borders close to the neurons’ maxi-
mal and minimal biophysical-computational 
range, as well as outside that range, however, the 
mechanisms of adaptive rescaling may be postu-
lated to decrease considerably and ultimately to 
break down. 

 Th is may, for instance, be the case when there 
are very large variances of the stimuli and thus 
high standard deviations, indicating extremely 
high diff erence values in the stimulus’s physical 
features across diff erent discrete points in physi-
cal time and space (see also Brenner et al. 2000, 
p.  697). Such large diff erence values may then 
exceed the degree of spatial and temporal diff er-
ences than can possibly be encoded by the neu-
ron on the basis of its biophysical-computational 
spectrum.  

    NEURONAL HYPOTHESIS IIC: “STRETCH 
FACTOR” AND NON-LINEARITY   

 In other words, the large (or also possibly mini-
mal) diff erence values of the stimuli force the 
neurons to operate at the maximal (or minimal) 
limits of their biophysical-computational spec-
trum. Th at in turn decreases the possible exten-
sion of their “stretch factor” and consecutively 
the possible degree of their “adaptive rescaling” 

including the possible degree of non-linearity 
(that then is transformed into mere linearity). 
Finally, if the to-be-encoded spatial and tempo-
ral diff erences are too large, ranging beyond the 
neurons’ biophysical-computational spectrum, 
no activity is elicited anymore in the neuron. 

 For instance, the velocities or accelera-
tions of the stimuli tested in the Brenner study 
may be extremely rapid with very small tem-
poral diff erence values; they may therefore 
touch upon the limits of temporal resolution 
and thus the minimal range of the neurons’ 
biophysical-computational spectrum. Velocity 
may simply be too high and the associated 
temporal diff erence values may be too low and 
“located” too much toward the minimal extreme 
of the neurons’ biophysical-computational spec-
trum to allow the neurons’ “stretch factor” to 
operate. Any non-linearity and consequently 
adaptive rescaling may then become impossible. 

 Th e neurons may still respond but may no 
longer be able to adaptively rescale their activity 
in a non-linear way, showing instead a merely lin-
early determined neural activity. Th e responses 
of the neurons may consecutively no longer be 
able to encode the stimuli’s statistical frequency 
distribution; for example, the standard deviation 
of their velocity and acceleration as signifi ed by 
spatial and temporal diff erences between diff er-
ent discrete points in physical time and space 
(see   Fig.  1-5a  ). Instead, the neurons may show 
some activity oriented on the stimuli’s physical 
features; for example, on the absolute values of 
their velocity and accelerations including the 
respectively associated diff erent discrete points 
in physical time and space.      

 Th is is the case if the stimulus’ velocity 
and acceleration still fall within the neurons’ 
biophysical-computational spectrum but in 
the maximal or minimal border regions of the 
respective range. Th is is what happens when 
the stimuli themselves show abnormally large 
or small temporal and spatial diff erence val-
ues. However, the same, and thus a merely 
linear rather than non-linear, response can 
also happen when the neurons themselves are 
changed and receive, for instance, less energy, 
which may artifi cially shrink and limit their 
biophysical-computational spectrum. 
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Physical and computa-
tional range of neurons

Degree of Difference-
Based Coding

Degree of Sparseness
in Neural
Activity/Sparse coding

Minimal Maximal

Stimulus: Sensory input

Minimal Maximal
Biohysical-computational range of possible
neuronal differences

Minimal Maximal
Biophysical-computational range of possible
sparseness of neuronal recruitment

Biophysical-computational range of possible
activations in neurons 

Degree of Local/Dense
Coding

Minimal Maximal
Biophysical-computational range of possible
dense/local neuronal recruitment

   Figure  1-5a     Biophysical-computational constraints and sparse coding.  Th e fi gure shows the rela-
tionship between the neurons’ biophysical-computational demands and the degree of sparse coding in 
humans (a and b) and nonhuman species ( c ). ( a ) Physical and computational constraints and the degree 
of sparse coding. ( First step ): Th e fi gure shows the diff erent steps, four steps as intermediated by the big 
arrows, in the encoding of a stimulus in the neural activity of the brain’s neurons, given the latter’s bio-
physical and computational demands. Th e brain’s intrinsic biophysical equipment shows a continuum 
between the minimally and maximally possible ranges within the neurons’ biophysical-computational 
spectrum within which it can process stimuli and their spatial and temporal diff erences; this is indi-
cated by the horizontal line. Th e physical features of the stimuli and especially their spatial and tempo-
ral diff erences may now match with either the optimal range (in the  middle ) or the less optimal range of 
the neurons’ biophysical-computational spectrum as indicated by the diff erent arrows. ( Second step ): If 
the stimuli and their spatial and temporal diff erences match with the optimal (and thus medium) range 
of the brain’s biophysical-computational spectrum, the degree of diff erence-based coding is the highest, 
as indicated by the main line. Th e more closely, in contrast, the stimuli and their spatial and temporal 
diff erences match with the less optimal ranges, that is, the minimal and maximal ends of the neurons’ 
biophysical-computational spectrum, the lower the degree of diff erence-based coding. Th e dotted line 
represents stimulus-based coding as distinguished from diff erence-based coding, with both curves 
showing diff erent directions. ( Th ird step ): Diff erence-based coding goes along with sparse coding. Th e 
higher the degree of diff erence-based coding, the more sparsely the stimulus is encoded in neural activ-
ity. Th at, in turn, implies that the curve of sparse coding is similar to the one of diff erence-based cod-
ing and deviates in the same way from the dotted line that signifi es stimulus-based coding. ( Fourth 
step ): Diff erence-based coding stands in a reverse relationship to local or dense coding (see Fig. 1-3). 
Th e higher the degree of diff erence-based coding, the lower the degree of local and dense coding in 
neural activity. Th at, in turn, implies that the curve of local/dense coding is opposite to the one of 
diff erence-based coding and deviates as much, though in an opposite way, from the dotted line that 
signifi es stimulus-based coding.   
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 Th at is the case, for instance, in what clini-
cally is called “disorders of consciousness” like 
persistent vegetative state (VS). Patients with VS 
lost their consciousness and seem to suff er from 
a vastly decreased energy supply to their brain. 
Th e extreme energy reduction seems to make it 
much more diffi  cult, if not impossible, for the 
neurons to impose the “stretch factor” and thus 
non-linearity and “adaptive rescaling” to their 
own processing of stimuli. 

 Th is may lead to loss of non-linearity during 
the purely neuronal stimulus-induced activity 
that therefore can apparently no longer be asso-
ciated with consciousness. While this example 
demonstrates the potential clinical relevance of 
the “stretch factor,” non-linearity, and adaptive 
rescaling, it exceeds far beyond the purely neu-
ronal scope of the current chapter into the phe-
nomenal domain of consciousness. Th erefore, 
I  will discuss the example of VS (and other 
states) in full detail, including all the recent fi nd-
ings, in Part VIII in Volume II.  

    NEURONAL HYPOTHESIS IIIA: “ADAPTIVE 
RESCALING” AND THE NEURON’S 
BIOPHYSICAL-COMPUTATIONAL SPECTRUM   

 How can we put together all these diff erent 
fi ndings and observations into a coherent neu-
ronal hypothesis? I  hypothesize that there are 
mainly two diff erent types of possible neuronal 
responses (and a third type of response that is 
rather a non-response; see below). 

 Th e fi rst type of neuronal response concerns 
the case when the stimulus’s physical features 
correspond well to the middle range of the neu-
rons’ biophysical-computational spectrum. In 
this case, the stretch factor may be able to oper-
ate in a maximally possible way and thus allow 
for the highest degree of non-linearity and the 
best possible adaptive rescaling with maximum 
information transmission. Hence, there is both 
adaptive rescaling and adaptive response. 

 Th e second type of neuronal response is 
proposed to describe those cases where the 
stimulus’s physical features correspond to 
those in the neurons that lie at either extreme, 
such as either the maximum or minimum, of 
their biophysical-computational spectrum. 

Th e stretch factor may then no longer be able 
to operate in a maximal possible way with the 
degree of both non-linearity and adaptive resca-
ling decreasing; however, this means that what 
is encoded in the neurons’ activity corresponds 
less to the stimulus’s statistical frequency distri-
bution across diff erent discrete points in physi-
cal time and space than to the diff erent stimuli 
themselves and their various discrete points in 
physical time and space. 

 Th is leads me to the following hypoth-
esis. I  hypothesize that the more the stimulus’s 
physical features and their respective tempo-
ral and spatial diff erence values fall within the 
maximal or minimal ranges of the neurons’ 
biophysical-computational spectrum, the less the 
stimuli’s statistical frequency distribution and the 
more their physical features themselves including 
their single discrete points in time and space are 
encoded by the neurons. Hence, there would be 
neural response but no adaptive rescaling.  

    NEURONAL HYPOTHESIS IIIB: THE NEURON’S 
BIOPHYSICAL-COMPUTATIONAL SPECTRUM AND 
CONSCIOUSNESS   

 Why is that relevant at all? At the minimal and max-
imal ranges of their biophysical-computational 
spectrum, neurons may be less able to encode spa-
tial and temporal diff erence values into their neu-
ral activity. Th e degrees of both diff erence-based 
and sparse coding may consequently decrease, 
whereas there may be an abnormally high degree 
of stimulus-based coding (see later for more 
details). 

 As indicated earlier, such a response pat-
tern possibly holds in the case of patients in 
the vegetative state: Neuronal responses are still 
obtained, but they seem to show a low degree of 
diff erence-based coding and an abnormally high 
degree of stimulus-based coding. Since these 
patients suff er from loss of consciousness, the 
type of neuronal response and its “location” on 
the biophysical-computational spectrum seem 
to matter quite a lot when it comes to the phe-
nomenal domain that is consciousness. Th is 
topic, however, will be discussed in Volume II. 

 Finally, one may propose a third type of 
possible neuronal response that is rather 
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a  non-response. If the stimulus’s physical fea-
tures, including the respective spatial and 
temporal diff erence values, do fall outside the 
neurons’ possible biophysical-computational 
range, no neuronal response and thus activity 
can be elicited at all in the neurons. 

 Th ere is thus no neuronal response, nor are 
the stretch factor, non-linearity, and adaptive 
rescaling at work. Nothing is possible anymore 
in such brain. Th e stimuli no longer induce any 
response at all, whether linear or non-linear. 
Neither the stimulus itself nor diff erences 
between stimuli are encoded into neural activ-
ity anymore. Nothing is encoded at all. Clinically 
this means that one is not even in vegetative state 
anymore, but already in coma if not brain-dead 
(see Part VIII in Volume II).  

    NEURONAL HYPOTHESIS IIIC: SPARSE 
CODING AND THE NEURONS’ BIOPHYSICAL-
COMPUTATIONAL SPECTRUM 

   How is this hypothesis of the three types of neu-
ronal responses related to sparse coding and 
diff erence-based coding? Based on the results 
reported by Brenner et  al. (2000), I  hypoth-
esize the following:  Th e better the stretch fac-
tor operates and thus the higher the degrees of 
non-linearity and adaptive rescaling, the more 
likely the stimuli’s spatial and temporal diff er-
ence values can fall within an intermediate range 
(i.e., medium standard deviations) of the neu-
rons’ biophysical-computational spectrum. 

 Th is makes possible higher degrees of 
non-linear interaction, which in turn results in 
consecutively higher degrees of sparseness in the 
encoding of the stimuli’s statistical frequency dis-
tribution into the neurons’ activity. I thus postulate 
higher degrees of both diff erence-based coding 
and sparse coding within the middle ranges of the 
neurons’ biophysical-computational spectrum. 

 Th e possibility of adaptive rescaling implies 
that sparse coding can occur in diff erent degrees. 
Rather than being an absolute all-or-nothing 
coding strategy, sparse coding may then need 
to be considered in a relative, more-or-less way, 
presupposing a continuum of diff erent degrees. 
Th e higher the degree of adaptive rescaling and 
thus the more the stretch factor operates, the 

higher the degrees of both diff erence-based cod-
ing and sparse coding.  

    NEURONAL HYPOTHESIS IIID: BALANCE 
BETWEEN SPARSE CODING AND LOCAL/ 
DENSE CODING WITHIN THE NEURONS’ 
BIOPHYSICAL-COMPUTATIONAL SPECTRUM   

 We may, however, need to consider not only 
diff erent degrees of sparse coding, but also its 
balance with other coding strategies like dense 
and local coding (see earlier discussion). Higher 
degrees of sparse coding may then go along with 
lower degrees of local and dense coding, and 
conversely. Hence, we may need to search for the 
balance between sparse coding and local/dense 
coding. 

 I hypothesize that this balance may very 
much be dependent upon the degree of spa-
tial and temporal diff erences between diff er-
ent stimuli that are to be encoded into neural 
activity: encoding of larger spatial and temporal 
diff erences may tilt the balance toward sparse 
coding at the expense of local and dense cod-
ing. In contrast, encoding of smaller spatial and 
temporal diff erences may shift  the balance from 
sparse coding toward higher degrees of local and 
dense coding (see Fig. 1-5a). 

 If, in contrast, the stretch factor cannot oper-
ate maximally, resulting in lower degrees of 
non-linearity and adaptive rescaling, I hypothesize 
the following:  the more the amount of the stim-
uli’s spatial and temporal diff erence values to be 
encoded by the neurons falls within the extreme, 
for example, maximal and minimal, ranges (i.e., 
high or low standard deviations) of the neurons’ 
biophysical-computational spectrum, the lower 
the degree of non-linear interaction and the lower 
the degree of sparseness and sparse coding in 
subsequent neural activity. Accordingly, sparse 
coding and local (and dense) coding are recipro-
cally related to each other. Th e degree of sparse 
coding with its many-to-one relationship between 
stimulus and neurons decreases, while the degree 
of local coding with a one-to-one relationship 
increases (see   Fig. 1-5a, b  ).      

 Why is all that relevant? We already indicated 
that the degree of diff erence-based coding and 
sparse coding may be signifi cantly decreased in 
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disorders like VS and schizophrenia. While I will 
provide the details in Volume II, this makes it 
clear that the encoding strategy, and especially 
the neural balance between diff erence- and 
stimulus-based coding, is highly relevant for 
consciousness and its various phenomenal fea-
tures. Before venturing into the phenomenal 
domain of consciousness, though, we need to 
better understand the neuronal mechanisms the 
brain itself applies to its own neural processing, 
as it is the focus in this volume.  

    NEURONAL HYPOTHESIS IIIE: 
SPARSE CODING AND THE NEURONS’ 
BIOPHYSICAL-COMPUTATIONAL SPECTRUM 
IN DIFFERENT SPECIES   

 Finally, one may also want to note that sparse 
coding is not limited to humans but also operates 
in the brains of non-human species. Th is is well 
documented in the results described earlier that 
were mostly obtained in non-human species. 
I  postulate that the brain in non-human spe-
cies also operates the same coding and encoding 
strategy; namely, diff erence-based coding and 
sparse coding. 

 Th e diff erence between human and non- 
human species and thus between the diff erent 
species in general may then not be found so 
much in the presence or absence of a particular 

encoding strategy, which may rather be shared 
across species and their respective brains (such 
as all relying on a statistically based rather than 
physically based encoding; see earlier). Instead, 
the diff erence may then be found in the range of 
the biophysical-computational spectrum, which 
may be species-specifi c, as based on the diff er-
ent biophysical features of the brains in the dif-
ferent species. Th ese biophysical-computational 
diff erences may enable the diff erent species to 
encode species-specifi c temporal and spatial dif-
ference values into their neurons’ activity in a 
diff erence-based and sparse way (see   Fig. 1-5c  ).      

 For instance, monkeys show diff erent physi-
cal and computational features of their neu-
rons when compared to humans. Where there 
is non-response and no adaptive rescaling 
in humans, in monkeys there may be some 
response with possibly even the stretch factor, 
non-linearity, and adaptive rescaling at work in 
biophysical-computational ranges that remain 
impossible in humans. 

 Th is means that we need to consider the neu-
rons’ response properties and, for instance, the 
degree to which the stretch factor, non-linearity, 
and adaptive rescaling (can possibly) operate 
in relation to the respective species and their 
neurons’ biophysical-computational spectrum. 
To extend the scope further, one may even con-
sider the diff erent species and their neurons’ 

 

Degree of
sparse coding

Degree of
local/dense coding

   Figure  1-5b    Reciprocal relationship between sparse coding and local/dense coding. Like 
diff erence-based coding, sparse coding also stands in a reverse or reciprocal relationship to local/dense 
coding, which is now illustrated in a graph (which I could have also done for diff erence-based coding 
and local/dense coding). Th e x-axis describes the degree of local/dense coding, while the y-axis stands 
for the degree of sparse coding. Th e higher the degree of sparse coding, the lower the degree of local/
dense coding.   
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biophysical-computational spectrum in their 
respective ecological and hence ultimately evo-
lutionary context. Th is, however, is far beyond 
the scope of this book, which I therefore leave to 
others to pursue in the future.  

    Open Questions   

 One of the main questions concerning sparse 
coding is how the neurons can encode spatial and 
temporal diff erences between diff erent stimuli 
and their physical features; that is, their statistical 
frequency distribution across diff erent discrete 
points in physical time and space. Neurons do 
not encode the stimuli’s physical features at their 
particular discrete points in physical time and 
space, but rather their statistical frequency distri-
bution across diff erent discrete points in physical 
time and space. 
 Th e question is now why and how the neurons’ 
activity is tuned to encode the statistical fre-
quency distribution of the stimuli’s physical 
features rather than encoding the physical fea-
tures themselves. Th is question remains open for 
future studies, for which the evolutionary roots 
and context may need to be considered. 
 Specifi cally, sparse coding yields the question 
why and how the neurons’ activity is more 
tuned to spatial and temporal diff erence values 
between diff erent stimuli rather than to one 

stimulus alone. Current neuroscience does not 
seem to provide an answer to that, as I  see it. 
But we have to be careful. As suggested by the 
empirical data, the encoding strategy of sparse 
encoding is not as absolute as all or nothing. 
Rather, it seems to be continuous and thus recip-
rocally balanced with the degrees of dense and 
local coding. 
 Th e results described earlier focused only on 
the degree of sparse coding, while its recipro-
cal balance with local and dense coding was 
more or less neglected. Future studies may thus 
want to develop measures—that is, variables or 
indexes—of the neural balance between the dif-
ferent encoding strategies. I hypothesize that the 
neural balance between the degrees of sparse and 
local/dense coding, rather than either index by 
itself, may best predict subsequent behavioral as 
well as cognitive performances. 
 Furthermore, how the neural balance between 
sparse and local/dense coding is determined 
and modulated remains completely unclear at 
this point. One could, for instance, imagine 
that the neurons’ baseline activity, their rest-
ing state or intrinsic activity, may be central in 
modulating the threshold for the possible degree 
of diff erence-based and sparse coding during 
subsequent stimulus-induced activity (see Part 
IV for details). Th at, however, remains to be 
investigated. 
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   Figure 1-5c    Species-dependence of the neuron’s physical-computational ranges and diff erence-based 
coding. Th e fi gure describes the relationship between diff erent biophysical-computational spectra in 
diff erent species and their respective degrees of diff erence-based coding. Th ereby, diff erent species may 
show diff erent biophysical-computational ranges, depending on the physical (and biophysical) features 
of their brains. Th at, in turn, may go along with diff erent degrees of diff erence-based coding, as indi-
cated by the heights of their respective spectrum. Moreover, the shape of the distribution of the degree 
of diff erence-based coding along the respective species’ specifi c biophysical-computational spectrum 
may vary between diff erent species.   
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 Finally, results from sparse coding are based on 
investigations in diff erent species. Hence, sparse 
coding is not an encoding strategy specifi c to 
humans. Instead, it seems to occur across diff er-
ent species, and so is diff erence-based coding, as 
I  suggest. Th is may incline one to suggest that 
sparse coding and diff erence-based coding char-
acterize the encoding strategy of brains in gen-
eral across diff erent species. 
 Diff erence-based coding and sparse coding 
may then be regarded as intrinsic features of 
the brain that defi ne the brain  qua  brain. We 
will return to the brain and its intrinsic features 
in the phenomenal context of consciousness 

in Volume II, where I  will propose the brain’s 
intrinsic features, like its encoding strategy, 
that is, diff erence-based coding, to predispose 
consciousness. 
 Coming back to the purely neuronal context in 
this volume, one would like to investigate how 
the diff erent species’ biophysical-computational 
spectrum of their neurons determines the pos-
sible degrees of sparse coding and its neural 
balance with local and dense coding, and how, 
in turn, that predicts the subsequent behavioral 
capabilities of the respective species, including 
their diff erences from humans. Th at, however, 
remains to be investigated.                    
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    Summary   

 So far, I  have discussed the neuronal mecha-
nisms of sparse coding and how it presup-
poses diff erence-based coding on the level of 
single neurons and a population of neurons. 
However, I  left  open the question of the exact 
physiological and biochemical mechanisms; 
that is, neural excitation as mediated by gluta-
mate, and neural inhibition related predomi-
nantly to GABA. Th e focus of this chapter is 
on discussing how diff erence-based coding 
and consequently sparse coding are related to 
neural inhibition and excitation. Th e fi ndings 
suggest that GABA and glutamate act in con-
junction, thereby constituting what is called the 
“excitation-inhibition balance” (EIB). Despite 
their conjunction in the EIB, the empirical 
fi ndings suggest distinct roles for neural inhibi-
tion and excitation in yielding diff erence-based 
coding. Glutamate seems to be central in con-
stituting early neuronal excitation, whereas 
GABA yields delayed neural inhibition, which 
reduces and suppresses the former. As such, 
GABAergic-mediated neural inhibition may be 
crucially involved in temporally and spatially 
sparsening stimulus-induced activity, as can 
be demonstrated by the example of the olfac-
tory system. How is the action of GABA and 
glutamate related to diff erence-based coding? 
Based on various empirical fi ndings in (espe-
cially) the olfactory system of insects, rats, and 
other species, I  propose that the distinct but 
co-exerted contributions of GABA and glu-
tamate are central in constituting spatial and 
temporal diff erences between diff erent stimuli 
across their diff erent discrete points in physi-
cal time and space. Th erefore, GABA and gluta-
mate and consequently the EIB may be central 

in making possible diff erence-based coding 
and ultimately sparse coding on a cellular and 
population level of neural activity.    

    Key Concepts and Topics Covered   

 Sparse coding, neural inhibition, neural excita-
tion, GABA, glutamate, single cells, population 
of neurons, excitation-inhibition balance, diff er-
ent species      

      NEUROEMPIRICAL BACKGROUND: 
DIFFERENCE-BASED CODING AND THE 
BRAIN’S NEURAL ORGANIZATION   

 In addition to the visual cortex (see Chapter 1), 
strong evidence for sparse coding also comes 
from the insect’s olfactory system, which is 
well investigated in detail and can therefore be 
regarded as a model system for studying the 
neural code (see Th eunissen 2003; Laurent 2002; 
Papadopoulou et al. 2011; Assisi et al. 2007). Th is 
will provide a more detailed view of the neuro-
nal, and especially neurophysiological, mecha-
nisms underlying sparse coding. 

 I postulate that this will be highly relevant 
for understanding how the spatial and temporal 
diff erences signifying diff erence-based coding 
are encoded into neural activity. By showing the 
underlying neurophysiological and biochemical 
mechanisms, I  ultimately aim to demonstrate 
why the neurons and the brain in general cannot 
avoid and are thus predisposed to encode spatial 
and temporal diff erences, i.e., diff erence-based 
coding, rather than the stimulus itself, i.e., 
stimulus-based coding. 

           CHAPTER 2 
 Sparse Coding and Neural Inhibition        
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 More generally, I  postulate that diff erence- 
based coding (and ultimately sparse coding) is a 
necessary and unavoidable characteristic of the 
brain’s neural organization and thus an intrinsic, 
i.e., defi ning, feature of the brain. While sound-
ing rather abstract and loft y at this point, this will 
turn out to be important when it comes to con-
sciousness, as will be detailed in Volume II. 

 Now, however, we need to understand the 
neurophysiological and biochemical mecha-
nisms themselves that realize and implement 
diff erence-based coding and sparse coding. For 
that, I will turn to the olfactory system of the insect 
as paradigmatic example of the brain in general.  

    NEURONAL FINDINGS IA: “SPATIALIZATION” 
AND “TEMPORALIZATION” IN THE INSECT’S 
OLFACTORY CORTEX   

 Th e insect’s olfactory system’s antenna contains 
about 90,000 olfactory receptors, where many 
neurons respond at once to a particular odour. 
Th is organization of the receptors biases them 
toward spatial distribution and dense coding, 
with a one-to-many relationship between stimuli 
and receptors. One and the same olfactory input, 
or stimulus, is received and processed by several 
receptors at the same time which occupy diff er-
ent positions in space. 

 What does this anatomical organization 
imply for the encoding of the olfactory stimuli? 
Th e encoding of the olfactory stimulus and its 
single discrete point in the physical space of the 
environment implies the spatial distribution of 
the stimulus in the neural activity of various 
receptors that are located in diff erent discrete 
points in physical space. One may therefore want 
to speak of what I describe as “spatialization” of 
the olfactory stimulus during its encoding into 
the receptors’ neural activity. 

 Th e spatially distributed signals related to the 
olfactory receptors are then further processed to 
the antennal lobe in insects, which in humans 
corresponds to the olfactory bulb. Th e antennal 
lobe contains about 830 projection neurons that 
receive excitatory input from the olfactory recep-
tors and inhibitory input from interneurons. 

 Olfactory input leads to a modulation of 
the neuron’s mean fi ring rate with the activity 

being synchronized across diff erent neurons 
with 20–30 Hz oscillations as measured in local 
fi eld potentials. Th e olfactory input is thus put 
into temporal space by means of synchronizing 
temporally distinct inputs in the antennal lobe 
neurons’ activity. 

 Th is means that the initial olfactory stimu-
lus and its single discrete point in the physical 
time of the environment are distributed across 
diff erent discrete points in physical time namely 
those covered by the 20-30Hz synchronization 
operating across the diff erent neurons (and their 
respective time scales). In other terms, the olfac-
tory stimulus becomes ‘temporalized’ during its 
encoding into the antennal lobe neurons’ activity. 

 What does such temporalization and spatial-
ization of the stimulus in neural activity imply 
for the relationship between the actual stimulus 
and the diff erent neurons? Th e odour identity of 
the stimulus no longer corresponds one to one to 
the mean fi ring rate of a single neuron but rather 
to the integrated activity and synchronization of 
many neurons. Th is means that the representa-
tion of the stimuli in the neural activity of the 
receptors and the antennal lobe neurons’, the 
“representational space,” is no longer identical, 
that is, one to one, with the space of the stimuli, 
the “stimulus space.”  

    NEURONAL FINDINGS IB: “STIMULUS SPACE” 
AND “REPRESENTATIONAL SPACE” IN THE 
INSECT’S OLFACTORY CORTEX   

 What exactly is meant by the terms “represen-
tational space” and “stimulus space”? Th e con-
cept of “stimulus space” describes the chemical 
combinations of the odour itself, independent of 
any neural activity. In contrast, the term “repre-
sentational space” pertains to the spatiotemporal 
patterns during the encoding of the stimulus 
into neural activity, such as, for instance, into the 
receptors’ and the antennal lobe neurons’ activity. 

 Th e lack of one-to-one correspondence 
between chemical combinations, for example, 
the stimulus space, and the spatiotemporal activ-
ity patterns, the representational space, entails 
that the former are decorrelated and processed 
as independent variables in the antennal lobe 
neurons’s activity. Such decorrelation entails that 
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the number of neurons representing the respec-
tive odour may be larger than the number of 
chemical dimensions present in the odour. 

 One may now propose that the encoding of 
the stimulus by such large number of neurons, 
that is receptors and antennal lobe neurons, 
may be essential for putting the olfactory stimu-
lus and its single discrete point in physical time 
and space, the stimulus space, into a larger spa-
tial and temporal context in the encoded neural 
activity, the representational space. 

 Th e anatomical organization with the high 
number of receptors and the temporally synchro-
nizing antennal lobe neurons’ seem to make such 
spatialization and temporalization of the olfactory 
stimulus in the encoded neural activity almost 
necessary and thus unavoidable. In other words, 
the anatomical organization seems to predispose 
spatiotemporal coding with subsequent spatializa-
tion and temporalization, during the encoding of 
the olfactory stimuli into neural activity.  

    NEURONAL FINDINGS IC: FROM 
SPATIOTEMPORAL CODING TO SPARSE CODING 
IN THE  INSECT’S  OLFACTORY CORTEX   

 What are the next steps in the neural processing 
in the insect’s olfactory system? Th e spatiotem-
poral coding of the antennal lobe and its projec-
tion neurons, the described spatialization and 
temporalization, is transformed into a sparse 
code in the next relay station, the Kenyan cells 
in the mushroom bodies. Th eunissen (2003) 
suggests three processes to be at work that allow 
for the transformation of the antennal lobe’s 
spatiotemporal code into the sparse code of the 
Kenyan cells (  Fig. 2-1  ).      

 First, there is high divergence in the num-
ber of cells between the antennal lobe and 
the mushroom body. One projection neuron 
from the antennal lobe corresponds to about 
500 Kenyan cells in the mushroom body. 
Th is means that when receiving inputs from 
the projection neuron, many of the Kenyan 
cells are not activated, entailing sparse cod-
ing. Hence, the number of Kenyan cells active 
or recruited is rather low when compared to 
their total number, which predisposes them for 
sparse coding. 

 Second, the Kenyan cells react particularly 
strongly to simultaneously arriving inputs from 
the projection neurons. Th is favours integration 
of diff erent inputs, including their nonlinear 
interaction. Such nonlinearity implies that the 
activity elicited by simultaneously arriving inputs 
is much stronger (or weaker) when compared 
to the addition of their activities when arriving 
sequentially. We already discussed in Chapter 1 
an analogous instance of non-linearity in the 
context of the visual system where it was central 
in allowing for sparse coding (see Olshausen 
and Fields 1996, 1997). We will see later that the 
non-linearity in the case of the insects’ olfactory 
system and its Kenyan cells is equally central in 
allowing for sparse coding. 

 Th ird, neural inhibition plays a major role 
in synchronizing the diff erent neurons’ activ-
ity in the antennal lobe as well as in inhibiting 
Kenyan cells in the mushroom bodies (via the 
lateral horn). Such inhibition may turn off  cells 
before or aft er the detection of excitatory syn-
chronized input from the projection neurons of 
the antennal lobe. 

 Taken together, all three processes, divergence, 
non-linearity, and inhibition, entail that only a 
small number of Kenyan cells respond to each 
odour identity with few temporally precise spikes. 
Th e spatiotemporal patterns from the antennal 
lobe are thus integrated and sparsened by the 
Kenyan cells in the mushroom body into few and 
specifi cally active neurons without though losing 
any of the associated information. Accordingly, 
the Kenyan cells sparsen neural activity in both 
spatial and temporal respects. Th is means that the 
initial spatiotemporal code as encoded into the 
receptors and the antennal lobe projection neu-
rons is now transformed into a sparse code; the 
initially encoded “spatialization” and “temporal-
ization” is thus not lost but sparsened.  

    NEURONAL FINDINGS ID: MECHANISMS 
OF SPARSENING NEURAL ACTIVITY IN THE 
INSECT’S OLFACTORY CORTEX   

 In order to better understand what exactly hap-
pens during the sparsening of the initial spatio-
temporal code, we need to better understand 
how the projection neurons in the antennal lobe 
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are connected to the Kenyan cells in the mush-
room body. Many projection neurons contact 
and converge onto one and the same Kenyan cell, 
with each Kenyan cell receiving direct input from 
about half of the projection neurons (see Jortner 
et  al. 2007). Th is yields the following ques-
tion: How can such massively convergent input 
from so many projection neurons lead to the 
sparse and highly selective responses as observed 
in the Kenyan cells (see also Stopfer 2007)? 

 Following Jortner et al. (2007), three diff erent 
mechanisms may need to be considered. First, 
the antennal lobe projection neurons react to 

odour not only with neural excitation but also 
with inhibition. Th is means that only some of the 
activated projection neurons provide an excit-
atory input to the Kenyan cell while others relay 
rather an inhibitory input with the subsequent 
inhibition of the Kenyan cells. Th ere are thus 
both excitatory and inhibitory projection neu-
rons which exert opposite eff ects on their respec-
tively connected Kenyan cells. Th at reduces the 
eff ect of the high number of the projection neu-
rons on the Kenyan cells considerably. 

 Second, many of the excitatory postsynaptic 
currents (EPSCs) triggered in Kenyan cells by the 
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   Figure 2.1     Neural organization and processing in olfactory cortex.  Circuitry of the ascending olfac-
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excitatory projection neurons are rather small so 
that they do not reach the threshold necessary to 
elicit action potentials and thus neural activity. 
Such subthreshold activity reduces the eff ect of 
the excitatory projection neurons on the Kenyan 
cells considerably. Finally, and third, oscillatory 
output from the projection neurons prohibits 
Kenyan cells from fi ring during that oscillatory 
cycle which reduces the eff ects of the excitatory 
projection neurons even further. 

 Taken together, there may be three diff erent 
neuronal mechanisms at work in order to reduce 
and thus sparsen the eff ects of the high number of 
antennal lobe projection neurons onto the much 
lower number of Kenyan cells. Th ese mechanisms 
include inhibitory projection neurons as well as 
subthreshold and oscillatory activity in projection 
neurons which all three prevent the Kenyan cells 
from being activated by the projection neurons.  

    NEURONAL FINDINGS IE: DIFFERENT 
MECHANISMS OF SPARSENING NEURAL 
ACTIVITY IN DIFFERENT SPECIES   

 Why are these mechanisms of reducing and thus 
sparsening the eff ects of the projection neurons 
onto the Kenyan cells are so important? Due 
to the high number of projection neurons and 
the lower number of Kenyan cells, there is a 
vast number of possible combinations between 
projection neurons’ activity and the Kenyon 
cells’ activity pattern. Such a high number of 
possible combinations can optimize and thus 
sharpen and therefore decorrelate the diff erences 
between diff erent sensory inputs received by the 
projection neurons and the signals relayed by the 
Kenyan cells. Th is means that ultimately each 
olfactory input can lead to an extremely selective 
or decorrelated and sparse representation in the 
neural activity as encoded in the Kenyan cells. 
Th is holds for insects and their olfactory system. 

 Do the same mechanisms of sparsening 
neural activity also apply to species other than 
insects, however? Stopfer (2007), in his com-
mentary to the study by Jortner et  al. (2007), 
remarks that the fruit fl y and the rat show a 
diff erent organization in their olfactory cortex. 
According to him, this makes it rather unlikely 
that sparseness of neural activity is achieved in 

these species through the same mechanisms like 
inhibitory neurons, subthreshold activity, and 
oscillatory activity as in the insect. He therefore 
proposes that diff erent mechanisms of sparsen-
ing neural activity may be at work in diff erent 
species. We therefore shift  our focus now to rats 
and their olfactory cortex.  

    NEURONAL FINDINGS IIA: SPARSE CODING 
IN THE RAT’S OLFACTORY CORTEX   

 I demonstrated that neural inhibition is central 
in mediating the sparsening of neural activity in 
the insect’s olfactory cortex. More specifi cally, 
there seem to be inhibitory projection neurons 
that inhibit rather than excite the Kenyan cells. 
Th is suggests a central role of neural inhibition in 
mediating sparsening eff ects and thus sparse cod-
ing in olfactory cortex. Does the central role of 
neural inhibition also apply to species other than 
the insects? For that I now turn to rats, and more 
specifi cally to a study by Poo and Isaacson (2009). 

 Poo and Isaacson (2009) (see also Poo and 
Isaacson 2011)  undertook electrophysiologi-
cal studies of the pyramidal cells and interneu-
rons in the rat’s anterior piriform cortex, 
which is related to olfaction. Th ey used in vivo 
cell-attached recording and whole-cell record-
ing to measure these neurons’ action potentials 
(APs) and synaptic currents, for example, excit-
atory postsynaptic current (EPSC) and inhibi-
tory postsynaptic current (IPSC) while, at the 
same time, stimulating them with four diff erent 
monomolecular odours. 

 Let’s start with the APs. Th ey observed a low 
spontaneous fi ring rate of all pyramidal cells and 
only a sparse number of them (10%), when com-
pared to the total number of neurons, showed 
APs during odour stimulation. Mostly, APs were 
induced only by one single odour so that diff erent 
odours elicited APs in diff erent cells. Hence, each 
odour induced APs in only approximately 10% 
of the total number of cells with diff erent cells 
being recruited by diff erent odours. Moreover, 
the intensity in fi ring rate was rather low with 
an average increase of 2.01 +/– 0.04 Hz in the 
recruited neurons. Stronger responses (>5 Hz/ 
>10 Hz) were only observed in 19%/6% of the 
recruited neurons. 



ENCODING EXTRINSIC STIMULI30

 How do these results stand in relation to 
sparseness? Th is activity pattern implies a high 
degree of sparseness both temporally and spatially. 
Temporal sparseness can be expressed by “lifetime 
sparseness” (see also Chapter 1), the response pat-
tern of an individual cell to multiple stimuli across 
time; this yielded a value of 0.88, indicating that 
cells responded highly selectively to the diff erent 
odours at diff erent discrete points in time. 

 Analogous results can be observed in the 
spatial domain. Spatial sparseness is expressed 
by “population sparseness” (see Chapter  1 for 
details) that measures how an individual stimu-
lus is represented in the activity pattern of dif-
ferent cells; this also yielded a high value, 0.93 
that mirrors a rather sparse representation of 
the odours in the activity of diff erent neurons. 
Taken together, these data show that induction 
of APs in pyramidal cells of the rat’s piriform 
cortex show a temporally and spatially sparse 
activity pattern when exposed to diff erent 
odours.  

    NEURONAL FINDINGS IIB: NEURAL 
EXCITATION AND INHIBITION IN THE 
RAT’S OLFACTORY CORTEX   

 In addition to APs, Poo and Isaacson (2009) 
also investigated the EPSCs and IPSCs. EPSCs 
(22.7%) were observed more oft en than APs 
(8.3%) across cells. Both EPSC and AP were thus 
relatively rare compared to the IPSC, which were 
found much more oft en:  namely, in half of all 
cells investigated (51%). Th ere is thus sparseness 
in the overall occurrence of both APs and EPSCs, 
while there seems to be no sparseness in IPSCs.
Interestingly, the same pattern can be observed 
with regard to odour selectivity. Similar to the 
APs, EPSCs were highly selective, being induced 
only by one particular odour rather than by all 
odours, meaning that 60% of all cells showed 
EPSCs in response to only one particular odour. 
Th is distinguished them from IPSCs, where 66% 
of all cells showed inhibition in response to 3–4 
odours. Hence, excitation seems to be related 
to odours in a highly selective and thus sparse 
way whereas this is not the case in inhibition 
that seems to be induced by various odours in a 
rather non-selective and non-sparse way. 

 In addition to diff erent odours, Poo and 
Isaacson (2009) also investigated the eff ects of 
diff erent odour concentrations. Higher con-
centrations of the preferred odour led to higher 
EPSCs, thus showing a graded response pat-
tern. In contrast, IPSC responses remained 
largely independent of odour concentration with 
already low concentrations of both preferred and 
nonpreferred odours inducing high IPSCs. 

 Th ese results show that neural excitation, 
i.e., EPSCs, is directly dependent upon the 
odour concentration whereas neural inhibition, 
i.e.,IPSCs, is not. Neural inhibition thus seems 
to show an all-or-nothing response pattern 
whereas the one of neural excitation is charac-
terized rather by a more-or-less pattern. 

 Taken together, neural inhibition, i.e., IPSCs, 
seem to remain rather unspecifi c with regard 
to the kind of odour and the odour concentra-
tion. Unlike neural excitation, i.e., EPSCs, neural 
inhibition seems to be neither tuned to specifi c 
odour nor to varying odour concentrations. 
Such unspecifi c response pattern let Poo and 
Isaacson (2009) speak of “global inhibition” that 
describes the unspecifi c nature of neural inhibi-
tion with regard to the eliciting stimuli.  

    NEURONAL FINDINGS IIC: 
ANATOMO-STRUCTURAL ORGANIZATION 
OF INTERNEURONS AND PYRAMIDAL CELLS 
IN THE RAT’S OLFACTORY CORTEX   

 Where does such global inhibition come from? 
One would propose that it comes from inter-
neurons that are characterized by predominant 
inhibition (see Buzsaki 2006 for details). Th e 
interneurons themselves must receive some 
excitatory input, however, in order to get acti-
vated and to consecutively exert neural inhibi-
tion. Poo and Isaacson (2009) (see also Poo 
and Isaacson 2011)  therefore investigated both 
pyramidal cells and interneurons separately 
with regard to their excitation pattern. Th ey 
demonstrated that odours evoked excitation in 
a much larger number of interneurons (50% +/– 
3.9%) than in pyramidal cells (11% +/– 2.3%). 
Th is suggests non-selective response and thus 
unspecifi city with regard to the interneurons 
that are excited. 
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 Furthermore, unlike in pyramidal cells, the 
response in interneurons was also nonselective 
with regard to the odour with diff erent odours 
inducing excitation in the same interneurons. 
Hence, excitation in interneurons seems to be 
widespread and broadly tuned so that its remains 
unspecifi c with regard to both odour and cells. 
Th is distinguishes the interneurons from pyra-
midal cells where excitation is more specifi c in 
terms of both odours and cells. 

 Why do the interneurons receive excita-
tion in such unspecifi c way than the pyrami-
dal cells? Conducting further experiments, the 
authors could show that the increased number 
of excitation in interneurons may originate from 
increased convergence of olfactory bulb cells 
(M/T cells) onto interneurons when compared 
to pyramidal cells. Hence, interneurons simply 
seem to receive more excitatory input from the 
olfactory bulb than pyramidal cells. Th is means 
that the interneurons have a much higher like-
lihood of getting excited than pyramidal cells, 
which in turn explains their higher degree of 
excitation. Such increased likelihood of excit-
atory input predisposes the interneurons to 
show a rather non-selective and thus unspecifi c 
response pattern with regard to both odours and 
cells as it is observed in the data. 

 Accordingly, the high degree of neural exci-
tation of interneurons may ultimately be traced 
back to an anatomical-structural feature, that is, 
the connectivity pattern between olfactory bulb 
cells and interneurons. Due to the much higher 
degree of convergence onto interneurons, neu-
ral inhibition as relayed by interneurons seems 
to predominate in terms of pure quantity over 
the degree of neural excitation in pyramidal 
cells. Such predominance of neural inhibition 
over neural excitation, that is, global inhibition 
as described earlier, may then lead to increased 
sparsening of subsequent neural activity. 

 Based on these considerations, one can pos-
tulate that the mismatch between the number 
of pyramidal cells and the one of interneurons 
and the consecutive dysbalance between neural 
excitation and inhibition makes unavoidable 
and thus predisposes the possible temporal and 
spatial sparsening of neural activity in pyramidal 
cells. In short, the sparsening of neural activity 

and thus sparse coding may ultimately be predis-
posed by anatomo-structural organization of the 
olfactory cortex.  

    NEURONAL FINDINGS IID: TEMPORAL 
SPARSENING OF NEURAL ACTIVITY IN THE 
RAT’S OLFACTORY CORTEX 

   Poo and Isaacson (2009) also investigated how 
the recruitment of single cells relates to the oscil-
latory patterns of the whole network of cells 
and population of cells. Let me fi rst describe 
the rather complicated physiological processes 
before interpreting the data. Th ereby we will 
consider both insects and rats together. 

 Measuring local fi eld potentials, promi-
nent odour-evoked beta-frequency oscillations 
(18  Hz) were observed in similar ways for the 
diff erent odours. APs were phase-locked to the 
onset of the beta oscillations: APs in diff erent 
cells were not coupled to the same phase of the 
beta oscillations. Instead, APs in each individual 
cell were preferentially linked to specifi c and thus 
diff erent phases of the beta oscillation as being 
specifi c for each odour (see below for details). 

 Th is indicates a precise relationship between 
the timing of individual APs and the phases of 
the synchronized network oscillations. Th ere is 
thus, as the authors themselves remark, temporal 
sparsening of neural activity during the encod-
ing of odours. How can describe such temporal 
sparsening in further detail? Temporal sparsen-
ing may be signifi ed by the temporal relation in 
the occurrence of IPSCs, EPSCs, and AP’s which 
was also investigated by Poo and Isaascson 
(2009). 

 Th ey observed that EPSCs almost always pre-
ceded IPSCs by a short time period of around 10 ms 
(9 +/– 0.3 ms). Odour-evoked APs occurred 
largely (67% +/– 11%) within this short time 
window between the EPSCs and the IPSCs 
within the same cells, for example, between the 
onset of EPSCs and the onset/rise of IPSCs. In 
contrast to these earlier AP’s, much fewer APs 
were observed in later time periods as during the 
onset and rise of IPSCs. Interestingly, IPSCs and 
EPSCs were always coupled to diff erent phases of 
the beta oscillation in each cell; this is consistent 
with the specifi c coupling between APs and beta 
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oscillation phases described earlier. Th ese phase 
diff erences between IPSCs and EPSCs with 
regard to the phases of the beta-oscillation may 
further enforce the precise spike time and phase 
coupling of APs in olfactory cortex. 

 What do these rather intricate physiologi-
cal processes imply for the neural coding of 
odours in the olfactory system? Based on their 
fi ndings, Poo and Isaacson (2009) postulate 
that the rat’s olfactory cortex, for example, the 
anterior piriform cortex, can be characterized 
by sparse coding both temporally and spatially. 
Such sparseness may be driven by both selective 
excitation of specifi c pyramidal cells in response 
to specifi c odours and global (and unspecifi c) 
inhibition of interneurons. Th ereby the tempo-
ral diff erence in the occurrence between EPSCs 
and IPSCs, for example, 10 ms, may provide the 
time window for APs to be generated. Th e occur-
rence of such specifi c rather short time window 
for the generation of the AP’s may promote the 
AP’s selectiveness and specifi city with regard to 
both cells and odour and thus (a high degree of) 
sparse coding.  

    NEURONAL HYPOTHESIS IA: PRESENCE OF 
NEURAL INHIBITION IN DIFFERENT SPECIES 

   How can we, on the basis of these data, generate a 
sound neuronal hypothesis that applies to sparse 
coding in general? Th e presented data were 
obtained in insects and rats. Th e development 
of a neural coding hypothesis about the brain 
in general is thus confronted with the question 
of whether these fi ndings are species-specifi c or 
apply to the brain in general across diff erent spe-
cies. In order to address this question in our case 
of the olfactory system, we discuss the similari-
ties between insects and rats. 

 Poo and Isaacson (2009) point out the simi-
larity of their results in rats with the ones from 
the insect’s mushroom body and the Kenyan 
cells. In both insects and rats, lifetime and 
population sparseness of cell responses can be 
observed. And there is a low response fi ring rate 
in both species with a specifi c and direct excit-
atory drive. Most important, broadly tuned and 
unspecifi c neural inhibition is present in both 

species. Th is stems from diff erent sources:  for 
example, interneurons in the rats’ piriform cor-
tex and the insect’s neurons in the lateral horn 
in the mushroom body. Finally, both species 
(rats, insects) show stimulus-triggered bursts of 
beta oscillations and the phase delay of inhibi-
tion relative to excitation. Th is suggests that both 
the rat’s piriform cortex and the insect’s mush-
room body seem to function in analogous if not 
similar ways. 

 Most prominent in both species is the cen-
tral role of neural inhibition, which, as pro-
vided by the interneurons (or the neurons of 
the lateral horn), may be central in promot-
ing sparseness (see also Papadopoulou et  al. 
2011). While inhibition remains nonsparse by 
itself and therefore unspecifi c with regard to 
both cells and odours (and therefore “global” as 
described by the authors), inhibition may none-
theless prove essential in enabling sparseness of 
neural excitation and consecutively of APs in 
pyramidal cells.  

    NEURONAL HYPOTHESIS IB: NEURAL 
INHIBITION PREDISPOSES SPARSE CODING   

 Based on the cross-species similarities, one may 
propose that global inhibition is a necessary con-
dition for sparseness of neuronal excitation. Th is 
amounts to the following hypothesis as applicable 
to diff erent species: the higher the degree of pos-
sible neural inhibition provided by inhibitory 
interneurons, the higher the degree to which neu-
ral activity, that is, neural excitation in pyramidal 
cells, can be spatially and temporally sparsened. 
Hence, to say it more simply, the degree of neural 
inhibition may predispose the possible degree of 
sparse coding in diff erent species (Fig. 2-2).      

 Th e nonexpert may be slightly puzzled now. 
Everybody knows about the major diff erences 
between insects and rats, especially in the sum-
mer when being bitten by the various insects fl y-
ing around. Both insects and rats show completely 
diff erent behavioural capacities and obviously 
their brains are also quite diff erent. How then is 
it possible that both species seem to rely on simi-
lar neural mechanisms underlying and driving 
sparse coding in their olfactory system? 
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 One key to answer this question may be found 
in evolution. Th e olfactory system is a phyloge-
netically old system whose functional principles 
may be preserved across diff erent species. Most 
important, the cross-species similarities point to 
the central role of neural inhibition in the neural 
coding of stimuli, that is, olfactory stimuli, that 
may be preserved throughout the diff erent stages 
of evolutionary history. 

 Accordingly, neural inhibition and conse-
quently sparse coding may have evolutionary 
roots and origins. Th is, however, is a rather daring 
and speculative hypothesis at this point. Th erefore, 
let’s return to the much safer ground of the empir-
ical fi ndings in yet another species: the cat.  

    NEURONAL FINDINGS III: NEURAL 
INHIBITION AND SPARSE CODING IN 
THE CAT’S VISUAL CORTEX   

 We so far focused exclusively on the olfactory 
cortex. Th ere we demonstrated sparse coding to 
hold true and to be predisposed by the possible 
degree of neural inhibition. Does such global 
inhibition as observed in olfactory cortex also 
apply in the same way to other sensory cortices? 
In his commentary on Poo and Isaacson (2009), 
Schoppa (2009a and 2009b) denies this. 

 Following Schoppa et  al. (2009), neurons in 
sensory cortices other than the olfactory cortex 
are ordered according to their functional cell 

type; this means that, unlike in olfactory cortex, 
similarly but non-identically responding neu-
rons are not direct, but only near and thus indi-
rect, neighbors. Unlike in olfactory cortex, there 
is thus a lack of direct connection between dif-
ferent cell types; that is, between pyramidal cells 
and interneurons, in other sensory cortex. Th is 
entails that neuronal inhibition must function 
according to diff erent principles than in olfac-
tory cortex, where it is based on direct contact, 
or connectivity. 

 How can we test this assumption? For that, we 
may need to switch our sensory allegiance from 
the olfactory cortex to another sensory cortex 
like the visual cortex and thereby also from rats 
to cats. Hence, we are now moving not only to 
yet another species, from insects and rats to cats, 
but also to another sensory modality, from olfac-
tory to visual cortex. Th is leads us a study on cats 
conducted by Haider et  al. (2010) who investi-
gated the cat’s primary visual cortex, where they 
measured IPSPs in interneurons and EPSPs in 
pyramidal cells in classical and non-classical 
receptive fi elds. 

 How about their results? Th ey observed that 
the sparseness, reliability, and temporal precision 
of spiking and membrane potential in the EPSPs 
of pyramidal neurons depended on the degree of 
the IPSP in the interneurons:  the higher the 
degree of inhibition and thus the interneurons’ 
IPSP, the more sparse, selective, and temporally 

 
Degree of temporal and spatial
sparsening of neural activity

Degree of GABA-ergic
mediated neural inhibition 

   Figure 2-2     Neural inhibition and sparse coding.  Th e fi gure shows the relationship between the degree 
of GABAergic-mediated neural inhibition and the degree of sparse coding in both temporal and spatial 
domains. Th e higher the degree of GABAergic-mediated neural inhibition, the higher the degree of 
spatial and temporal sparsening of neural activity.   



ENCODING EXTRINSIC STIMULI34

precise the EPSP in the pyramidal neurons. 
Th ese fi ndings further support our earlier devel-
oped neuronal hypothesis in yet another species, 
the cat, that the degree of neural inhibition pre-
disposes the degree of subsequent neural excita-
tion and its associated degree of sparseness. 

 Th is was observed in the classical recep-
tive fi eld. How about the relationship between 
EPSPs and IPSPs in the non-classical recep-
tive fi eld? Interestingly, the interneurons’ IPSP 
increased nonlinearly during stimulation in the 

nonclassical receptive fi eld. Most important, this 
was accompanied by signifi cant increases in the 
pyramidal cells’ EPSP’s selectivity, sparseness, 
and temporal precision. 

 Accordingly, unlike stimuli in the classi-
cal receptive fi eld, stimulation in the nonclas-
sical receptive fi eld activates a higher number 
of interneurons. Th is, in turn, increases neural 
inhibition in a nonlinear way with subsequent 
increase in the degree of sparseness of pyramidal 
neural excitation (Fig. 2-3).                 
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   Figure  2-3a     Neural excitation and inhibition in visual cortex.  Fast-spiking interneurons and 
thin-spike regular-spiking neurons become more active and less sparse during CRF + nCRF stimula-
tion. (a)  Intracellular responses of an electrophysiologically identifi ed FS interneuron (inset, shows 
sustained fi ring rate >300 Hz in response to current pulse) during ten trials of CRF stimulation (black). 
(b) CRF + nCRF stimulation (red) elicits larger responses, compared with the CRF confi guration (closed 
arrows). (c) PSTHs from 15 repeated trials of CRF (black) and CRF + nCRF presentations (grey ) reveal 
elevated PSTH peaks (closed arrows), and the appearance of new peaks (open arrow) during wide-fi eld 
 stimulation. FS interneuron population (n = 5 intracellular, n = 4 extracellular) signifi cantly decreased 
response sparseness (12%) with CRF + nCRF stimulation (S CRF  = 0.48 ± 0.007; S CRF + nCRF  = 0.43 ± 0.007; 
p < 0.01). Values are mean ± SEM. (d) Intracellular response of an RSTS neuron (inset, adapting fi ring 
pattern to current pulse, rate ~100 Hz, spike width at half height 0.25 ms) during fi ve trials of CRF 
stimulation (black). (e)  Response of same neuron to fi ve trials of CRF + nCRF stimulation (gray). 
Note increased action potential response (closed arrows) and addition of new responses (open arrow). 
( f) PSTH across 15 trials of CRF stimulation (black) and CRF + nCRF stimulation (grey) reveals ele-
vated PSTH peaks (closed arrow), along with addition of peaks (open arrows) during wide-fi eld stim-
ulation. Inset, RSTS neuron population (n = 12 intracellular, 3 juxtacellular) signifi cantly decreased 
sparseness (7% average decrease; S CRF  = 0.66 ± 0.006; S CRF + nCRF  = 0.62 ± 0.005; p < 0.01) during CRF + 
nCRF stimulation. Values are mean ± SEM.     (Reprinted with permission of Cell Press from Haider B, 
Krause MR, Duque A, Yu Y, Touryan J, Mazer JA, McCormick DA. Synaptic and network mechanisms of 
sparse and reliable visual cortical activity during nonclassical receptive fi eld stimulation.  Neuron . 2010 
Jan 14;65(1):107–21.)   
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    NEURONAL HYPOTHESIS IIA: NEURAL 
INHIBITION AND THE BRAIN’S ENTRANCE 
GATES IN SENSORY CORTEX   

 Th ese fi ndings further support our hypothesis 
that the degree of neural inhibition in interneu-
rons predicts and thus predisposes the degree of 
sparseness during subsequent neural excitation 
in pyramidal cells. Moreover, by distinguishing 
between classical and non-classical receptive 
fi elds, the relevance of non-linear increases in 
neural inhibition was observed. Th is suggests 
that non-linearity and neural inhibition are 
closely tied together in yet-unclear ways. 

 Do the same mechanism that is neural inhibi-
tion driving sparseness and non-linearity driv-
ing neural inhibition, also operate in sensory 
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   Figure 2-3b     Neural excitation and inhibition in visual cortex.  Temporal precision of spike responses 
in RS C  neurons increases with CRF + nCRF stimulation and is associated with narrowing of the under-
lying synaptic events. (a) Width of the autocovariance function of a representative RS C  neuron’s PSTH 
is signifi cantly (35%) narrower with combined CRF + nCRF stimulation (grey) compared with CRF 
alone stimulation (black). Across the population of RS C  neurons (n = 13), there was a signifi cant nar-
rowing (by 33%) of the average event in the PSTH with combined CRF + nCRF stimulation (181.6 ± 
15.6 ms, grey bar) compared with CRF alone stimulation (272.4 ± 23.9 ms, black bar; p < 0.01). Values 
are mean ± SEM. (b) Spike-triggered average of Vm in these same neurons reveals a narrower synaptic 
potential underlying spikes, and more rapid prespike trajectory (from –179 ms to threshold) with CRF + 
nCRF stimulation compared with CRF alone stimulation (dV/dt  CRF   =  0.062  ± 0.002 mV/ms; dV/dt 
 CRF + nCRF  = 0.073 ± 0.002 mV/ms; p < 0.01). Traces aligned at spike threshold voltage before averaging 
(0 on ordinate). Inset shows that spike threshold is also signifi cantly lower with wide-fi eld stimula-
tion (Th reshold  CRF + nCRF  =  –55.1  ± 0.2 mV; Th reshold  CRF  =  –54.2  ± 0.2 mV; p < 0.01). All data for 
n = 13 RS C  neurons (mean ± SEM).     (Reprinted with permission of Cell Press from Haider B, Krause 
MR, Duque A, Yu Y, Touryan J, Mazer JA, McCormick DA. Synaptic and network mechanisms of sparse 
and reliable visual cortical activity during  nonclassical receptive fi eld stimulation.  Neuron . 2010 Jan 
14;65(1):107–21.)   

cortices other than the visual cortex? Th e authors 
of our study, Haider et al. (2010, pp. 119), remark 
that the same principles can also be observed 
in somatosensory and auditory cortex. Hence 
one may propose that the suggested relation-
ship between non-linearity, degree of neural 
inhibition, and sparseness of neural excitation 
also applies to other sensory cortex (and pos-
sibly also to the cortex in general including the 
non-sensory cortical regions which however 
remains to be demonstrated). 

 How can we better illustrate the central role 
of neural inhibition for sparse coding? For that 
I turn to a metaphorical example of the zoo and 
compare it (fi guratively) to our various fi nd-
ings in diff erent species and sensory cortices. 
Our imaginary (and fi gurative) zoo of diff erent 
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species and distinct sensory cortices seems to be 
framed and surrounded by a fence, correspond-
ing to neural inhibition. While from the outside 
of the fence there seem to be many gates, that 
is, channels for neural excitation, only a few of 
these seem to lead to and reach the inside of the 
zoo. Once the outside gates of neural excitation 
are open, another adjacent subsequent gate, 
the inhibition gate, seems to slide in and close 
the entrance to the inside of the zoo. Hence, 
unlike  in a real zoo, visitors bringing in excita-
tion are sparsened right at the entrance gates in 
our imaginary zoo of diff erent species and sen-
sory cortices. 

 Why is all that important? First and foremost 
it describes the neuronal mechanisms includ-
ing the central role of neural inhibition which 

predisposes sparse coding. Th is seems to hold 
across diff erent species and diff erent sensory 
cortices as the entrance gates of our brain and 
its neural processing. We can thus see that there 
is high selectivity with a high degree of sparse 
coding already at work at the entrance gates of 
our brain.  

    NEURONAL HYPOTHESIS IIB: NEURAL 
INHIBITION AND CONSCIOUSNESS   

 Th is is how the brain functions, or better, is 
predisposed to function. What if, for instance, 
the brain’s “entrance doors,” its sensory corti-
ces, break down or shut down? In that case, one 
would expect abnormal alterations in the degree 
of neural inhibition that may be either too low or 
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excitatory-inhibitory interactions during wide-fi eld visual stimulation. (a) Local cortical networks com-
posed of excitatory (white) and inhibitory (black) neurons form interconnections with each other, with 
the great majority of connectivity occurring among excitatory neurons. During CRF stimulation, both 
excitatory and inhibitory cell types are driven, with RS C  neurons and FS neurons generating elevated 
and temporally varying responses (traces). (b) Upon simultaneous engagement of the CRF and nCRF, 
inhibitory interneurons become strongly activated by increased excitatory drive arising from a larger 
spatial distribution of inputs. Th e increased depolarization and enhanced synaptic fl uctuations in inter-
neurons are nonlinearly transformed into greater numbers of spikes compared with excitatory neurons 
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too high, which should then, if our hypothesis is 
correct, entail abnormal changes in the degree of 
sparse coding. 

 Is there any empirical evidence for such 
scenarios? Despite rather patchy empirical evi-
dence, the psychiatric disorders of schizophre-
nia and depression may be considered examples 
of abnormal entrance gates like sensory cortex. 
Schizophrenia can be characterized by various 
abnormalities in the early sensory processing in 
sensory cortex like auditory and visual cortex 
with seemingly decreased degrees of GABA-ergic 
mediated neural inhibition (see Chapters 17 and 
22 for details). Th is signifi es decreased levels of 
neural inhibition which, as I postulate, leads to 
abnormally low degrees of sparse coding in the 
brain of these patients (see Chapters 22 and 23 
for details). 

 How about the opposite, abnormal shut-down 
rather than abnormal opening of the brain’s 
entrance doors, its sensory cortices? Th is may 
be the case in major depressive disorder where 
patients feel disconnected from the environment 
and show abnormally negative emotions. Th e 
imaging fi ndings show indeed abnormalities in 
both sensory cortices and GABA-ergic-mediated 
neural inhibition (see Chapters  17 and 27 for 
details). Whether that leads to abnormally high 
degrees of sparse coding remains open at this 
point however. 

 Since the neural abnormalities in psychiatric 
disorders like depression and schizophrenia, are 
associated with phenomenal abnormalities, i.e., 
abnormal contents in consciousness, I describe 
them in full detail in volume II. Th is makes it 
clear, that there here described neuronal mecha-
nisms of global and unspecifi c neural inhibition, 
non-linearity, and sparseness of neural excita-
tion are not only neuronally relevant but also 
phenomenally that is for consciousness. 

 However to fully grasp their phenomenal rel-
evance, we fi rst need to understand their neuro-
nal relevance and thus the respective neuronal 
mechanisms underlying sparse coding in full 
detail by themselves, that is independent of con-
sciousness. Th is and especially the relationship 
between diff erence-based coding and sparse 
coding shall be discussed in the fi nal sections of 
this chapter.  

    NEURONAL HYPOTHESIS IIIA: 
DIFFERENCE-BASED CODING 
AND SPARSE CODING   

 Th us far, I  have pointed out the central role 
of neural inhibition in driving sparse coding. 
However, it is not inhibition alone that pro-
motes sparseness. Instead, the specifi c spatial 
and temporal relationship of neural inhibition 
to neural excitation may be central in determin-
ing the degree of sparseness. Th is needs to be 
pointed out in further detail. What is encoded 
in the resulting distributed and sparse spatio-
temporal neural activity may correspond to the 
integral of the spatiotemporal diff erence value 
between neural inhibition and excitation, or the 
excitation-inhibition balance (EIB). And it is 
this integral, the spatiotemporal diff erence value 
between neural inhibition and excitation, that 
may be the crucial variable in determining the 
degree of sparse coding and its reciprocal bal-
ance with the degree of dense or local coding 
(see Chapter 1 for that balance). 

 Let me be more specifi c. We recall that Poo 
and Isaacson (2009) showed that the EPSCs 
precede the IPSCs by around 9–10 ms. Th e 
larger this time window between EPSCs and 
IPSCs, the larger the probability of excitation 
being preserved and channelled through the 
gates or front of the interneurons and their neu-
ral inhibition. Th e degree of subsequent excita-
tion and action potentials thus depends on the 
length of the time window between excitation 
and inhibition. 

 Occurrence and distribution of neural exci-
tation and action potentials must be considered 
a function of the temporal diff erence or integral 
between neural excitation and inhibition:  Th e 
degree of sparseness of neural excitation thus 
depends on the degree of the temporal diff erence 
between neural excitation and inhibition. Th is 
means that sparse recruitment of excitation and 
action potentials presupposes diff erence-based 
coding temporally. An analogous case can be 
made with regard to the spatial distribution 
of inhibition and excitation with the resulting 
sparse excitation and action potentials of only a 
few neurons presupposing diff erence-based cod-
ing spatially.  
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    NEURONAL HYPOTHESIS IIIB: NEURAL 
INHIBITION AND SPARSE CODING   

 How exactly is neural inhibition involved in 
constituting spatial and temporal diff erences in 
neural activity? Let’s conduct another thought 
experiment. Imagine the complete absence of 
any interneurons, and consecutively of neural 
inhibition, altogether. Th ere is nothing but pyra-
midal cells and neural excitation. In such a case, 
there would be no neural inhibition, meaning 
that no neural diff erence between excitation and 
inhibition can be yielded at all. 

 Since sparse coding is based on and (neces-
sarily and unavoidably; see earlier) presupposes 
neural inhibition, both spatial and temporal 
sparsening of neural excitation would remain 
impossible in such a case. Th is means that 
sparse coding and its many-to-one relationship 
between stimuli and neuron would be replaced 
by another code as, for instance, local or dense 
coding, that is, one-to-one or one-to-many rela-
tionships (see Chapter 1 for details). 

 Most important, in such a case, diff erence- 
based coding would remain impossible, too. 
Neural diff erences both spatially and tem-
porally could simply no longer be generated. 
Diff erence-based coding would consecutively be 
replaced by stimulus-based coding, the encoding 
of the single stimulus itself independent of other 
stimuli (as described in the introduction). 

 Taken together, I postulate that neural inhi-
bition as mediated by interneurons is a neces-
sary (but nonsuffi  cient) condition, that is, a 
neural predisposition (see introduction in vol-
ume I  and especially the introduction in vol-
ume II for an exact defi nition), of (possible) 
diff erence-based coding and consecutively of 
sparse coding. In other words, the implementa-
tion and realization of neural inhibition into the 
brain’s neural processing makes the introduction 
of diff erence-based coding as the brain’s encod-
ing strategy almost necessary and thus unavoid-
able. Shortly put, neural inhibition predisposes 
possible diff erence-based coding rather than 
stimulus-based coding. 

 However, neural inhibition by itself may not 
be suffi  cient to yield a neuronal diff erence and 
thus diff erence-based coding. For that it needs 

(on both logical and natural grounds) an accom-
panying neural excitation. As the aforemen-
tioned empirical fi ndings show, it is the diff erence 
between neural inhibition and excitation that 
determines the degree of subsequent sparsening 
of neural activity. Th erefore, one may regard the 
relation between neural inhibition and excitation, 
the excitation-inhibition balance (EIB), as suffi  -
cient neural condition of both diff erence-based 
coding and sparse coding (Fig. 2-4a).      

 One may consequently hypothesize that the 
EIB predicts the degree of sparse coding during 
stimulus-induced activity in single neurons and 
a population of neurons: the larger the diff erence 
between neural inhibition and excitation coded 
in the EIB, the higher the degree of sparseness, 
that is, sparse coding, in the subsequent neural 
activity of single cells and a population of neu-
rons. While this hypothesis is strongly supported 
by the fi ndings discussed earlier, it neverthe-
less warrants stronger empirical support with 
regard to especially the neural diff erence values 
encoded in the EIB (see later for details) during 
sparse coding.  

    NEURONAL HYPOTHESIS IIIC: NEURAL 
INHIBITION AND TEMPORAL DIFFERENCES   

 So far, I have hypothesized that the conjunction 
of neural inhibition and excitation constitutes 
diff erences in neural activity that can thus be 
characterized by diff erence-based coding and 
sparse coding. How exactly are the alleged dif-
ferences constituted? One central dimension is 
the temporal one. 

 Wehr and Zador (2003) conducted single-cell 
recording in vivo in single neurons of rats’ audi-
tory cortex while exposing them to auditory 
stimuli. As in the earlier mentioned study in 
cats, they too observed a precise and stereotyped 
temporal sequence of neural inhibition and exci-
tation: there was a rapid initial excitatory input 
followed by temporally slightly delayed neural 
inhibition, which in turn truncated and thus 
sparsened the spiking rate related to neural exci-
tation within 1–4 ms. Th is means that the onset 
of the interneurons’ IPSPs is slightly delayed 
when compared to the one of the pyramidal cells’ 
EPSPs (see Buzsaki 2006, 62–66 for details). 
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 Th ese data suggest that neural inhibition is 
central for the timing of neural excitation, that 
is, its temporal precision (see also Haider et al. 
2010 as earlier). Th is is possible on the basis of an 
exact temporal sequence between neural excita-
tion and inhibition, an “excitation-inhibition 
sequence,” as Priebe and Ferster (2008, 493–494) 
say, Such “excitation-inhibition sequence,” may 
be evoked in all sensory cortex though its exact 
timing, i.e., the temporal delay between the ini-
tial neural excitation and the subsequent neural 
inhibition, may be diff erent in the diff erent sen-
sory cortices. 

 Let us describe the functional implications 
of the “excitation-inhibition sequence,” in more 
detail. Th e temporal delay in the onset of neu-
ral inhibition provides a temporal window of 
opportunity for neural excitation to spread to 
diff erent cells and other population of neurons 
(see Buzsaki 2006, 62–66). Th at spread of neu-
ral excitation may however come to an end with 
the onset of neural inhibition which sparsens the 
already initiated neural excitation. 

 Accordingly, the temporal diff erence between 
the onset of neural excitation and the consecu-
tive one of neural inhibition may determine the 

degree of possible temporal and spatial sparsen-
ing of neural excitation, that is, APs: the longer 
that temporal diff erence, the more likely subse-
quent neural excitation and APs can be tempo-
rally and spatially sparsened.  

    NEURONAL HYPOTHESIS IIID: 
NON-LINEARITY AND CONSCIOUSNESS   

 Why is all that important? We will see later, in 
Volume II, that the degree of neural diff erences 
encoded into neural activity may be central in 
associating the purely neuronal stimulus-induced 
activity with consciousness: the larger the spatial 
and temporal diff erences encoded into neural 
activity, the more likely the respective stimu-
lus and its associated stimulus-induced activ-
ity can be associated with consciousness (see 
Chapters 28 and 29). Since I here demonstrated 
the degree of diff erence-based coding to predis-
pose the possible degree of sparse coding, the 
latter may also be relevant for consciousness as 
we will be discussed in volume II. 

 Let me explicate the relationship to conscious-
ness in slightly more detail. Th e dependence of 
the degree of sparse coding on the amount of the 
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   Figure 2-4a    Excitation-Inhibition balance and sparse coding. Th e fi gure shows the more phasically 
operating glutamatergic-mediated neural excitation in the  left  upper  part as indicated by the  bars  (as if 
it would operate independently of neural inhibition). Below,  lower left  , is the more tonically operating 
neural inhibition (as if it would operate independently of neural excitation). What is actually encoded 
into neural activity is the diff erence between neural excitation and inhibition and thus what is called the 
“excitation-inhibition balance” ( middle left /middle ). Th is is refl ected on the  right , where the observable 
neural activity results from the integral or diff erence value between neural excitation and inhibition, 
refl ecting the sparsening of glutamatergic-mediated neural excitation by neural inhibition.   
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temporal diff erence between neural excitation 
and inhibition further underlines the depen-
dence of sparse coding on diff erence-based cod-
ing, as postulated above. In other words, the 
degree of the temporal diff erence between neu-
ral excitation and inhibition may be proposed 
to predict the degree of subsequent spatial and 
temporal sparsening. 

 Th ereby, a certain degree of temporal diff er-
ence between neural excitation and inhibition 
may set in motion a non-linear increase in the 
degree of sparsening of the neural excitation. 
Hence diff erence-based coding may be closely 
aligned with non-linear mechanisms and their 
sparsening of neural activity, that is sparse cod-
ing (see Fig.  2-4b, c). Th is as well as the exact 
neural mechanisms of such non-linear increase 
in the degree of sparsening remain to be shown 
in the future, however.      

 We will see later in volume II that such 
linkage between diff erence-based coding and 
non-linearity may prove essential in allowing to 
associate a phenomenal state, that is conscious-
ness, to a purely neuronal state as for instance 
during stimulus-induced activity. Accordingly, 
the apparently close and seemingly inevitable 
relationship between diff erence-based coding, 
non-linearity, and sparse coding may be centrally 
involved in making possible consciousness. 

 Th is linkage may, for instance, be abnor-
mally altered in patients in a vegetative state 
(VS). Th ese patients may show reduced degrees 
of diff erence-based coding, which may make any 
non-linear increase in the degree of sparse cod-
ing impossible. And that in turn may prevent 
the association of consciousness with the other-
wise purely neuronal stimulus-induced activity 
(see Chapters  28 and 29 in Volume II). In short, 
the linkage between diff erence-based coding, 
non-linearity, and sparse coding may be central for 
inducing consciousness, as will be discussed in fur-
ther detail in Volume II (see Chapters 28 and 29).  

    NEURONAL HYPOTHESIS IVA: DIFFERENCE-
BASED CODING OF GABA AND GLUTAMATE   

 One may want to go even one step further, how-
ever. Buzsaki et  al. (2007) show that both neural 

inhibition and excitation are mutually and consti-
tutively dependent on each other. On one hand, 
release of Na+ ions to induce depolarization will 
increase in glutamatergic neurons when GABA-A 
receptor-mediated neural inhibition is present; 
this leads ultimately to an increase in the degree of 
neural excitation. On the other hand, increase in 
GABA-A receptor-mediated neural inhibition leads 
to a decrease in depolarization in the excitatory 
neurons and hence decreases their overall degree of 
neural excitation. Th e same, however, in a converse 
way also holds for the GABAergic interneurons. 
Cl– infl ux will increase in GABAergic interneu-
rons in the presence of glutamatergic-mediated 
neural excitation. Th is makes, as Buzsaki et  al. 
(2007, pp.  776–777) argue, an isolated consider-
ation of neural inhibition and excitation and hence 
of GABA and glutamate impossible. 

 Why is such isolated consideration of neural 
inhibition and excitation impossible? I hypoth-
esize that this is due to the fact that the release 
of Na +  and Cl –  in glutamatergic and GABAergic 
neurons is encoded in mutual relationship and 
thus diff erence to each other. In short, I hypothe-
size diff erence-based coding of neural inhibition 
and excitation and thus of GABA and glutamate. 

 Th e assumption of diff erence-based coding of 
neural inhibition and excitation and consecutively 
of GABA and glutamate is strongly supported by 
the earlier described observation of their mutual 
dependence on each other. Most important, one 
may propose such interaction between GABA and 
glutamate, and thus between neural inhibition and 
excitation, to be non-linear rather than linear. If for 
instance the degree of neural excitation surpasses 
a certain level, neural inhibition will increase in 
a disproportionate, or non-linear way. Th is is, for 
instance, supported by the fi ndings of a dispropor-
tionate and non-linear increase of neural inhibition 
in relation to neural excitation in the rats’ somato-
sensory cortex (see Kapfer et al. 2007).  

    NEURONAL HYPOTHESIS IVB: 
EXCITATION-INHIBITION BALANCE 
AS DIFFERENCE-BASED SIGNAL   

 Taken together, this leads me to postulate that 
diff erence-based coding also applies to the 
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the stimulus

Stimulus

(c)

ms

41

Observed action potentials:
Single neurons in response to
the stimulus

Interneurons: GABA-ergic  
mediated neural inhibition 

Pyramidal cells: Glutamatergic-
mediated neural excitation 

   Figure 2-4b and c    ( b ) Neural inhibition and sparse coding in the spatial domain. Th e fi gure shows 
how neural activity is sparsened in the spatial domain by neural inhibition. Th e stimulus ( left  part ) 
activates three excitatory pyramidal neurons ( left -middle part ), which in turn are connected to multiple 
interneurons ( right-middle part ) that are excited by the former. However, the excitation of the inter-
neurons leads to increased neural inhibition and subsequently to the sparsening of the initially excited 
pyramidal neurons, only one of which remains active ( right part ). ( c ) Neural inhibition and sparse cod-
ing in the temporal domain. Th e fi gure illustrates the mechanisms shown in ( b ) in the temporal domain. 
Th e three glutamatergic excitatory pyramidal neurons are activated fi rst ( right part ), followed by the 
delayed recruitment and activation of the interneurons ( middle part ). Th is, in turn, sparsens the pyra-
midal cells’ activity to one cell subsequently, as depicted on the right.   
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biochemical level of GABA and glutamate 
and thus neural inhibition and excitation: 
glutamatergic-mediated neural excitation can 
only be (and is thus necessarily and unavoidably, 
i.e., by default) constituted relative to the level of 
GABAergic-mediated neural inhibition; the same 
obviously holds true for GABAergic-mediated 
neural inhibition that is encoded relative to 
glutamate-ergic mediated neural excitation. 
What does this entail for the characterization 
of the excitation-inhibition balance (EIB)? Th e 
excitation-inhibition balance (EIB) is based on 
the encoding of two relative diff erences, the one 
of GABA-ergic mediated neural inhibition rela-
tive to glutamatergic-mediated neural excita-
tion and the latter being encoded relative to the 
former. In short, the excitation-inhibition bal-
ance is based on diff erence-based coding. Th is 
means that, for instance, any neural inhibition 
we observe always already refl ects the result of 
prior encoding of some degree of neural excita-
tion against or relative to neural inhibition. 

 Accordingly, what we as observers describe as 
“neural inhibition” or “excitation” must be taken 
in a relative rather than an absolute sense, i.e., as 
the result of prior diff erence-based coding. Th is 
implies that what we describe as EIB does not 
refl ect the mere subtraction or addition between 
neural inhibition and excitation in an absolute 
sense. Instead, the EIB signifi es an integrated 
and thus relative value, i.e., a diff erence-based 
value, where the deciphering of absolute degrees 
of neural inhibition and excitation remains 
impossible by default.  

    NEURO-METAPHORICAL 
EXCURSION:  YIN  AND  YANG  AND THE 
EXCITATION-INHIBITION BALANCE 

   Let me conclude by comparing the relationship 
between neural excitation and inhibition to the 
famous relationship between the life forces of  yin  
and  yang  in Chinese philosophy. Yin and yang 
always go together, which mirrors the situation 
with neural inhibition and excitation. And in the 
same way that yin and yang stand opposite each 
other do neural excitation and inhibition show 
equally contrasting diff erences. As in the case of 
yin and yang, the contrast is as stark as black and 

white. Whether the black corresponds to neural 
inhibition and the white to neural excitation, 
I leave for the reader to decide. 

 Most important, in the same way as yin and 
yang are intrinsically connected, neural inhi-
bition and excitation seem to be intrinsically 
linked to each other; one cannot do without the 
other. In the same way as yin would not exist 
without yang, neural inhibition would remain 
impossible without prior neural excitation. If 
there were no prior neural excitation, the inhibi-
tory interneurons would not be excited and 
could consequently not exert their inhibitory 
eff ects. Conversely, the subsequent sparsened 
neural excitation would remain impossible with-
out the preceding neural inhibition. Hence the 
mutual dependence between neural excitation 
and inhibition signifi es an intrinsic relationship 
which mirrors the one between yin and yang. 

 Th ere is one important diff erence, however. Yin 
and yang occupy the same amount of space with 
both sharing equally the available space. Th is is 
diff erent in the case of neural inhibition and exci-
tation. As shown by the reported data, neural inhi-
bition is much more widespread temporally and 
distributed spatially than neural excitation, which 
is temporally more precise and spatially more 
localized. Hence, literally and fi guratively, neural 
excitation takes less space (and less time since it 
occurs in a shorter interval) than neural inhibition. 

 Neural excitation and inhibition in the EIB 
are thus not as equally well balanced spatially 
and temporally as yin and yang. Th is diff erence, 
however, is crucial for yielding diff erence-based 
coding and consequently sparse coding. If, in 
contrast, neural inhibition and excitation would 
correspond completely to yin and yang and 
would be as equally balanced both spatially and 
temporally, diff erence-based coding and sparse 
coding would probably remain impossible. 
Hence, sometimes it may be rather benefi cial for 
us, at least for our brain, to not follow the exam-
ple of yin and yang.  

    Open Questions   

 Th is chapter focused on neural inhibition in rela-
tion to sparse coding on the cellular and popula-
tion level. One issue that was left  open was how 
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neural inhibition is related to the encoding of 
the stimuli’s natural statistics; for example, their 
statistical frequency distribution across time and 
space. Encoding of the stimuli’s natural statistics 
presupposes the encoding of spatial and tempo-
ral diff erences, that is, diff erence-based coding. 
 Based on the fi ndings, one may now postulate 
that neural inhibition is central for inducing and 
generating neural diff erences. If so, one would 
postulate that these neural diff erences in spatial 
and temporal regard conform more or less to the 
statistical frequency distribution of the stimuli 
across diff erent discrete points in physical time 
and space. 
 Th e spatiotemporal pattern of, for instance, neu-
ral inhibition (in relation to neural excitation) 
should then mirror the spatiotemporal pattern 
of the statistical frequency distribution, or the 
natural statistics, of the stimuli. In other words, 
the neuronal statistics of neural inhibition (in 
relation to neural excitation) including its spatio-
temporal pattern should conform to the stimuli’s 
natural statistics and their spatiotemporal pat-
tern. While this is a rather daring hypothesis, it 
is at least experimentally amenable and testable. 
 Besides the empirical relevance, there is a 
philosophical-epistemological implication to 
be considered. I postulate that neural inhibition 
does generate a particular spatiotemporal pattern 
that allows to encode the stimuli’s spatiotemporal 
pattern. If so, the diff erence between both spatio-
temporal patterns, the one of the stimuli and the 
other of neural inhibition, may signal the diff er-
ence between the way we think of the world (as 

empirically related to the spatiotemporal pattern 
of neural inhibition) and the world itself as it is 
independent of our cognition (as related to the 
spatiotemporal pattern of the stimuli). Th at, how-
ever, means that we may never be able to think of 
and perceive the world in a completely objective 
way; i.e., independently of our own brain’s spatio-
temporal pattern of neural inhibition. 
 Would thus a brain without any neural inhibi-
tion allow us to cognize the world as it is by itself, 
that is independent of our cognition, in a purely 
objective way? Th e answer to that question would 
be  yes  if conceived in a purely logical way, since 
the absence of neural inhibition would remove 
the obstacle standing in the way of a purely 
objective cognition of the world. 
 However, empirical and epistemological real-
ity may not conform to logical reality. Why? In 
the absence of neural inhibition, there would be 
no longer diff erence-based coding, but rather 
stimulus-based coding. Th at however, as detailed 
in Volume II, would make consciousness as the 
necessary basis for any possible cognition and 
knowledge of the world impossible. 
 Accordingly, the absence of consciousness entails 
the absence of cognition and knowledge of the 
world. In the case of absent neural inhibition, we 
would thus no longer cognize and know anything 
at all, so that the question of objective cognition 
and knowledge could not be raised at all. Th is 
however dents deeply into basic epistemologi-
cal issues, which will not be discussed further 
in either of these volumes (but see Northoff  
2004, 2011).                



44

    Summary   

 So far, I  have discussed sparse coding as the 
brain’s coding strategy on the cellular and popu-
lation level, where it describes the relationship 
between stimuli and neurons as well as between 
neurons and neurons. Th is raises the question of 
whether sparse coding also applies to the regional 
level of neural activity—the relationship between 
stimulus and regions—as well as to the rela-
tionship between diff erent regions, the region–
region interaction. I fi rst show that sparse coding 
applies, not only to the visual and the olfactory 
cortex, but also to other sensory and non-sensory 
regions. Th e occurrence of sparse coding in cellu-
lar and population activity throughout the whole 
brain leads me to hypothesize that sparse cod-
ing also holds on the regional level of the brain. 
My hypothesis will be illustrated empirically by 
recent fi ndings from imaging studies on percep-
tual decision-making as a paradigmatic example. 
Th ese studies show that already lower-order 
sensory regions like the fusiform face area and 
closely related neighboring regions encode dif-
ferences between diff erent stimuli into their neu-
ral activity rather than the stimuli themselves. 
Th is entails a many-to-one relationship between 
stimuli and region, which is indicative of sparse 
coding on a regional level of neural activity. 
Furthermore, the data demonstrate that neural 
activity in higher-order cognitive regions like 
the dorsolateral and the ventromedial prefron-
tal cortex result from the integral, or diff erence 
value, between the neural activities of diff erent 
lower-order sensory regions. Th is means also 
that diff erent sensory regions’ neural activi-
ties are encoded in a sparse way into the neural 
activity of higher-order cognitive regions. Taken 
together, these fi ndings clearly indicate that both 

stimuli and lower-order regions’ activities are 
encoded into lower-order; such as sensory, and 
higher-order; such as cognitive, regions’ neu-
ral activities in a diff erence-based and conse-
quently in a sparse way. Th erefore, these fi ndings, 
although limited to the paradigmatic example 
of perceptual decision-making, provide direct 
empirical evidence in favor of diff erence-based 
coding and sparse coding on the regional level of 
neural activity.    

    Key Concepts and Topics Covered   

 Sparse coding, level of regions, perceptual 
decision-making, lower-order sensory regions, 
diff erence-based coding, higher-order cogni-
tive regions, amplifi cation and condensation 
hypothesis   

    NEUROEMPIRICAL BACKGROUND IA: SPARSE 
CODING IN SENSORY CORTEX   

 Th e previous chapters showed that sparse coding 
holds on the level of the neural activity of single 
neurons and a population of neurons. Th is was 
demonstrated mainly for the visual cortex and 
the olfactory cortex. However, such sparse cod-
ing remains to be shown for neurons in regions 
other than sensory regions like the prefrontal 
cortex. 

 One would therefore postulate that sparse 
coding refl ects a principal, basic encoding strat-
egy of the brain’s neuronal activity in response 
to stimuli from the environment. Before we can 
make such a strong statement, we need to show 
that sparse coding on the cellular and population 

           CHAPTER 3 
 Sparse Coding on a Regional Level       
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level of neural activity also holds in regions other 
than the olfactory and visual cortex—for which 
there is indeed abundant empirical evidence. 

 As detailed in the preceding chapters, several 
studies provide strong evidence of sparse coding 
in primary visual cortex (see Brenner et al. 2000; 
Vinje and Gallant 2000, 2002; Wolfe et al. 2010; 
Willmore et al. 2011; see Chapter 1 for details). 
Beyond the primary visual cortex, higher regions 
in the visual system such as the inferotemporal 
cortex do also seem to show sparse coding (Young 
and Yamane 1992; see also Rolls and Tovee 1995). 

 Besides the visual system, sparse coding 
has also been demonstrated in the cellular and 
population activity of auditory cortex and the 
sensorimotor cortex (see Simmons and van 
Stevenivck 2010; Jadhav et al. 2009; Wolfe et al. 
2010; Terashima and Hosoya 2009; Greene et al. 
2009; Crochet et al. 2011; Rolls and Treves 2011). 
Th is suggests that sparse coding is not limited to 
visual cortex but seems to be the encoding strat-
egy of how the sensory cortex in general encodes 
stimuli into neural activity. 

 Let’s go into a little more detail with regard to 
sparse coding in the auditory cortex. DeWeese 
et al. (2003) demonstrated that neurons in audi-
tory cortex generate only a single spike during 
exposure to a sound that, due to its complex 
physical features, should instead elicit multiple 
spikes. Th e overall probability of spiking is con-
sequently rather low in auditory cortical cells, 
thus refl ecting sparse encoding of the sound, 
with a many-to-one relationship between the 
sounds’ physical features and the fi ring neurons. 

 Th is is consistent with the results obtained by 
Hromádka et  al. (2008), who investigated rep-
resentations of sounds in the nonanesthetized 
auditory cortex of awake rats. Th ey observed 
that auditory stimuli elicit high fi ring rates in less 
than 5% of neurons at any instant; this refl ects 
sparse scheme rather than local or dense coding 
of the stimuli in auditory cortical activity.  

    NEUROEMPIRICAL BACKGROUND IB: 
ENCODING OF NATURAL STATISTICS IN 
SENSORY CORTEX   

 How about the encoding of the statistical fre-
quency distribution of the auditory stimuli 

into single cells and the activity of populations 
of neurons in auditory cortex? As in visual and 
olfactory cortex, the encoding of the stimuli’s 
statistical frequency distribution across diff erent 
discrete points in physical time and space—that 
is, their natural statistics—also holds true for the 
auditory cortex. Using natural sounds as experi-
mental stimuli, Rieke et  al. (1995) showed that 
the frog’s neurons in the early stages of auditory 
processing encode the statistical structure of the 
natural vocalizations of the animal rather than 
the single stimuli and their respective physical 
features. 

 Correspondingly, naturalistic stimuli induced 
a higher rate of information transmission in the 
cat’s auditory midbrain neurons when compared 
to non-naturalistic ones (Schreiner and Langner 
1997). Since naturalistic stimuli occur more 
oft en, these results presuppose the encoding of 
the stimuli’s frequency distribution across diff er-
ent discrete points in physical time rather, than 
the stimuli themselves at their discrete point in 
physical time. If the auditory cortical neurons 
do indeed encode the stimuli’s statistical fre-
quency distribution, one would expect changes 
in the neurons’ activities when being exposed to 
changes in the stimuli’s frequency distribution. 
Th is has indeed been observed in a simulation 
study by Lewicki (2002). 

 Lewicki showed that the activity of auditory 
cortical neurons adapts to diff erent auditory 
environments, as tested for by two diff erent sets of 
stimuli: animal vocalizations and non-biological 
environmental sounds (see also Olshausen and 
O’Connor 2002 for a commentary):  increased 
frequencies in the presentation of both biological 
animal vocalization and non-biological environ-
mental sounds induced increased fi ring rates in 
the simulation model. Th is strongly suggests that 
the auditory cortical neurons’ encoding is based 
on the stimuli’s statistical frequency distribu-
tion rather than the stimuli themselves and their 
respective biological or non-biological features. 

 Taken together, these data suggest that the 
auditory cortical neurons’ activities are primarily 
tuned to, and thus encode, the stimuli’s statisti-
cal frequency distribution rather than the stimuli 
themselves and their respective physical features. 
Th at, though, as demonstrated in Chapters 1 and 
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2, is possible only by presupposing the encoding 
of spatial and temporal diff erences between dif-
ferent stimuli and their respective, diff erent, dis-
crete points in physical time and space. 

 Accordingly, as in visual and olfactory cortex, 
there is strong empirical support for the claim 
that diff erence-based coding and sparse coding 
hold true in auditory cortex, too. Th is makes it 
rather likely that the remaining sensory cortices’ 
neural activities, like the one in somatosensory 
cortex (see Jadhav et al. 2009), are also encoded 
in a diff erence-based and thus sparse way.  

    NEUROEMPIRICAL BACKGROUND IC: SPARSE 
CODING IN OTHER NON-SENSORY REGIONS OF 
THE BRAIN   

 Does sparse coding apply to regions other than 
the sensory cortex? Sparse coding has indeed 
been shown for non-sensory regions like the 
motor cortex. For instance, specifi c neurons 
in layer 6 of the motor cortex in rabbits gener-
ate only one single spike during locomotion 
(Beloozerova et al. 2003). Moreover, stimulation 
of single motor-cortical neurons in rats may be 
suffi  cient to generate movements as complex as 
whisker movements (Brecht et  al. 2004). Even 
the bird’s rapid learning of a song that requires 
complex movements is closely tied to rather 
sparse neural activity patterns in the bird’s pre-
motor cortex (see Fiete et  al. 2004). Th is brief 
(rather sparse!) overview already suggests that 
neurons and populations of neurons in motor 
and premotor cortex may encode movements 
and actions into their neural activity in a rather 
sparse way when compared to the various and 
complex physical features of the respective out-
put, the actual movement or action. 

 How about sparse coding in regions other 
than sensory and motor cortex? Beyond the 
sensory and motor cortex, sparse coding has 
also been demonstrated in the hippocampus. 
Th is is suggested by observations in the rat and 
macaque hippocampus and medial temporal 
lobe that show rather low overall fi ring rates 
during stimulation; functionally, such sparse 
pattern in the hippocampus has been proposed 
to be related to the observation of face-specifi c 
neurons (Quiroga et al. 2007, see also Freiwald 

et al. 2009). Finally, a study by Bach et al. (2011) 
showed that neural activity in an area adjacent 
to the hippocampus, the amygdala, also shows 
a rather sparse neural activity pattern during 
fear-conditioning (see Bach et al. 2011; see also 
Rolls and Treves 2011 for a general overview). 

 Th ough tentative, these data suggest that 
sparse coding holds true for cellular and popu-
lation levels of neural activity in regions other 
than the sensory cortex, like the motor and pre-
motor cortex, as well as the hippocampus and 
amygdala in the medial temporal lobe. Th is sug-
gests that sparse coding may not be specifi c to 
the sensory cortex but may also apply to other 
regions in the brain. If this can be demonstrated 
in the future, one may consider sparse coding 
as the basic and principal encoding strategy the 
brain applies to encode sensory input and motor 
output into neural activity on a cellular and a 
population level.  

    NEURONAL HYPOTHESIS IA: 
DIFFERENCE-BASED CODING VERSUS 
ORIGIN-BASED CODING   

 We have to be careful, however. So far, we have 
considered predominantly only lower-order 
regions like sensory and motor regions. 
In contrast, no results for sparse coding in 
higher-order regions like the prefrontal cortex 
or the default-mode network (comprising cor-
tical midline structures and the lateral parietal 
cortex) are yet available. Th is is especially rel-
evant given that these higher-order regions nei-
ther receive direct sensory input like the sensory 
regions, nor mediate direct motor output like the 
motor regions. Instead, they receive input from 
other lower-order regions, like the sensory cor-
tex, while they send their outputs either to other 
higher-order regions or back to lower-order sen-
sory regions. Th is means that input and output 
are neuronal rather than sensory and motor. 

 What does this imply for sparse coding? If 
sparse coding holds true as the basic and prin-
cipal encoding strategy of the whole brain’s cel-
lular and population activity, one would expect 
that it applies to any kind of input or output, 
regardless of its origin as either sensory, motor, 
or neuronal. 
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 Th e neurons (and the population) would 
then encode the spatial and temporal diff er-
ences between diff erent inputs and outputs; i.e., 
diff erence-based coding, rather than the stimuli 
themselves and their respective origins; i.e., 
stimulus-based coding as “origin-based coding” 
if one wants to say so (see Chapter 25 in Volume 
II for an extensive discussion of such origin-based 
coding). Th e stimuli’s origin may thus be not 
encoded into neural activity in diff erence-based 
coding and consequently in sparse coding. 
Th erefore, diff erence-based coding and sparse 
coding can be applied to any kind of input and 
output throughout the whole brain regardless of 
their origin in either brain, body, or environment. 

 In sum, I  hypothesize that the encoding of 
neural activity on a cellular and a population 
level may be diff erence-based and thus sparse, 
rather than origin-based and thus dense or 
local. Th is makes possible the application of 
diff erence-based coding and consequently sparse 
coding throughout the whole brain and its vari-
ous regions, including lower- and higher-order 
regions and their diff erent inputs and outputs. 

 However, I  am well aware that the char-
acterization of diff erence-based coding and 
sparse coding in such a way—i.e., as indepen-
dent of the origin of the stimuli or inputs and 
outputs—is at best a tentative hypothesis at this 
point, while, at worst, it may be regarded as 
pure speculation. What is clear, though, is that 
any kind of “origin-based coding” that would 
amount to stimulus-based coding rather than 
diff erence-based coding is not supported by the 
data. Instead of origin-based coding, the data 
favor a statistically based coding, as is suggested 
by the encoding of the stimuli’s natural statistics 
in sparse coding.  

    NEURONAL HYPOTHESIS IB: EXPERIMENTAL 
TESTING AND RELEVANCE OF 
DIFFERENCE-BASED CODING   

 What can we do? Th is hypothesis can be tested 
experimentally in the future. One could, for 
instance, experimentally create the same spatial 
and temporal diff erences—the same statistical 
frequency distribution or natural statistics—
between stimuli of diff erent origins such as 

from the body or the environment. If my 
hypothesis holds, one would expect the degree 
of the neurons’ cellular neural activity to be a 
function of the degree of spatial and tempo-
ral diff erence between the stimuli, regardless 
of their origin. In other words, diff erences in 
neural activity levels should be related to dif-
ferences in the stimuli’s spatial and temporal 
diff erences rather than to diff erences in their 
origins. 

 Why is such diff erence- rather than origin- 
based encoding relevant? First and foremost, it 
is relevant in order to better understand how 
the brain works in a purely neuronal way on the 
cellular and population (and possibly also the 
regional) levels of neural activity. Th ere is thus 
what one may want to describe as “neuronal 
relevance.” 

 In addition, diff erence- rather than origin- 
based encoding of neural activity may also be 
relevant for consciousness and its contents, thus 
showing “phenomenal relevance”:  Contents 
in consciousness can originate either from the 
brain’s resting-state activity itself (as in dreams) 
or from the environment (as in the awake 
state). As we will see in Volume II, this can 
only be accounted for by diff erence- rather than 
origin-based encoding of neural activity (see 
Chapters 25 and 26).  

    NEURONAL HYPOTHESIS IIA: SPARSE 
CODING ON THE REGIONAL LEVEL OF 
NEURAL ACTIVITY   

 We demonstrated that sparse coding seems 
to hold on the cellular and population level of 
neural activity in diff erent regions of the brain. 
As such, sparse coding describes how the brain 
encodes stimuli into neural activity on the level 
of single neurons and a population of neurons. 
Th e neural activity level of the single neurons 
and the population of neurons in turn deter-
mines the neural activity of a single region in 
unknown ways (see Logothetis 2008). 

 Since the regional level of neural activity is 
based on the cellular and population level, one 
may propose that sparse coding may also apply 
to the encoding of neural activity on a regional 
level. In short, I hypothesize sparse coding and 
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its principles to also apply to the encoding of 
neural activity on a regional level of the brain. 

 How about empirical evidence for sparse 
coding on the regional level of neural activity? 
First, preliminary attempts have been under-
taken in this direction that aim to develop meth-
ods to modeling especially the encoding (as 
distinguished from decoding) of neural activity 
on the level of regions, as, for example, in fMRI 
(see Park et al. 2012a and 2012b; Kay et al. 2008, 
Lee et al. 2011, Guillen et al. 2011, and Naselaris 
et al. 2009, 2011, for fi rst steps in this direction, 
especially concerning the encoding of the stim-
uli’s natural statistics while they though do not 
explicitly test for sparse coding). A  particular 
focus of recent investigations is the brain’s resting 
state, whose activity and functional connectivity 
patterns across diff erent regions may indeed by 
determined by sparse coding (see Lloyd 2011, 
Wang et al. 2009). Since they concern the resting 
state activity and thus the brain’s intrinsic activ-
ity, we will describe these results in full detail in 
the second part of Chapter 6. 

 How can we extend and apply sparse coding 
from the microscopic level of cells and popula-
tions to the more macroscopic level of regions? 
Does, for instance, sparse coding hold for the 
activity pattern of area V1 of the visual cortex as 
a whole, as distinguished from other areas like 
V2-5 in visual cortex? 

 While these questions may not even arise 
for neuroscientists who are using single- and 
multiple-cell recordings, they may nevertheless 
be highly relevant for the neuroscientists who 
use imaging techniques like functional magnetic 
resonance imaging (fMRI) and positron emis-
sion tomography (PET), which visualize the 
neuronal activity of whole regions and networks. 
Hence, we now need to shift  our focus from the 
single and population neuron level to the level 
of single regions and their relationships when 
forming neural networks.  

    NEURONAL HYPOTHESIS IIB: 
PRINCIPLES OF SPARSE CODING   

 We may want to briefl y recall from the previ-
ous chapters what sparse coding is all about. 
Sparse coding is a neuronal hypothesis about the 

relationship between the neural activity of single 
cells or populations of cells on one hand, and 
the number of stimuli or inputs, including their 
physical features, on the other. Barlow (2001, 
2009), for instance, associates sparse coding with 
the neuronal activity pattern of the single cell 
across diff erent discrete points in physical time 
and space, which, he proposes, integrate several 
inputs by encoding them in a sparse way. 

 Th e term “sparse” means that the number of 
stimuli/inputs, including their respective physi-
cal features, exceeds the number of neurons that 
are recruited during the encoding of the former 
into the latter’s neural activity. Since this amounts 
to a many-to-one relationship between the num-
ber of stimuli and the number of activated neu-
rons, one can speak of a sparse encoding of the 
stimuli into the neurons’ neural activity. 

 Sparse coding in this sense must be distin-
guished from both dense and local coding. As 
detailed in Chapter 1, dense coding implies the 
reverse relationship—that is, one-to-many—
between the number of stimuli and the number 
of active/recruited neurons. Th is means that 
one stimulus “recruits” many neurons. Sparse 
coding is also diff erent from the local coding 
model, which assumes a one-to-one relationship 
between the number of stimuli and the number 
of recruited neurons; in this case, one specifi c 
stimulus activates one particular neuron. 

 How can we characterize sparse coding in 
further detail? It is important to note that the 
frame of reference of sparseness is the number of 
recruited or active neurons compared to the total 
number of (possibly available) neurons. One 
hallmark of sparse coding is that the total num-
ber of neurons far exceeds the number of active 
and recruited neurons (see also Barlow 2001, 
250). Th is accounts for the many-to-one rela-
tionship between the number of stimuli and the 
number of active neurons, which distinguishes 
sparse coding from both local and dense coding. 

 Sparse coding is consequently not only a neu-
ronal hypothesis about the relationship between 
stimuli and neurons, but also an assumption 
(most oft en rather tacit or implicit) about the 
relationship between active and inactive neu-
rons:  Th e higher the number of inactive neu-
rons relative to the number of active neurons at 
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a particular point in time, the higher the degree 
of sparseness.  

    NEURONAL HYPOTHESIS IIC: STIMULUS–
REGION RELATIONSHIP AND SPARSE CODING   

 How can we now apply these principles of sparse 
coding to the level of regions? Rather than relat-
ing the stimuli to single neurons and popula-
tions of neurons, we now have to consider the 
relationship between the number of stimuli and 
the number of recruited or active regions, as 
well as the one between the actually and possi-
bly activated regions. Taking both relationships, 
between stimulus–region and between actual 
region–possible region, may lead to diff erent 
scenarios and thus diff erent ways of encoding 
neural activity on a regional level. Th ese diff er-
ent encoding strategies shall briefl y be discussed 
in the following. 

 Diff erent stimuli may induce neural activity 
in one and the same region, leading to a many-to-
one relationship between stimuli and regions. 
Furthermore, the number of actual regions 
activated by the stimulus must remain small 
compared to the number of regions that could 
possibly be recruited. For instance, regions x and 
y may be recruited, while regions a, b, c, and d 
may remain inactive and thus silent. Hence, 
one would propose that only a sparse number 
of regions may be active, compared to the num-
ber of regions that could possibly be recruited 
by the stimulus. If both conditions are met—a 
many-to-one relationship between stimulus and 
regions and a low number of activated regions 
relative to all possible regions—one may speak 
of sparse coding as holding true on the regional 
level of neural activity. 

 Such sparse coding with a many-to-one rela-
tionship between stimuli and regions must be 
distinguished from the one-to-one relationships 
where one stimulus activates only one region. 
Furthermore, the diff erent stimuli may activate 
diff erent regions, so that the number of activated 
regions relative to the number of possibly acti-
vated regions is rather high when considering 
all possible stimuli. Th is may consequently be 
described as “local coding” on the regional level 
of neural activity. 

 Finally, as on the cellular and population 
level, there may also be dense coding on the 
regional level of neural activity. In this case, one 
stimulus recruits several regions, implying a 
one-to-many relationship between stimulus and 
regions. Th at goes along with an extremely high 
number of active regions relative to the number 
of non-activated regions, thus yielding a sce-
nario that stands diametrically opposite to the 
one of sparse coding (  Fig. 3-1  ).      

 In sum, I postulate that sparse coding holds, 
not only on the microscopic level of single cells 
and populations of neurons, but also on the 
more macroscopic level of regions. Th is means 
that the number of regions recruited by a stimu-
lus remains lower and thus sparse when com-
pared to the number of stimuli and their physical 
features. Moreover, this implies that the number 
of active regions is rather low when compared 
to the number of regions that could possibly be 
recruited by the stimulus.  

    NEUROEMPIRICAL BACKGROUND IIA: 
PERCEPTUAL DECISION-MAKING AS A 
PARADIGMATIC EXAMPLE OF SPARSE 
CODING ON THE REGIONAL LEVEL   

 How can we illustrate such sparse coding of 
neural activity on the regional level in further 
detail? For that, I  now turn to the case of per-
ceptual decision-making, where imaging stud-
ies do indeed lend substantial empirical support 
to sparse coding holding on the regional level 
(see Tamir and Mitchell 2011 for another exam-
ple in the domain of mentalizing). Perceptual 
decision-making thus serves as a paradigm that 
supports the assumption that sparse coding 
holds on the regional level during the encod-
ing of stimulus-induced activity. Th e same, i.e., 
sparse coding on a regional level, also applies to 
the brain’s resting-state activity as will be dis-
cussed in Chapter 6 (and see Lloyd et al. 2011, 
Wang et al. 2009, Nishimoto et al. 2011). 

 To better understand what perceptual decision- 
making is about, let’s imagine the following 
scenario. You are driving your car through the 
streets. Suddenly you see somebody walking 
on the sidewalk, and you suspect that it may 
be your child walking home from school. What 
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   Figure 3-1     Diff erent forms of neural coding on the regional level of neural activity.  Th e fi gure shows 
the diff erent forms of encoding strategies on a regional level of neural activity depending on the rela-
tionship between stimulus types and the number of activated regions (or networks). ( a ) If the number 
of stimulus types is the same as the number of regions, one speaks of local coding. Th is means that 
for each stimulus type, one particular region (or network) is activated. ( b ) If the number of stimulus 
types is lower than the number of regions/networks, one could speak of dense coding. In that case, one 
stimulus type is encoded in the neural activity of more than one region/network. ( c ) If the number of 
stimulus types is higher than the number of regions/networks, there is sparse coding. In that case, the 
same regions/network may encode more than one stimulus type with the former thus participating in 
the neural processing of more than one stimulus type.   

do you do? Will you stop the car and ask your 
child to join you? Th at will probably happen if 
you are sure that it is your child. Imagine, how-
ever, that you are not sure whether it is your 
child. Since it starts getting dark early, you can 
barely distinguish the person you suspect to be 
your child from two other children. How can 
you make a decision whether to stop based on 
your perceptions? Th is is what is called “percep-
tual decision-making,” and there has been much 
research on it recently. 

 One of the questions perceptual decision- 
making is dealing with is how sensory informa-
tion can be assembled to make a decision (see 
Deco et al. 2012). In our example with the child, 
this concerns the possibly confl icting sensory 
information, which is unclear, considering the 

darkness and the other children you see. Th ere 
is, however, more to perceptual decision-making 
than mere sensory information. More cogni-
tive functions like attention, task diffi  culty, prior 
probability of the occurrence of the event, and 
the outcome need to be considered, too. Imagine 
the street is narrow and full of cars. Th at will 
considerably distract your attention from the 
child you see and suspect to be your own. 

 Imagine also that you know that your child 
has a soccer lesson at this time of the day at 
the other end of town; this will make it rather 
unlikely that the person you suspect to be your 
child will in fact be your child. Th is concerns 
what is called “prior probability” of the occur-
ring event. And fi nally, imagine that you will not 
be able to stop right away on the street because it 
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is not allowed. Hence, you would need to think 
about how and where to stop to pick up your 
child. And even more important, you would 
need to let her or him know that you are around 
but cannot park your car right away.  

    NEUROEMPIRICAL BACKGROUND IIB: 
DIFFERENT COMPONENTS IN 
PERCEPTUAL DECISION-MAKING   

 One of the pivotal researchers in the domain of 
perceptual decision-making is Hauke Heekeren. 
Originally from Germany, Heekeren spent time 
in the United States at the National Institutes of 
Health, where he conducted excellent studies on 
perceptual decision-making. He later returned 
to Berlin, Germany, to continue his work. 

 In the following, I  will rely predominantly 
on his studies (while neglecting many others 
in the broad and complex fi eld of perceptual 
decision-making), which go deeply into the 
mechanisms and coding of neural activity on 
a regional level (see also his recent study, Park 
et al. 2012b, which we will not be able to describe 
in full detail here). Such a focus is justifi ed by 
the fact that this chapter is not about perceptual 
decision-making itself, which would require a 
full and extensive account. Instead, I here con-
sider perceptual decision-making only as an 
example for demonstrating sparse coding of 
neural activity on a regional level. 

 Given the complexity of the various factors 
infl uencing perceptual decision-making as illus-
trated by our example with the child, Heekeren 
et  al. (2008) distinguish four components of 
perceptual decision-making. Th e fi rst concerns 
the accumulation of sensory evidence. Th is is 
well refl ected in our example, where it consists 
of the diff erent sensory inputs you receive in the 
situation. 

 Th e second component of decision-making 
targets perceptual uncertainty or diffi  culty that 
will, in turn, lead to the recruitment of addi-
tional attentional resources. In our example, 
such perceptual uncertainty consists of the con-
fl icting sensory inputs from the diff erent chil-
dren in the darkness, so that you do not know 
which of the children you should direct your 
attention to. 

 Following Heekeren et  al. (2008), the third 
component represents decision variables like 
the predictability of the outcome, and includes 
also a motor component to implement the action 
accompanied by your decision. You see your 
child and want to stop and park your car in order 
to pick your child up. Finally, the fourth compo-
nent focuses on performance-monitoring of the 
actual decision in order to adjust the decision 
during, for instance, changing circumstances if 
necessary. In our example, this corresponds to 
the situation where you cannot fi nd a spot to 
park the car while at the same time signaling to 
your child that you are there. In the following 
sections, I  will discuss the neural mechanisms 
underlying the diff erent components of percep-
tual decision-making.  

    NEURONAL FINDINGS IA: SINGLE-CELL 
ACTIVITY IN SENSORY CORTEX 
DURING PERCEPTUAL 
DECISION-MAKING IN ANIMALS   

 Let’s start with the fi rst component of decision- 
making:  the involvement of the sensory system 
in decision-making. I  fi rst demonstrate results 
from the cellular level of neural activity and later, 
in the next section, results from the regional 
level, with both suggesting sparse coding of neu-
ral activity. 

 Romo et al. (1998, 2000) undertook single-cell 
recordings in the somatosensory cortex of mon-
keys who had to perform a vibrotactile task in 
which they, as behavioral choice, had to decide 
the frequency of oscillations of two sequen-
tially presented fl utter stimuli. Th is requires 
not only perception but also decision-making, 
and thus may be regarded as a typical percep-
tion decision-making task. Interestingly, the 
electrophysiological trial-to-trial fl uctuations in 
the fi ring rates of the cells in the somatosensory 
cortex (S1) predicted the subsequent behavioral 
choice of the monkey. However, the averaging of 
somatosensory fi ring rates according to the trials 
themselves—that is, trial-based—did not yield 
any correlation with the behavioral choices. Th is 
suggests that the actual decision is already some-
how related to neural activity in a lower-order 
sensory region like S1, and particularly to the 
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variability; i.e., the fl uctuations, in its neural 
activity level. 

 We saw that the fl uctuations in S1 are related 
to the behavioral choices. How, though, do they 
stand in relation to the stimuli as presented dur-
ing the experiment? Interestingly, the degree of 
fl uctuations in the fi ring rate (in somatosensory 
cortical neurons) depended on the stimulus’s 
presentation frequency. If the stimulus’s oscil-
lation frequency increased, the S1 neurons’ fi r-
ing rate also increased in a monotonic way. Th is 
suggests that the fi ring rate and its fl uctuations 
in S1 do indeed encode the statistical frequency 
distribution of the stimulus—that is, its natural 
statistics—rather than each stimulus by itself. 
Such encoding of the stimulus’ natural statistics 
suggests sparse coding rather than local or dense 
coding as the main and predominant encoding 
strategy. 

 Taken together, these results clearly dem-
onstrate the relevance and direct involvement 
of the somatosensory cortex in perceptual 
decision-making, with its trial-to-trial fl uctua-
tions predicting subsequent behavioral choices. 
Moreover, the results suggest sparse encoding of 
the stimuli into the neural activity of the somato-
sensory cortex during perceptual decision-making. 

 Can we lend further support to the direct 
involvement of sensory cortex in the behavioral 
choices one is confronted with during percep-
tual decision-making? In another single-cell 
recording study in monkeys, Newsome and 
colleagues (Newsome et  al. 1989, see also 
Rorie et  al. 2010 and Cohen and Newsome 
2008) recorded from neurons in the motion area 
(MT) as a higher part of the visual cortex that 
is involved in visual motion) while the monkeys 
had to make decisions in a direction-of-motion 
discrimination task. 

 Th e monkeys had to decide whether a noisy 
fi eld of dots was moving in one direction or 
another (i.e., upward or downward). Th ey could 
indicate their decision by a quick eye movement 
to a target on the respective side. Th e recorded 
activity of some of the neurons in MT corre-
lated well with the subsequent behavior of the 
monkey; for example, its decision about the 
direction of the moving dots. Analogous results 
were also obtained by microstimulation of MT, 

underlining the relevance of neurons in this sen-
sory region for perceptual decision-making. 

 What can we learn from these studies? Both 
studies provide evidence for the central role of 
sensory cortex; i.e., S1 and area MT, in predict-
ing the behavioral choices during perceptual 
decision-making in monkeys. Most important, 
they lend evidence to the assumption that neu-
ral activity in sensory cortex is encoded in a 
sparse way on a cellular level during perceptual 
decision-making (see below for more details). 
Th is is well refl ected in the encoding of the 
stimuli’s statistical frequency distribution; that 
is, their natural statistics, as hallmark feature of 
sparse coding (see below for details).  

    NEURONAL FINDINGS IB: REGIONAL 
ACTIVITY IN SENSORY CORTEX 
DURING PERCEPTUAL 
DECISION-MAKING IN HUMANS   

 How about corresponding evidence on the 
regional level of neural activity in humans? 
Heekeren et  al. (2004) used a house–face dis-
crimination task in fMRI to test for the involve-
ment of the sensory regions in perceptual 
decision-making. Faces are known to prefer-
ably activate the fusiform face area (FFA), while 
houses are more associated with neural activity 
in the parahippocampal place area (PPA). 

 Subjects now had to decide in their behav-
ioral choices whether they saw a face or a house; 
the authors then compared all correct trials with 
those where subjects made the wrong or incor-
rect decision. Th e experimenters further pro-
moted the generation of mistakes by presenting 
stimuli in either a supra-threshold (high number 
of correct trials) or a peri-threshold (high num-
ber of incorrect trials) way. 

 During correct trials where subjects made the 
right decision about their perceptions (house or 
face), activity in both regions (i.e., FFA and PPA) 
was signifi cantly higher than in incorrect trials, 
where they misperceived the house as a face and 
the face as a house. Accordingly, the level of neu-
ral activity in early sensory regions like the FFA 
and the PPA already predicts the kind of percep-
tion and the subsequent behavioral choice. Th ese 
results clearly indicate that sensory regions like 
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the PPA and the FFA are directly involved in 
making decisions and thus are behaviorally rel-
evant (see   Fig. 3-2  ).           

 Th e same group around Hauke Heekeren 
used the face–house categorization task and 
combined it with a probabilistic delivery of a 
reward, thus introducing a value component in 
perceptual decision-making (Philiastides et  al. 
2010a and 2010b, 2011). Rather than on sensory 
evidence, as in the fi rst study, the focus here was 
more on probabilistic evidence related to reward. 

 While sensory evidence is related to the pro-
cessing of houses and faces in the FFA and the 
PPA, the probabilistic evidence associated with 
reward was more related to neural activity in 
neighboring regions; for example, the posterior 
fusiform gyrus (PFG) and the parahippocam-
pal gyrus (PHG). Th e authors observed neural 
activity in PFG and PHG specifi cally related to 

face and house, respectively. However, activity 
changes in both regions were induced not only 
by the respective target stimulus (face or house) 
but also by the other stimulus, the  non -target 
stimulus:  Both regions decreased their activity 
(relative to baseline) in response to the respec-
tive other stimulus—the alternative option or the 
non-target stimulus. More specifi cally, the PFG 
increases its activity in response to faces, while 
the presentation of houses leads to a decrease in 
neural activity in the same region. Th e converse 
pattern was observed in the PHG, where houses 
increased and faces decreased the level of neural 
activity (see   Fig. 3-2c  ).      

 Th e authors conclude that both regions’ neu-
ral activity not only encodes the preferred stim-
uli, the target stimulus (such as house or face) 
but also the other stimulus, the non-preferred 
one, the non-target stimulus (see also Lemus 
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   Figure 3-2a     Neural processing in perceptual regions during perceptual decision making.  Experimental 
task. Subjects decided whether an image presented on a screen was a face or a house. By adding noise, 
the amount of sensory evidence in the stimuli was varied parametrically. (a)  Results of behavioural 
study to assess the amount of noise to add to the images. Th resholds (82% correct) were about 45% noise 
for both faces and houses. (b) In the fMRI experiment, we used images of faces and houses that were 
either easy (95% correct, suprathreshold, B top) or diffi  cult (82% correct, perithreshold, B bottom). 
(c) Rapid event-related fMRI design. Stimuli were presented for 1 s, subjects responded with a button 
press aft er a forced delay (response cue shown for 300 ms, delay 1–5 s).   
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et  al. 2010 for further support showing multi-
modal involvement of sensory cortex in per-
ceptual decision-making). Th e resulting and 
observable stimulus-induced activity in each 
region can then be traced back to the integral 
or diff erence value in activities elicited by both 
stimuli in isolation. Th e authors themselves 
do therefore propose that both regions’ neural 
activity encodes not only the preferred stimulus 
but also the non-preferred one during percep-
tual decision-making. 

 Th ese and other studies (see Heekeren 
et  al. 2008 for review) clearly demonstrate the 
direct relevance of visual and other (auditory, 
somatosensory) sensory regions in perceptual 
decision-making. Sensory regions do seem to 
encode both sensory and probabilistic evidence 
on which subsequent behavioral choices and 
thus decision-making are based. By encoding 
sensory and probabilistic evidence of the respec-
tive stimuli into the neural activity of the sensory 
cortex, the latter seems to directly participate in 
shaping the actual behavioral choice and thus 
the decision.  

    NEURONAL HYPOTHESIS IIIA: 
DIFFERENCE-BASED CODING 
OF CELLULAR ACTIVITY IN 
SENSORY CORTEX   

 Th e fi rst main fi nding in the various studies is 
the involvement and relevance of the sensory 
cortex in perceptual decision-making. Studies 
observed that the trial-to-trial fl uctuation in, for 
instance, the activity of the somatosensory corti-
cal neurons predicted the subsequent behavioral 
performance in the decision-making task (see 
above). What kind of neuronal mechanisms, or 
more specifi cally, coding strategy must be pre-
supposed to exist in sensory cortex in order to 
make such prediction possible? 

 Let’s consider the fi rst monkey example from 
Romo et  al. (1998, 2000), where trial-to-trial 
fl uctuations in somatosensory cortex predicted 
subsequent behavioral choices (see above). What 
correlated with behavioral performance were the 
trial-to-trial fl uctuations rather than the (aver-
aged) trials themselves. Th e authors directly 
compared fl uctuation-based and trial-based 
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   Figure  3-2b     Neural processing in perceptual regions during perceptual decision making.  FMRI 
data illustrating representation of sensory evidence in maximally face- and house-responsive voxels. 
(a) Maximally face- (Face, orange) and house-responsive (House, green) voxels in one subject. (b) BOLD 
change corresponds to perceptual evidence for respective classes of stimuli. Mean responses ( n  = 12, 
error bars represent standard error of the mean) in face- and house-selective voxels to the four dif-
ferent conditions (from left  to right:  suprathreshold face (~10% noise), perithreshold face (~45%), 
perithreshold house (~53%), suprathreshold house (~10%)). For the respective preferred category, 
both face- and house-selective regions responded more to suprathreshold than to perithreshold 
images (face-selective:   P  < 0.041, paired t-test one-tailed; houseselective:   P  < 0.001) while the oppo-
site was true for the non-preferred category (faceselective:  P  < 0.013; house-selective:  P  < 0.002). For 
face-responsive: suprathreshold face. perithreshold face > perithreshold house > suprathreshold house 
(analysis of variance, linear contrast,  P  < 0.001); for house-responsive: opposite pattern ( P  < 0.001).   
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analyses of data and observed that only the for-
mer (but not the latter) predicted behavioral 
choices. Behavioral performance is thus encoded 
into somatosensory cortical neural activity—not 
in the amplitudes of the single trials themselves 
but rather in the fl uctuations across or between 
trials. 

 What does such encoding into the fl uc-
tuations across or between trials imply for the 
encoding of neural activity? Th is means that the 
single stimulus itself and its induction of neural 

activity in a single trial do not encode any infor-
mation about the subsequent behavioral choice. 
Instead, behavioral choices are rather encoded in 
the diff erences between the diff erent stimuli as 
neuronally refl ected in the fl uctuations between 
diff erent trials. 

 More generally, this means that the behavioral 
choices are encoded in the neural diff erences 
between the diff erent trials; i.e., the fl uctuations. 
Since it is based on the diff erences between the 
diff erent trials; i.e., the fl uctuations, the encoding 
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   Figure  3-2c     Neural processing in perceptual regions during perceptual decision making. 
 Representation of probabilistic evidence in ventral temporal cortex. (a) A region in the left  PFG [( x  −40, 
 y  −70,  z  −20),  Z  = 4.13, peak Montreal Neurological Institute (MNI)] correlated positively with logLR 
(+logLR selective voxels), whereas a region in the left  PHG [( x  −20,  y  −74,  z  − 8),  Z  = 4.28, peak MNI] 
correlated negatively with logLR (–logLR selective voxels). Activity in corresponding voxels in the right 
hemisphere showed a similar pattern but ultimately failed to survive our stringent signifi cance tests. 
For visualization purposes, images are thresholded at  Z  > 2.6 and  Z  < −2.6, respectively (uncorrected). 
Images are radiological convention. (b)  Event-related BOLD signal averages (Eq. 10)  for fi ve diff er-
ent logLR levels, from each of the two regions shown in Figure 3-2a. Traces are aligned to the onset of 
visual stimulation at 0 s. Th e statistical contrast used to identify the regions (logLR) predetermined the 
shape of these plots, which are shown for illustrative purposes. Error bars represent SE across subjects.   
  Reprinted with permission of Nature Publishing Group, from Heekeren HR, Marrett S, Bandettini PA, 
Ungerleider LG. A  general mechanism for perceptual decision-making in the human brain.  Nature . 
2004 Oct 14;431(7010):859–62; and from Proceedings of the National Academy of Sciences, Philiastides 
MG, Biele G, Heekeren HR. A mechanistic account of value computation in the human brain.  Proc Natl 
Acad Sci USA . 2010 May 18;107(20):9430–5.   
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of the behavioral choices in somatosensory cor-
tex presupposes diff erence-based coding rather 
than stimulus-based coding. 

 Th e study by Romo et al. (1998, 2000) lends 
indirect support to diff erence-based coding 
during the encoding of behavioral choices in 
somatosensory cortical activity. How can we 
gain more direct support? Th ere is another 
study on decision-making that lends further and 
more direct support to the assumption of the 
diff erence-based encoding of behavioral choices 
in the sensory cortex. Th is will be the focus in 
the next section.  

    NEURONAL HYPOTHESIS IIIB: BEHAVIORAL 
RELEVANCE OF DIFFERENCE-BASED CODING 
OF CELLULAR ACTIVITY IN SENSORY CORTEX   

 Selezneva et  al. (2006) recorded electrophysi-
ological single-cell activity in auditory cortex in 
monkeys. Th e monkeys had to perform a cat-
egorical decision-making task in which they had 
to recognize and decide about tone sequences 
and obtained a reward for the correct behavioral 
choice. Most important, the investigators ana-
lyzed the data in two alternative ways. Either the 
single-cell recordings were grouped and averaged 
according to the respective responses, thus presup-
posing a trial-based analysis. Or the single record-
ings were set in relation to each other by calculating 
the ratios between the actual trial and the (respec-
tively) preceding trial. One may want to speak 
of “ratio-based analysis” rather than “trial-based 
analysis.” Th e hypothesis was here that the mon-
key may perform serial comparisons between the 
subsequent tones in order to make its behavioral 
choice. If so, the ratio-based analysis should serve 
and thus predict the subsequent behavioral choice 
much better than the trial-based analysis. 

 Which analysis, trial-based or ratio-based, 
predicted the behavioral choices and thus the 
rewarding eff ects of the tones? Only the neural 
activity in auditory cortex as related to ratio-based 
analysis predicted the behavioral choices; i.e., the 
rewarding eff ects of tones. In contrast, auditory 
cortical activity, as analyzed in a trial-based way, 
did not predict any behavioral choices. 

 What does this mean with regard to the behav-
ioral eff ects, more specifi cally the assignment of 

value, or reward, to the tones? It means that value 
or reward is constituted on the basis of diff erences, 
more specifi cally the diff erence between the actual 
tone and the preceding tone. Accordingly, value is 
thus not generated on the basis of neural activity 
related to a single stimulus alone but rather by the 
relationship between the neural activities associ-
ated with the actual and the preceding stimulus. 
In short, value is based on diff erence-based cod-
ing rather than stimulus-based coding. 

 Th ese results favor the assumption that 
diff erence-based coding holds true on 
the level of single cells in sensory cortex. 
Diff erence-based coding allows for the integra-
tion and comparison between diff erent stimuli 
in sensory cortex, which in turn serves to make 
decisions; i.e., behavioral choices. Accordingly, 
diff erence-based coding on the cellular level is 
not only neuronally relevant but also behavior-
ally relevant in that it makes possible the encod-
ing of behavioral choices as early as in sensory 
cortical activity. As we will see later in Volume 
II, both neuronal and behavioral relevance of 
diff erence-based coding will be complemented 
by the phenomenal relevance of diff erence-based 
coding for consciousness (see   Fig. 3-3  ).      

 Let us here remain, though, at the neuro-
nal and behavioral levels of neuronal activity. 
One would now suggest that what holds true 
at the level of single cells may also apply to the 
regions as a whole. Hence, one would hypoth-
esize that diff erence-based coding also holds on 
the regional level of neural activity in the various 
sensory regions like visual and auditory cortex. 
Th is is clearly a tentative hypothesis at this point; 
it will be discussed in the next section.  

    NEURONAL HYPOTHESIS IVA:   
DIFFERENCE-BASED CODING OF REGIONAL 
ACTIVITY IN SENSORY CORTEX   

 Let’s briefl y recapitulate the described fi ndings 
within the context of our child example. You are 
able to clearly discern your child. Your beloved 
child wears a colorful red jacket, which clearly 
distinguishes her from the other two children, 
who wear black and brown coats. Your sensory 
input can thus yield clear and large enough dif-
ferences for you to distinguish them from each 
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other in your perception and to guide your sub-
sequent behavioral choices. 

 Th e situation is diff erent, however, if the two 
other children also wear the color red, though a 
slightly darker red. Despite the fact that your child 
wears the same jacket, you will no longer discern 
her as easily. Why? Because your perception is 
based on diff erences. And the diff erences are rather 
small now, with all three children wearing red. 

 Since it is based on the diff erences between 
diff erent stimuli, your sensory cortical activity 
may be rather low due to the small degree of dif-
ferences in the three children’s red jackets. Your 
sensory cortical activity will thus convey rather 
confl icting perceptual evidence and will con-
secutively no longer be able to provide you with 
a clear signal on how to make your subsequent 
behavioral choice. 

 Our example seems to presuppose that 
diff erence-based coding and behavioral predic-
tion hold true on the regional level of neural 
activity of the sensory cortex. Th is goes well with 
my assumption that diff erence-based coding 
holds in sensory cortex on the cellular level of 
neural activity. However, my assumption seems to 
oppose the oft en rather tacitly assumed regional 
specialization of sensory regions like V1–5.  

    NEURONAL HYPOTHESIS IVB: 
DIFFERENCE-BASED CODING VERSUS 
REGIONAL SPECIALIZATION IN FFA AND PPA   

 In our specifi c case of perceptual decision-making, 
the assumption of diff erence-based coding seems 
to be incompatible with the specialization of FFA 
and PPA. Th e FFA is specialized for processing 
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Difference-based coding:
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   Figure  3-3     Diff erence-based coding in sensory cortex.  Th e fi gure shows the relationship between 
diff erence-based coding on a cellular level and a regional level of neural activity and how that ultimately 
results in decision-making. Th e upper part illustrates the distribution of the stimulus across diff erent 
discrete points in physical time and space and how it is encoded into the neural activity of a few sparse 
cells in, for instance, primary visual cortex (V1); this presupposes diff erent-based coding as indicated by 
the middle part. If the number of recruited neurons is suffi  cient, this, in turn, will lead to sparse activa-
tion of one particular region like V1 as a whole as indicated in the lower part; that is supposed to refl ect 
(and predict) the resulting behavior; that is, the decision in our case. Hence, I suppose diff erence-based 
and sparse coding to be central in mediating the transition from the single-cell level over the regional/
network level to the behavioral level.   
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faces, while the PPA prefers houses. Hence, these 
regions’ neural activity seems to be specifi cally 
tied to one particular stimulus (i.e., houses or 
faces). One would consequently propose that each 
trial by itself, rather than the diff erence between 
diff erent trials, would predict the subsequent 
perception. Th is is much more compatible with 
stimulus-based coding than diff erence-based 
coding on a regional level of neural activity. 

 Do we thus have to assume that the regional level 
of neural activity is characterized by stimulus-based 
coding rather than diff erence-based coding? While 
both FFA and PPA are certainly specialized in pro-
cessing specifi c stimuli (i.e., faces and houses), this 
specialization is not absolute. Other stimuli are 
processed in these regions, too, though to either a 
much weaker degree or in a diff erent way. Th is is 
shown, for instance, in the aforementioned study 
by Philiastides et al. (2010), who investigated the 
face–house discrimination task in the context of 
reward. While they observed strong positive signal 
changes in both PFG and PHG in response to their 
preferred stimuli (i.e., faces and houses), they also 
observed negative signal changes in each region 
in response to the respectively non-preferred 
stimulus. Faces yielded positive signal changes in 
the PFG and negative signal changes in the PHG, 
whereas for houses the reverse pattern could be 
observed. 

 What do these data tell us? Th e data demon-
strate that neither region’s activity exclusively 
and completely codes one particular stimulus 
alone (faces or houses). Even the respectively 
non-preferred stimulus, the non-target stimulus, 
is well able to induce signal changes in both PFG 
and PHG. Th is suggests that there is no “abso-
lute stimulus specifi city” in these regions’ neu-
ral activity during the encoding of the stimuli’s 
probabilistic evidence. Instead, there may only 
be “relative stimulus-specifi city” as manifested 
in the encoding of the one stimulus relative to 
the other into the regions’ neural activity. 

 How, then, can we describe such relative 
stimulus-specifi city in further detail? Rather 
than encoding one particular stimulus alone, 
these regions’ neural activity does seem to 
encode the diff erence between the preferred and 
the non-preferred stimulus, between target and 
non-target stimulus. Even if the non-preferred 

stimulus remains absent, the degree of signal 
change elicited by the preferred one may most 
likely still be tuned by a diff erence, the virtual 
diff erence between the (present) preferred and 
the (absent) non-preferred stimulus 

 Th is leads me to suggest the following, admit-
tedly rather speculative, hypothesis. I  hypoth-
esize that even the sensory regions that are 
seemingly strongly specialized for one particu-
lar stimulus (or stimulus feature) may encode 
their neural activity on the basis of diff erences 
between diff erent (i.e., preferred or specifi c and 
non-specifi c or non-preferred) stimuli (or stim-
ulus features) rather than the specifi c, i.e., pre-
ferred stimulus (or stimulus feature) alone.  

    NEURONAL HYPOTHESIS IVC: ENCODING 
OF MINIMAL DIFFERENCES AND REGIONAL 
SPECIALIZATION IN FFA AND PPA   

 One may now want to object that diff erence-based 
coding in this sense may hold for PFG and PHG 
during probabilistic processing, but it may not 
apply to FFA and PPA and their purely sensory 
processing (see earlier for the description of 
probabilistic and sensory evidence). In contrast 
to PFG and PHG, FFA and PPA seem to process 
only the preferred stimulus; i.e., face and house, 
but not the non-preferred one. Th erefore, one may 
propose stimulus- rather than diff erence-based 
coding in the case of the FFA and the PPA. Th is 
seems to suggest that PFG/PHG and FFA/PPA 
use diff erent coding strategies:  stimulus-based 
coding and diff erence-based coding. If so, 
stimulus- and diff erence-based coding are not 
mutually exclusive but can exist apparently side 
by side in diff erent regions. 

 Is such parallelism between diff erent encod-
ing strategies empirically plausible? Perhaps 
what looks like diff erence-based coding in PFG 
and PHG is in reality stimulus-based coding. 
Th en one would suggest that stimulus-based 
coding holds for both FFA/PPA and PFG/PHG. 
Th is, however, confl icts with the empirical data 
of a diff erence-based signal in the latter regions 
in the PFG and PHG. Alternatively, one could 
also argue for the reverse case by assuming 
that stimulus-based coding in FFA and PPA is, 
in fact, diff erence-based coding. In short, what 
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looks as stimulus-based coding may result from 
diff erence-based coding. 

 More specifi cally, one may suggest that what 
we describe as stimulus-based coding may result 
from the encoding of minimal spatial and/or 
temporal diff erences between diff erent stimuli 
into neural activity. Th e alleged stimulus-based 
coding in FFA and PPA may then refl ect one 
extreme end of the continuum of diff erent 
degrees of spatial and temporal diff erences that 
can possibly be encoded into the neurons’ neural 
activity on the basis of diff erence-based coding. 
And that continuum of possible diff erences in 
turn may be traced back to the neurons’ and the 
regions’ biophysical-computational spectrum as 
discussed in Chapter 1. 

 Why is all that relevant? It provides an 
understanding of the neural mechanisms and 
processes that may underlie the kind of signal 
changes we observe on the regional level of neu-
ral activity. Th ere is thus neuronal relevance. We 
will see later, in Volume II, that such neuronal 
relevance translates into phenomenal relevance; 
i.e., for consciousness. Th e degree of spatial and 
temporal diff erences as they are encoded into 
neural activity on the basis of diff erence-based 
coding may decide and thus predict whether 
the purely neuronal stimulus-induced activ-
ity can be associated with consciousness:  If the 
encoded spatial and temporal diff erences are too 
small, the resulting stimulus-induced activity 
will be less likely associated with consciousness. 
Th is may, for instance, be the case in disor-
ders of consciousness like vegetative state (see 
Chapters 28 and 29). In contrast, the encoding 
of larger spatial and temporal diff erences into 
neural activity will make the latter’s association 
with consciousness more likely (see Chapters 28 
and 29). Accordingly, the degree of diff erences 
encoded into neural activity may turn out to be 
what these days is described as a “neural corre-
late of consciousness” (see Volume II for details).  

    NEURONAL HYPOTHESIS IVD: BEHAVIORAL 
RELEVANCE OF DIFFERENCE-BASED CODING 
ON THE REGIONAL LEVEL   

 Another even more direct way to lend empirical 
support to my assumption of diff erence-based 

coding holding on the regional level is the pre-
diction of behavioral data. We saw in the study 
by Selezneva et  al. (2006) that the diff erences 
in single-cell activities between the actual and 
the respectively preceding trials predicted sub-
sequent behavior; that is, reward. One could do 
the same now on the regional level. For that, 
the behavioral relevance of the signal diff erence 
between houses and faces in each region alone 
and thus in FFA/PFG and PPA/PHG would need 
to be shown. 

 Unfortunately, as I  understood, this analy-
sis was neither performed by Philiastides et  al. 
(2010) nor by Heekeren et  al. (2004). I  would 
hypothesize that the diff erence value in the sig-
nals between house and face within the FFA/
PFG rather than the signals related to the face 
alone predicts subsequent behavioral choices 
related to the face. Th e same may hold true with 
regard to the house for the PPA/PHG whose 
diff erence-based signals between house and face 
may, analogously, predict subsequent behavioral 
choices related to the house. 

 What would this tell us about the encoding 
strategy of seemingly specialized regions like the 
FFA and the PPA? It would tell us that what is 
behaviorally relevant is predicted by neural dif-
ferences related to diff erent stimuli rather than 
by the neural activity based on one stimulus 
alone in isolation independent of the others. If 
so, diff erence-based coding must be proposed 
to hold to be behaviorally relevant also on the 
regional level of activity.  

    NEURONAL HYPOTHESIS IVE:  
DIFFERENCE-BASED CODING AS BRIDGE 
BETWEEN CELLULAR AND REGIONAL LEVELS OF 
NEURAL ACTIVITY   

 Th e assumption of diff erence-based coding on 
the regional level is well in accordance with the 
aforementioned results by Selezneva et al. (2006) 
and Romo et  al. (1998, 2000)  that show the 
behavioral relevance of diff erence-based coding 
on the level of single cells. Such correspondence 
between single cell and regional level with regard 
to behavioral relevance is possible only, as I sug-
gest, if both cellular and regional levels of activity 
are encoded in the same way. 
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 In other words, cellular and regional levels of 
neural activity must use the same encoding strat-
egy for both to allow for behavioral prediction in 
the same way. Let me explain this in further detail. 
Cellular and regional levels of neural activity 
show diff erent outputs; action potentials/spikes 
signify the cellular level while local fi eld potentials 
and frequency fl uctuations dominate the regional 
level. When considering the major diff erences in 
their outputs, one would wonder how it is possible 
for both cellular and regional levels of neural activ-
ity to predict subsequent behavioral choices.. One 
way for this to be possible may consist in using the 
same encoding strategy;i.e.,diff erence-based cod-
ing and sparse coding. 

 More precisely, I  propose diff erence-based 
coding to be such a common encoding strat-
egy that is shared between cellular and regional 
(and possibly other) levels of neural activities in 
the sensory cortex. Th at, in turn, could account 
for the orientation and tuning of both cellular 
and regional activities in sensory cortex toward 
behavior, thus accounting for what we as inves-
tigators measure and frame as prediction of 
behavioral choices. 

 Finally, in addition to the prediction of 
behavioral performance, diff erence-based cod-
ing as common coding between regional and cel-
lular levels may also make possible their direct 
interaction. Single- and population-cell activities 
are suggested to account for the neural activities 
of whole regions (see Logothetis 2008). Th e exact 
mechanisms providing such a transition from 
the cellular/population to the regional level of 
neural activity remain unclear, however. 

 I propose that, for the interaction between cel-
lular and regional levels of neural activities to be 
possible, both need to apply the same format and 
thus the same encoding strategy, which I hold to 
be diff erence-based coding and sparse coding. 
Most importantly, the degree of diff erence-based 
coding and sparse coding may determine the 
degree of possible interaction between cellular 
and regional levels of neural activity. Th erefore, 
I for instance hypothesize that the degree of neu-
ral activity on the regional level may be predicted 
by the degrees of diff erence-based coding and 
sparse coding on the cellular or population level 
of neural activity.  

    NEURONAL FINDINGS IIA: HIGHER-ORDER 
NON-SENSORY REGIONS AND PERCEPTUAL 
DECISION-MAKING   

 So far, we have focused only on the sensory cor-
tex. However, other regions of the brain also par-
ticipate in perceptual decision-making. Results 
from single-cell recordings in monkeys show 
that regions downstream of the sensory cortex 
are centrally involved in forming a decision. Th is 
concerns regions like the dorsolateral prefrontal 
cortex (DLPFC), the frontal eye fi eld, the lateral 
parietal cortex, the medial premotor, and the 
ventral premotor cortex (see Heekeren et al. 2008; 
Shadlen and Newsome 2001; Kim and Shadlen 
1999; Philiastides et al. 2010a and b, 2011). 

 Most important, the involvement of these 
regions in perceptual decision-making seems 
to be based upon computing the diff erence 
values from diff erent inputs stemming from 
lower-order regions such as the sensory cortex. 
Th ere must thus be some comparison or match-
ing process in the higher-order region between 
inputs from the diff erent lower-order regions. 
And the outcome of this comparison or match-
ing process may correspond to the subsequent 
behavioral choices. 

 Let me be more specifi c with regard to the 
comparison process in humans. Applying the 
earlier described face-house discrimination task, 
Heekeren et  al. (2004) required two criteria to 
allow for such a comparison or matching process 
in humans on a regional level of neural activ-
ity. First, the region had to show greatest activ-
ity during those stimuli that were most clearly 
 presented and thus predisposed unequivocal 
perceptual decision. 

 And second, the region’s activity had to cor-
relate with the diff erence value in neural activity 
in those regions that processed faces and houses; 
for example, FFA and PPA. To test the second 
criterion, they fi rst obtained the signal changes 
in each region, FFA and PPA, during the per-
ceptual decisions involving faces and houses. 
Th is allowed them to compute their diff erence 
values in neural activity, which they then corre-
lated with the signal changes in the whole brain 
and its various regions during the perceptual 
decision-making task.  
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    NEURONAL FINDINGS IIB: PREFRONTAL 
CORTEX IN PERCEPTUAL DECISION-MAKING   

 One region fulfi lled both criteria: the left  DLPFC. 
Th e neural activity in the left  DLPFC may thus 
signify such comparison or matching process; that 
is the computing of diff erence values stemming 
from lower-order sensory regions like the FFA 
and PPA. Let us the specify this in the following. 

 Th e left  DLPFC showed several interesting 
fi ndings. First, the left  DLPFC showed higher 
activity during clearly presented face and house 
stimuli on a suprathreshold level when compared 
to degraded; for example, perithreshold stimulus 
presentation. Second, neural activity in the left  
DLPFC predicted behavioral performance in the 
categorization task. Th ird, neural activity in the 
left  DLPFC also correlated with the diff erence 
values from the signal changes in FFA and PPA 
during the presentation of faces and houses. 

 Most important, DLPFC signal changes could 
neither be explained by the neural activity in FFA 
or PPA alone nor by mere task diffi  culty. Th is 
means that the left  DLPFC actively compares 
and computes diff erences in neural activity from 
sensory regions like FFA and PPA. Finally, the 
diff erence value of FFA and PPA signal changes 
in DLPFC predicted the subsequent behavioral 
choices (see also Philiastides et al. 2011 for fur-
ther support of the causal role of the DLPFC in 
perceptual decision-making). In contrast, signal 
changes in FFA and PPA alone did not predict 
behavioral choices (or to a much lesser degree) 
(see also Philiastides et al. 2011). 

 Taken together, this suggests that the left  
DLPFC’s neural activity stems from comput-
ing diff erences; i.e., diff erence values, in neural 
activity from lower-order sensory regions; that 
is, FFA and PPA. Th is suggests the neuronal 
relevance of diff erence-based coding even in a 
higher-order regions like the left  DLPFC. Also, 
only the diff erence-based signal in left  DLPFC 
but not the region-based signal (i.e., from either 
FFA or PPA alone) predicted behavioral prefer-
ences. Th is underlines the behavioral relevance 
of diff erence-based coding in the case of a 
higher-order region like the left  DLPFC. 

 Is the neural processing and computation of 
diff erence-based signals from other lower-order 

regions specifi c to the left  DLPFC as distin-
guished from other regions? Th e group around 
Heekeren applied the same methodological 
procedure when combining their face-house 
categorization task with reward as described ear-
lier in the probability-reward task (Philiastides 
et  al. 2010a and 2010b). Th ey now computed 
the diff erence value between the here involved 
lower-order sensory regions; that is, PFG and 
PHG (see earlier), and correlated them with sig-
nal changes in the rest of the brain. Th is showed 
that the diff erence value between PFG and PHG 
correlated with and thus predicted the neural 
activity in the ventromedial prefrontal cor-
tex (VMPFC), a region centrally implicated in 
reward (see Part III for details; also see   Fig. 3-4  ).      

 Importantly, neural activity in the VMPFC 
could neither be explained by changes in PFG 
and PHG alone nor from regions encoding only 
house and face themselves; for example, FFA and 
PPA. Hence, in the context of value and reward, 
neural processing and computation of diff erence 
value from the signal changes of other regions 
can also be observed, though not in the left  
DLPFC but in the VMPFC (see also Tamir and 
Mitchell 2011 for the demonstration of an analo-
gous diff erence-based signal in the VMPFC in 
the context of mentalizing of others with respect 
to the own self).  

    NEURONAL HYPOTHESIS VA: 
DIFFERENCE-BASED CODING IN PREFRONTAL 
CORTEX   

 Th ese results show that the neural activity in higher 
regions like the DLPFC and the VMPFC seems to 
result from the neural processing and comput-
ing the diff erence values in neural activity from 
lower sensory regions. In humans, for instance, 
the neural activity in the DLPFC could only be 
explained by the integral or diff erence value of 
the signal changes in FFA and PPA rather than 
by each region’s (i.e., FFA and PPA) neural activ-
ity alone (or the task diffi  culty). Th e same holds 
for neural activity in VMPFC that could only be 
explained by the diff erence-based signal between 
PFG and PHG (see also Tamir and Mitchell for an 
analogous result with a diff erence-based signal in 
the VMPFC during mentalizing). 
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   Figure 3.4a–c     Neural processing in prefrontal regions during perceptual decision making.  ( a ) Brain 
regions showing a main eff ect of task diffi  culty:  grey:  easier (low noise proportion) > harder (high 
noise proportion); dark: harder > easier. Abbreviations: FEF, frontal eye fi eld; INS, insula; IPS, intra-
parietal sulcus; PCC, posterior cingulate cortex; SEF, supplementary eye fi eld; SFG, superior frontal 
gyrus; SFS, superior frontal sulcus. ( b ) Perceptual decision-making in posterior DLPFC. (A) Region 
in the depth of the left  SFS, showing both a higher response to suprathreshold images of faces and 
houses relative to perithreshold images, and a correlation with |Face( t ) – House( t )| suggesting that this 
brain region integrates sensory evidence from sensory processing areas to make a perceptual decision 
(BA8/9, easier > harder:  x  = 224/ y  = 24/ z  = 36,  z  max  = 4.20; correlation with |Face( t ) > House( t )|:   x  = 
222/ y   =  26/ z   =  36,  z  max   =  3.66, coordinates in MNI system refer to local cluster maxima, and  z  max  to 
the corresponding  z -value). (B) Signal changes in the posterior portion of the DLPFC predicted task 
performance ( r  = 0.413,  P  = 0.004). Points represent average BOLD change and performance for each 
condition (suprathreshold face, perithreshold face, perithreshold house, and suprathreshold house) and 
subject. ( c ) Value signal computation in vmPFC. A region of the vmPFC covaried both with |logLR| [ 
( x  −6,  y  50, z −2),  Z  = 4.07, peak MNI] and |PFG(t) − PHG(t)| [( x  −2,  y  52,  z  −2),  Z  = 4.45, peak MNI], 
providing strong evidence that this region is involved in computing a value signal by combining the 
weight of evidence for face (F) and house (H) by using a diff erence-based comparator operation. For 
visualization purposes, images are thresholded at  Z  > 2.6 (uncorrected). Images are radiological con-
vention.     Reprinted with permission of Proceedings of the National Academy of Sciences, Philiastides MG, 
Biele G, Heekeren HR. A mechanistic account of value computation in the human brain.  Proc Natl Acad 
Sci USA . 2010 May 18;107(20):9430–5; and from Nature Publishing Group, from Heekeren HR, Marrett S, 
Bandettini PA, Ungerleider LG. A general mechanism for perceptual decision-making in the human brain. 
 Nature . 2004 Oct 14;431(7010):859–62.   
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 Th is means that the activity in VMPFC and 
DLPFC is based on the neural processing and 
computing (and comparing) neural diff erences, 
the ones between FFA/PFG and PPA/PHG. One 
must consequently postulate diff erence-based 
coding to encode the neural activity in DLPFC 
and VMPFC on a regional level. Accordingly 
diff erence-based coding must be considered 
neuronally relevant in that it guides and predicts 
neural activity in higher-order regions. 

 In contrast, neural activity in DLPFC and 
VMPFC cannot be explained on the basis of 
neural activity changes in a single lower-order 
region alone. Th e fi ndings by Heekeren’s group 
clearly exclude such scenarios when showing that 
neither FFA/PFG nor PPA/PHG signal changes 
alone can account for neural activity in VMPFC 
and DLPFC. Th is means that stimulus-based 
coding of neural activity in DLPFC and VMPFC 
is rather unlikely to determine the encoding in 
these higher-order regions. 

 Th e assumption of diff erence-based coding 
in DLPFC and VMPFC is further supported 
by the behavioral data. Neural activity in both 
regions, DLPFC and VMPFC, predicted the 
subsequent behavioral choices and thus deci-
sions. Th is means that a diff erence-based signal 
predicts behavioral choices and preferences. 
Hence, diff erence-based coding is not only neu-
ronally relevant but also behaviorally as mir-
rored in the prediction of decision preferences 
by diff erence-based signals. 

 Let’s go back briefl y to our initial example 
with the child. It is due to your diff erence-based 
activity in the DLPFC that you are able to make 
a decision about whether the child is yours. If, 
however, the diff erences generated in your sen-
sory cortex, your FFA and your PPA, are too 
small to convey a signal that is large enough to 
induce proper neural activity in your left  DLPFC, 
they may not provide you with a suffi  ciently dis-
tinct diff erence value to signal and predict a clear 
behavioral choice. 

 Th is is, for instance, the case when you are 
not sure anymore whether the child in ques-
tion is your child. You are then unable to make 
a clear decision about how to proceed:  do you 
leave your car window open to shout your child’s 
name, or do you decide to silently pass by?  

    NEURONAL HYPOTHESIS VB: SPARSE 
CODING IN PREFRONTAL CORTEX   

 What about sparse coding on the regional level? 
While these fi ndings support the assumption of 
diff erence-based coding on the regional level of 
neural activity, they themselves do not tell us 
anything about sparse coding. However, we saw 
that diff erence-based coding is closely tied to 
sparse coding on the single-cell and population 
level of neural activity (see Chapters  1 and 2). 
Since diff erence-based coding seems to clearly 
apply to the regional level of neural activity, one 
would postulate that sparse coding also holds on 
the level of regions. 

 Let’s recall from the beginning of this chapter. In 
our initial empirical refl ections, we characterized 
sparse coding by specifi c stimulus-to-region and 
region-to-region relationships. Many stimuli may 
recruit one particular region yielding many-to-one 
and thus sparse relationship between stimuli and 
regions. Th is may apply to lower-order sensory 
regions since they are directly exposed to stimuli, 
but it may not hold for higher-order regions like 
VMPFC and DLPFC that do not receive direct 
stimulus input. However, their stimulus input 
comes from other regions such as the FFA and 
the PPA. Hence, in their case the region-to-region 
relationship may be of central relevance. 

 Th e region-to-region relationship may be 
characterized in sparse coding by two features. 
First, as in the case of the stimulus-to-region rela-
tionship, there may be a many-to-one relation-
ship. Many active lower-order sensory regions 
may, for instance, go along with a lower number of 
active higher-order cognitive regions such as the 
VMPFC and the DLPFC. Th is is indeed the case. 
In the studies by Heekeren, the activity in sen-
sory regions such as the FFA/PFG and PPA/PHG 
converged in the activity of a single higher-order 
region, the DLPFC or the VMPFC. One may con-
secutively speak of a many-to-one relationship 
characterizing region-to-region relationship. 

 Second, sparse coding on the regional 
level also implies that only a low number of 
higher-order regions may be active when 
compared to the total number of regions that 
could possibly be activated. In our example, 
that means that the FFA alone could recruit 
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a number of higher-order regions, including 
the DLPFC and many others (like the various 
regions in parietal, temporal, or prefrontal cor-
tex). Th e same holds for the PPA as well as for 
the PFG and the PHG.  

    NEURONAL HYPOTHESIS VC: TEMPORAL 
AND SPATIAL SPARSENING OF NEURAL 
ACTIVITY ON A REGIONAL LEVEL   

 How is such diff erence-based coding across dif-
ferent regions possible? One may postulate that 
this is possible because all these regions show 
structural connections with various regions 
throughout the whole cortex. In principle, the 
lower-order regions like FFA and PPA could 
possibly recruit a high number of available 
higher-order cognitive regions. 

 Th is, however, is apparently not the case 
because diff erence-based coding holds on a 
regional level of neural activity. Instead of recruit-
ing many higher-order regions, the lower-order 
regions recruit only one higher-order region, 
the DLPFC or the VMPFC. Th us, the number of 
active higher-order regions is rather low when 
compared to the number of higher-order regions 
that could possibly be activated. 

 In sum, both criteria for sparse coding on a 
regional level, many-to-one relationship and low 
number of actually recruited regions, are ful-
fi lled. One may consequently be inclined to speak 
of sparse coding on the regional level. Th is, how-
ever, must be considered a tentative hypothesis. 
One would need to apply quantitative measures 
of sparseness to the neural activities observed on 
the regional level. While this has been done on 
the level of single cells and population of cells 
(see Chapters 1 and 2), it remains to be investi-
gated on the regional level of neural activity (see 
Wang et al. 2009 and Lee et al. 2011 for fi rst steps 
in this direction). 

 More specifi cally, one would like to mea-
sure temporal and spatial sparsening. Temporal 
sparsening can be accounted for by the degree of 
“lifetime sparseness,” the recruitment of a region 
across diff erent discrete points in physical time 
(by the same and diff erent stimuli). While spa-
tial sparsening may be measured by the degree 
of “population sparseness,” on the regional level, 
this may better be called “region sparseness” 

describing the relationship between active and 
total number of regions. 

 Besides applying quantitative measures 
of sparseness, one may also need to investi-
gate diff erent functions. I  here demonstrated 
diff erence-based coding and sparse coding in the 
context of perceptual decision-making taking it 
as paradigmatic example. Th is, however, is only 
one function of many others such as attention, 
reward, perception, working memory, and so on. 
Hence, future studies may pool the imaging data 
from diff erent functions and investigate their gen-
eral regional activation pattern. I  would suggest 
that the same kind of organizational principle; 
for example, sparse coding, predicts the various 
regional activation pattern across both the diff er-
ent regions/networks and the diff erent functions.  

    NEURONAL HYPOTHESIS VIA: SPARSE 
CODING ON A REGIONAL LEVEL—
“AMPLIFICATION HYPOTHESIS”   

 I provided evidence for both diff erence-based 
coding and sparse coding on the regional level of 
neural activity. Th e question now is how both are 
related to each other. We remember that on the 
single cell and population level, diff erence-based 
coding was postulated to be a necessary condi-
tion that fi rst and foremost makes possible the 
spatial and temporal sparsening of neural activ-
ity, that is sparse coding. If so, one would suggest 
the same to hold on the regional level of neu-
ral activity too; that is, diff erence-based coding 
enables and drives sparse coding. 

 If sparse coding on the regional level does 
indeed presuppose diff erence-based coding, one 
would expect the following relationship: the higher 
for instance the degree of diff erence-based coding 
between lower-order sensory and higher-order 
cognitive regions, the lower number of 
higher-order regions like the DLPFC are recruited 
entailing higher degrees of sparseness. Th is sug-
gests that the degree of spatial and temporal dif-
ferences encoded into the regions neural activity 
via diff erence-based coding drives and predicts 
the degree of sparseness and thus the number of 
actually recruited regions. Th at is a clear hypoth-
esis that can be tested experimentally in the future. 

 What are the neuronal mechanisms that link 
diff erence-based coding to sparse coding? We 
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must consider the continuously ongoing gen-
eration of spatial and temporal diff erences in 
neural activity within and across the diff erent 
regions. For instance, as we saw earlier, neu-
ral activity in the PHG and the PFG may most 
likely stem from the diff erence value between 
the positive signal changes related to the pre-
ferred stimulus and the negative signal changes 
associated with the non-preferred stimulus. Th is 
neuronal diff erences in PHG and PFG are then 
relayed to other regions such as the VMPFC: the 
diff erence constituting neuronal activity in PFG 
is compared and matched with the diff erence 
constituting neuronal activity in the PHG. 

 Such matching and comparison between 
diff erent neuronal diff erences results in a novel 
neuronal diff erence that is manifest in the degree 
of neuronal activity change in the VMPFC. 
Accordingly, neuronal activity in the VMPFC 
is based on the neuronal diff erence (PHG-PFG) 
between the stimulus-based diff erences (face–
house) in each region alone; that is, PFG and 
PHG, thus amounting to an integral of diff erent 
diff erence values; for example, ([PHG (House–
Face])—[PFG (Face–House]). 

 Since both stimulus-based and neuronal dif-
ferences are not only relayed to other regions 
but apparently also amplifi ed, I  here propose 
what I  describe as the “amplifi cation hypoth-
esis.” Th e amplifi cation hypothesis describes the 
continuous generation of novel neuronal diff er-
ences between neural activities from diff erent 
regions whose signals themselves are based on 
either stimulus-based or other neuronal diff er-
ences. In short, I  postulate continuous ampli-
fi cation of neuronal diff erences on the basis of 
stimulus-based and neuronal diff erences.  

    NEURONAL HYPOTHESIS VB: SPARSE CODING 
ON A REGIONAL LEVEL—BEHAVIORAL 
AND PHENOMENAL RELEVANCE OF THE 
“AMPLIFICATION HYPOTHESIS”   

 Th e amplifi cation of neural activity across diff er-
ent regions throughout the whole brain is relevant 
in diff erent ways. Th e amplifi cation hypothesis is 
neuronally relevant because it describes the neu-
ronal mechanisms how the regions’ neural activ-
ity is generated. Moreover, as we have seen in 
the earlier described results, such amplifi cation 

of neuronal and stimulus-based diff erences to 
other regions like the DLPFC or the VMPFC is 
essential for making proper behavioral choices 
and thus perceptually guided decisions. Th e 
amplifi cation hypothesis is thus not only neuro-
nally relevant but also behaviorally relevant. 

 Finally, the amplifi cation hypothesis of neu-
ral activity may prove central for conscious-
ness and thus be phenomenally relevant. Th e 
global distribution of neural activity is oft en 
considered central for consciousness, as is well 
refl ected in the global workspace theories by 
Baars (2005, 2007) and Dehaene (Dehaene and 
Changeux 2011; also see Introduction I  as well 
as Chapters 18 and 19 in Volume II for details). 

 Why, though, is such globalization of neural 
activity so central for consciousness? Th e degree 
of neuronal diff erences as suggested in the ampli-
fi cation hypothesis may predict the degree of 
consciousness that can be associated to the oth-
erwise purely neuronal activity:  the more neu-
ronal diff erences are computed and processed 
throughout the whole brain in a globalized way, 
the higher the likelihood that suffi  ciently large 
neuronal diff erences are generated to associate 
consciousness with the newly resulting neuronal 
activity (see Chapters 28 and 29 for details).  

    NEURONAL HYPOTHESIS VC: SPARSE 
CODING ON A REGIONAL LEVEL—
“CONDENSATION HYPOTHESIS”   

 What I describe as “amplifi cation hypothesis” is 
based upon diff erence-based coding. Without the 
neural coding of stimulus-based or neuronal dif-
ferences, the amplifi cation of neural diff erences 
across diff erent regions would be impossible. 
How though does the amplifi cation of neuro-
nal diff erences enable and promote the sparse 
recruitment of the regions’ neural activity? For 
that we may need to complement the “amplifi ca-
tion hypothesis” by yet another hypothesis, the 
“condensation hypothesis” as I call it. 

 Th e “condensation hypothesis” describes the 
concentration or condensation of neural activity 
in a few regions. By for instance processing and 
computing the diff erence value in neural activity 
between FFA and PPA, the DLPFC concentrates 
and ultimately condenses the neural activity of 
two regions into one region. Sparse recruitment 
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of higher regions may thus be possible on the 
basis of condensing the neural activity from dif-
ferent lower-order regions (see also appendix 2 
for the discussion of localizationism and holism). 

 Most important, such condensation of neural 
activity does not go along with a loss of infor-
mation. Due to the generation and amplifi ca-
tion of stimulus-based and neuronal diff erences, 
the information from the lower-order sensory 
regions is conveyed to and preserved in the neu-
ral activity of the higher-order cognitive region. 
Th e sparse recruitment of higher-order regions 
thus goes along with a maximum of preserved 
information. As on the level of single cells (see 
Chapter  1), one may therefore characterize 

sparse coding on the regional level as “economic 
or effi  cient coding.” 

 Th is is well refl ected in our example with the 
child. All the incoming sensory information 
about your child and his or her relation to the 
others is well preserved. If their sensory-based 
contrast and thus diff erence between the diff er-
ent children is large enough, you will be well able 
to make a decision as most likely predicted by 
the activity level of your left  DLPFC. 

 In contrast, the activity level of your left  
DLPFC may be lower in the case of confl icting 
sensory evidence as it may be related to smaller 
stimulus-based diff erences in the lower sensory 
regions (  Fig.  3-5  . Th is is indeed empirically 

 

Statistical distribution of
sensory stimuli across single
discrete points in time and space
(’natural statistics‘)

Amplification of differences
between lower-order sensory
regions in orientation on their
statistical distribution across
single discrete positions in time
and space  

Sparse coding with Condensation
of differences in higher-order
cognitive region like the dorsolateral
prefrontal cortex (DLPFC) 

Difference-based coding of
natural statistics in lower-order
sensory regions (with each bar
diagram corresponding to one
particular sensory region as
indicated for the visual cortex by
V1, V2, and V3) 

V3

V2

V1

DLPFC

   Figure  3-5     Amplifi cation and condensation hypothesis.  Th e fi gure shows the relationship between 
lower and higher-order regions in decision-making. Based on its “natural statistics,” that is, its statistical 
frequency distribution across diff erent discrete points in physical time and space ( upper part ), the stim-
ulus, based on diff erence-based coding, leads to stimulus-based diff erences with the subsequent activa-
tion in various sensory regions ( upper middle part ). Th e involvement of various sensory regions like V1, 
V2, and V3, in turn, implies the amplifi cation of their stimulus-based and neuronal diff erences in the 
neural processing from lower-order sensory to higher-order cognitive regions ( lower middle part ). Th is 
results in the sparsening of neural activity; that is, condensation, in one particular higher-order region 
like the dorsolateral prefrontal cortex (DLPFC), while the other higher-order cognitive regions are not 
recruited ( lower part ). Hence, diff erence-based coding goes along with both amplifi cation and conden-
sation of stimulus-based and neuronal diff erences in the neural processing from lower to higher-order 
regions. Th is is what I describe as the “amplifi cation and condensation hypothesis.”   
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supported by the data from Heekeren et  al. 
(2004) in their perithreshold condition with low 
contrasts between the diff erent sensory stimuli 
that were barely visible (see earlier).       

    NEURONAL HYPOTHESIS VD: SPARSE 
CODING ON A REGIONAL LEVEL—
BEHAVIORAL AND PHENOMENAL 
RELEVANCE OF THE “CONDENSATION 
HYPOTHESIS”   

 Why is the condensation hypothesis relevant? 
I  demonstrated the neuronal relevance of the 
condensation hypothesis in that condensation 
and thus sparsening of neural activity seems 
to determine the neural activity, in especially 
higher-order regions. And since these regions 
activities also predicted the subjects’ behavioral 
choices, the condensation hypothesis must be 
assumed to be also behaviorally relevant. 

 Finally, like the amplifi cation hypothesis, the 
condensation hypothesis may also turn out to be 
phenomenally relevant; that is for consciousness. 
For instance, patients with neuropsychiatric dis-
orders like depression and schizophrenia show 
abnormal linkages between the diff erent con-
tents in their consciousness (see Chapters 22 and 
27). How is such abnormal linkage between dif-
ferent contents in their consciousness possible? 
I postulate that it may, in part, be related to the 
abnormally increased or decreased condensa-
tion of stimulus-based and neuronal diff erences 
throughout the whole brain. 

 For instance, patients with schizophrenia show 
neuronally severe hypoactivity in left  DLPFC, 
while behaviorally they can be characterized 
by high ambiguities in their decision-making. 
Based on the earlier described data by Heekeren 
and our condensation hypothesis, one may now 
hypothesize that the left  DLPFC hypoactivity 
may in part be due to the inability of properly 
condensing stimulus-based and neuronal diff er-
ences from lower-order sensory regions. 

 If the stimulus-based and neuronal diff erences 
from other regions can no longer be properly 
compared and matched with each other as to yield 
a novel neuronal diff erence, the activity level in 
left  DLPFC will not change anymore. Th e result-
ing hypoactivity in left  DLPFC may then prevent 

the subjects from proper decision-making as it is 
behaviorally manifested in their extreme ambigu-
ity, while neuronally they seem to remain unable 
to condense neural activity.  

    NEURONAL HYPOTHESIS VE: SPARSE 
CODING ON A REGIONAL LEVEL—
LOCAL AND DENSE NEURAL CODING 
AS ALTERNATIVE OPTIONS   

 Finally, one may also want to compare sparse 
coding on the regional level of neural activity 
with alternative forms of neural coding:  dense 
coding and local coding (see Chapter 1). Let us 
imagine fi rst how dense coding would like on the 
regional level of neural activity. 

 In the case of dense coding, one would 
propose a one-to-many relationship between 
lower-order sensory and higher-order cognitive 
regions, which would entail a rather high number 
of recruited higher-order regions. Neural activity 
in FFA and PPA should have been accompanied 
by the recruitment of many higher-order regions 
as in prefrontal, temporal, and parietal cortex. 
Th e empirical data showed the opposite, however, 
with activity changes occurring only in the left  
DLPFC as described earlier. Hence, the relation-
ship between diff erent regions may be character-
ized by sparse coding rather than dense coding. 

 How about local coding on the regional level 
of neural activity? Local coding implies a one-to-
one relationship between lower-order sensory 
and higher-order cognitive regions. In such a 
case, the FFA should have been related to neu-
ral activity in one higher-order region, while the 
PPA would have been linked to another one. 

 Th is, again, was not the case in the empirical 
data since the neural activities of both regions 
converged in and predicted the activity level in 
the left  DLPFC. Taken together, the empirical 
fi ndings presented here make both dense cod-
ing and local coding unlikely candidates for the 
encoding of neural activity on a regional level.  

    Open Questions   

 Th e fi rst question pertains to the encoding of 
natural statistics as a central hallmark feature of 
sparse coding. Sparse coding on the cellular and 
population level focuses on the sensory cortex 
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and demonstrates the encoding of the statistical 
frequency distribution of the stimulus across dif-
ferent discrete points in physical time and space. 
If sparse coding holds on the level of regions, 
including non-sensory regions like the DLPFC 
and the VMPFC, the question for the encoding 
of statistical frequency distributions from other 
regions’ neural activity; i.e., their regional or neu-
ronal statistics as one may want to say, arises. 

 Alternatively, one could also propose that 
the encoding of the stimuli’s natural statistics in 
sensory cortex is conveyed to the higher regions’ 
neural activities which then would encode the 
lower-order regions’ regional or neuronal statis-
tics (and hence ultimately; that is, indirectly, the 
stimuli’s natural statistics). Or one may deny alto-
gether that the higher regions encode any statisti-
cal frequency distributions at all. In that case, one 
would suggest either local or dense coding rather 
than sparse coding, and possibly stimulus-based 
coding rather than diff erence-based coding. 
Th is, however, as we have seen earlier is empiri-
cally rather implausible. Th e second question 
focuses on neural inhibition. I demonstrated in 
Chapter 2 the central role of neural inhibition and 

GABAergic modulation in implementing sparse 
coding on a cellular and population level of neu-
ral activity. If now sparse coding is supposed to 
apply to the regional level of neural activity, too, 
one would postulate GABAergic-mediated neu-
ral inhibition to play a central role here. Th ere is, 
however, not much human data available on the 
macroscopic eff ects of GABA on the regional dis-
tribution of neural activity (see Chapters  6 and 
12 for more detailed discussion of the eff ects on 
GABA on regional activity levels). 

 Th is is even more important since psychiat-
ric disorders like schizophrenia and depression 
show alterations in GABA-ergic mediated neu-
ral inhibition. Most interestingly, schizophrenic 
and depressed patients’ symptoms can be allevi-
ated almost immediately by the application of 
GABAergic agonists drugs like lorazepam (though 
only transiently) or glutamatergic antagonists 
drugs like ketamine. Th is suggests that GABAergic 
and glutamatergic mechanisms, and thus the 
excitation-inhibition balance, may indeed be cen-
tral in yielding regional activation pattern as it is 
predicted by the assumption of sparse coding hold-
ing true on the regional level of neural activity.                
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      GENERAL BACKGROUND   

 Part I  introduced sparse coding, which occurs 
when stimuli recruit and activate a lower num-
ber of neurons/regions (when compared to the 
number of stimuli and the total number of avail-
able neurons/regions) in the brain, entailing a 
many-to-one relationship between stimuli and 
neuron/regions. Th is distinguished sparse cod-
ing from other forms of neural coding like dense 
coding and local coding, where there is a one-to-
many and one-to-one relationship between stim-
uli and neurons, respectively. 

 Such sparse coding allows for encoding the 
stimuli’s statistical frequency distribution across 
time and space; that is, their natural statistics. 
Th is is possible only, as I  hypothesize, if the 
neural activity encodes spatial and temporal dif-
ferences between stimuli across their diff erent 
discrete points in physical time and space rather 
than the stimuli themselves—what I describe as 
“diff erence-based coding” (as distinguished from 
“stimulus-based coding”). Diff erence-based cod-
ing and, consequently, sparse coding should hold 
true on the cellular and population levels as well 
as on the regional level of neural activity, where 
both forms of encoding may determine the 
distribution of neural activity across diff erent 
regions in a sparse way. 

 Why does the brain employ diff erence-based 
coding (rather than stimulus-based coding) and, 
consequently, sparse coding (rather than dense 
or local coding) to encode the extrinsic stimuli 

         PART II 
Encoding Intrinsic Activity   

from the environment (and body) into its neu-
ral activity? Th e employment of diff erence-based 
coding and sparse coding requires active 
involvement of the brain itself:  Th e brain does 
not passively receive extrinsic stimuli from the 
environment (and body) and encode and pro-
cess them in a one-to-one way, as proposed in 
stimulus-based coding and local coding. Instead, 
it actively “scans” the spatial and temporal dif-
ferences between the diff erent stimuli; that is, 
their statistical frequency distribution across 
the diff erent discrete points in physical time and 
space, which are then encoded into cellular and 
regional levels of neural activity. 

 How can the brain actively “scan” and account 
for the spatial and temporal diff erences between 
the diff erent stimuli at their diff erent discrete 
points in physical space and time? Th e brain itself 
must possess some kind of intrinsic spatial and 
temporal measure against which it can compare 
and match the spatial and temporal diff erences 
between the diff erent extrinsic stimuli from its 
environment (and body). In other words, there 
must be some kind of intrinsic spatial and tem-
poral template in the brain itself. 

 Such an intrinsic spatial and temporal tem-
plate may allow the brain to encode the extrin-
sic stimuli in terms of spatial and temporal 
diff erences rather than encoding the extrin-
sic stimuli themselves, including their diff er-
ent discrete points in physical time and space. 
Accordingly, the brain’s intrinsic spatial and 
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temporal template or grid may predispose the 
brain to employ diff erence-based coding (rather 
than stimulus-based coding) and sparse coding 
(rather than local or dense coding) during the 
encoding of extrinsic stimuli. Where does such 
an intrinsic spatial and temporal template or 
grid come from? Th e famous German philoso-
pher Immanuel Kant proposed in the eighteenth 
century that such an intrinsic spatial and tempo-
ral grid for the processing of extrinsic stimuli is 
constructed by our mind and its cognitive capac-
ities, like reason and understanding (see Kant 
1998, as well as Appendix 3 herein, Appendix 3 
in Volume II, and Northoff  2012a and 2012b). 
Since then, there has been much discussion 
and speculation in philosophy and psychology 
about the existence of some kind of mind and 
how it operates and processes extrinsic stimuli. 
Th is is well refl ected in the current disciplines of 
philosophy of mind and cognitive psychology/
sciences. 

 Nowadays, however, we know better. What 
the earlier (and also current) philosophers 
attributed to the mind may rather be related to 
the brain. We may thus need to search for the 
spatial and temporal “template” or “grid” in 
the brain itself (rather than outside the brain 
in some kind of “mind”). More specifi cally, the 
spatial and temporal template or grid may be an 
intrinsic feature of the brain itself. 

 What is an “intrinsic feature”? An intrinsic fea-
ture defi nes and determines the brain  qua  brain 
by making possible its neural activity and the 
various functions of the brain. Most importantly, 
such intrinsic features distinguish the brain from 
other organs of the body (like the heart, kidney, 
pancreas, etc.) (see Epilog in this volume as well 
as Introductions I  and II in Volume II for fur-
ther determination of extrinsic versus intrinsic 
features of the brain). Withholding further con-
ceptual discussion, I now suggest that the brain’s 
spatial and temporal template is such an intrinsic 
feature, without which the brain would encode 
and generate its neural activity in a completely 
diff erent way. 

 How can the brain itself generate such spa-
tial and temporal template or grid? To fi nd the 
answer, we need to consider the brain’s intrin-
sic activity, the neural activity that the brain 

generates by itself. Such intrinsic activity, which 
is also called “resting-state activity” (see the 
beginning of Chapter  4 for conceptual clarifi -
cation), must be distinguished from extrinsic 
activity, stimulus-induced activity, which is 
induced in the brain by extrinsic stimuli from 
outside the brain, i.e., from environment and 
body. To understand why and how the brain’s 
employs diff erence-based coding and sparse 
coding to achieve the encoding of its own neural 
activity, we must therefore understand the brain’s 
intrinsic activity and how it encodes changes in 
its own activity level during either spontaneous 
resting-state changes or extrinsic stimuli. 

 Th e aim of Part II is to understand the brain’s 
intrinsic activity; that, its resting-state activity, 
and how it constructs its own intrinsic spatial and 
temporal template or grid. Most importantly, we 
want to reveal the exact neuronal details of that 
intrinsic spatial and temporal template or grid 
in order to understand how it predisposes the 
brain to employ diff erence-based coding (rather 
than stimulus-based coding) and sparse coding 
(rather than dense or local coding) during the 
encoding and generation of its neural activity. 
In a nutshell, I propose that the brain’s intrinsic 
activity and its spatial and temporal template 
predispose it to use diff erence-based coding and 
consequently sparse coding.  

    GENERAL OVERVIEW   

 Chapter 4 discusses the basic anatomical struc-
ture of the brain and investigates how that 
translates into function, and ultimately into 
the brain’s intrinsic activity. I  demonstrate that 
such a structure–function transition is pos-
sible only by applying diff erence-based coding 
to the brain’s own intrinsic activity. Th is means 
that diff erence-based coding may apply not 
only to the encoding of extrinsic stimuli into 
neural activity, but also to the encoding of the 
brain’s own activity, its intrinsic activity. Such 
diff erence-based coding in turn is supposed to 
make possible the construction of a particular 
spatial structure that operates across and thus 
supersedes the brain’s anatomical structures. 

 Chapter 5 investigates the temporal features 
of the brain’s intrinsic activity. Here we will 
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consider neuronal measures of neural activ-
ity like functional connectivity and frequency 
fl uctuations, which, as I demonstrate, are inher-
ently temporal. Presupposing again the encod-
ing of the brain’s intrinsic activity in terms of 
diff erence-based coding, these neuronal mea-
sures constitute a particular temporal structure 
that supersedes and operates across the physical 
time constraints given by the neurons’ and the 
regions’ biophysical-computational features. 

 Finally, Chapter  6 discusses how neural 
inhibition as mediated by GABA is central for 
enabling diff erence-based coding of the brain’s 
intrinsic activity. Th is, in turn, provides the 
means for the brain’s intrinsic activity to encode 
its own intrinsic activity and its rest–rest interac-
tions in a sparse way, resulting in sparse coding 
of the brain’s intrinsic activity itself. 

 In sum, I  postulate that diff erence-based 
coding and sparse coding already apply to 
the brain’s intrinsic activity itself. Th e use of 
diff erence-based coding and sparse coding pre-
disposes the brain’s intrinsic activity to construct 
a spatial and temporal structure that super-
sedes and operates across its anatomical and 
biophysical-computational features. We will see 
later that this spatial and temporal structure of 
the brain’s intrinsic activity will prove central in 
encoding extrinsic stimuli into neural activity 
(see Chapters 11 and 12). 

 In other words, the construction of such 
spatial and temporal structure has major rami-
fi cations for any kind of subsequent neuronal 
processing and encoding, including the genera-
tion of stimulus-induced activity. Th is will be the 
focus in parts III and IV in this volume where 
we will demonstrate the neuronal and behavioral 

relevance of the spatial and temporal structure of 
the brain’s intrinsic activity. 

 In addition to its neuronal and behavioral 
relevance, I will argue that the spatial and tem-
poral structure of the brain’s intrinsic activity is 
central also for consciousness with phenomenal 
relevance. By applying diff erence-based coding 
and sparse coding, I  propose that the intrinsic 
activity and its spatial and temporal structure 
makes possible and necessary the association 
of consciousness and its phenomenal features 
to the otherwise purely neuronal activity dur-
ing either the resting-state (as in dreams; see 
Chapters  25 and 26)  or stimulus-induced 
activity (see Chapters  28 and 29)  (see also 
Northoff  2013). 

 Finally, it will turn out that the brain’s intrin-
sic activity and its spatial and temporal structure 
may be abnormally altered and thus dysfunc-
tional in psychiatric disorders like schizophrenia 
and depression (see Chapters 22 and 27). Recent 
fi ndings in these disorders indicate abnormal 
resting-state activity whose spatial and temporal 
structure may therefore be dysfunctional by pro-
viding the “wrong” kind of spatial and temporal 
template or grid for the subsequent encoding of 
extrinsic stimuli from environment and body. 
We will see in Volume II that such a hypothesis is 
indeed supported by both the neuronal fi ndings 
and the observed psychopathological symptoms 
(see Chapters  22 and 27). Accordingly, taken 
together, these fi ndings indicate that the intrinsic 
activity and its spatial and temporal structure are 
not only neuronally and behaviorally relevant, as 
discussed in this volume, but also phenomenally 
and psychiatrically relevant, as will be revealed 
in Volume II.    
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    Summary   

 We now switch from the brain’s extrinsic activ-
ity, i.e., stimulus-induced activity, as discussed 
in the fi rst part on sparse coding, to the brain’s 
intrinsic activity, the activity that the brain 
generates by itself and that stems from inside 
the brain. Th e brain’s intrinsic activity is very 
much based on its anatomical structure. As an 
alternative to the traditional medial-lateral and 
subcortical-cortical distinction, I  here, based 
on neuroanatomical data, suggest a threefold 
anatomical structure. Th is threefold anatomical 
structure has three rings—inner, middle, and 
outer—that extend and span from the subcorti-
cal to the cortical regions. Th e inner ring (limbic 
and paralimbic ring) is characterized by contin-
uous interoceptive input from the body, while 
the outer ring (lateral cortical and sensorimo-
tor regions) receives continuously unspecifi c 
exteroceptive inputs. Based on their diff erent 
inputs, I associate diff erent levels of resting-state 
activity with inner and outer rings and speak 
consequently of an “interoceptive baseline” 
(inner ring, interoceptive) and “exteroceptive 
baseline” (outer ring, exteroceptive). How about 
the third ring, the middle ring? Th e middle ring 
(subcortical and cortical midline regions) does 
not receive direct inputs from outside the brain 
(from either the body or its environment) and 
may therefore mirror the brain’s intrinsic activ-
ity the most closely; that is, the neural stimuli, 
so that, analogous to the other two baselines, 
I here speak of a “neural baseline.” How are these 
three anatomical-structurally defi ned rings 
related to each other on the functional level of 
the resting-state activity? Rather than operating 
in a parallel and segregated fashion, I  suggest 
that the diff erent baselines directly interact and 

balance each other on the functional level of 
neural activity in an interactive-integrative way. 
Th is is possible, however, I  propose, only on 
the basis of diff erence-based coding that allows 
the encoding of the neural diff erences between 
the three rings and their respective levels of 
resting-state activity. Such a diff erence-based 
coding of the brain’s intrinsic activity leads, 
in turn, to the constitution of a spatial struc-
ture on the functional level of the resting-state 
activity that supersedes and operates across the 
underlying anatomical structures; that is, the 
three rings.    

    Key Concepts and Topics Covered   

 Anatomical structure, medial-lateral, subcortical- 
cortical, three rings, resting-state, baseline, 
intrinsic activity, default-mode network, mid-
line regions, diff erence-based coding, spatial 
structure    

    NEUROEMPIRICAL BACKGROUND I: 
BRAIN-BASED ACCOUNT OF THE SPATIAL 
AND TEMPORAL TEMPLATE   

 Part I  focused on the encoding of extrinsic 
stimuli into neural activity by the brain. I  pro-
posed the brain to encode extrinsic stimuli 
from the environment (and the body) into its 
neural activity in a sparse way, which implies a 
many-to-one relationship between stimuli and 
neural activity. Such sparse coding, however, is 
possible only on the basis of diff erence-based 
coding as distinguished from stimulus-based 
coding. In other words, sparse coding presup-
poses diff erence-based coding. 

      CHAPTER 4 
 Spatial Structure of Intrinsic Activity        
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 One may now want back up one more step and 
raise the following question: How and why does 
the brain employ diff erence-based coding rather 
than stimulus-based coding in its encoding of 
extrinsic stimuli into neural activity? We saw 
in Part I  that diff erence-based coding can be 
described by the encoding of spatial and tem-
poral diff erences between the diff erent discrete 
points in physical space and time associated with 
the extrinsic stimuli. Th is means that the stimuli 
themselves and their respective discrete points 
in physical time and space are not encoded into 
neural activity in an isolated and independent 
way, as would be the case in stimulus-based 
coding. 

 How is it possible that the brain itself extracts 
and encodes temporal and spatial diff erences 
between diff erent stimuli rather than the stimuli 
themselves and their respective discrete points in 
physical time and space? For that, I hypothesize, 
the brain must itself provide some kind of intrin-
sic spatial and temporal template or grid against 
which the spatial and temporal diff erences of 
the extrinsic stimuli can be measured, extracted, 
computed, and encoded into neural activity. 

 Where can we fi nd such a spatial and tem-
poral template? Philosophers such as Immanuel 
Kant long assumed such a spatial and temporal 
template to be “located” in some kind of “mind.” 
One may want to speak here of a “mind-based 
account.” Th is, however, has changed in the last 
30 or 40  years, when cognitive functions have 
been explored which are now suggested to pro-
vide the kind of spatial and temporal blueprint 
we are looking for. Such a cognition-based 
account is the predominant view of many, if not 
most, of the current philosophers, psychologists, 
and neuroscientists. 

 I deviate from both mind- and cognition- 
based accounts when I  postulate that the 
brain itself and its intrinsic activity them-
selves construct the spatial and temporal tem-
plate. Rather than embracing either a mind- or 
cognition-based account of the spatial and 
temporal template, I here opt for a brain-based 
account (see Appendix 3 for details of such a 
brain-based account). Th is shift s the empirical 
focus from the encoding of extrinsic stimuli into 
the brain’s neural activity, as dealt with in Part I, 

to the brain itself and its intrinsic activity. Th is is 
our focus next.  

    NEUROCONCEPTUAL PRELUDE IA: 
CONCEPT OF “INTRINSIC ACTIVITY”   

 Before going ahead with the detailed empiri-
cal fi ndings, we need to make some conceptual 
clarifi cation about the terms “intrinsic activity,” 
“resting-state,” and “baseline.” Th erefore I start this 
chapter with three short neuroconceptual remarks. 

 Let’s start with the concept of intrinsic activ-
ity. Intrinsic activity must be distinguished 
from extrinsic activity; the concept of  intrinsic  
refers to the brain itself as distinguished from 
the body and environment, which are  extrinsic  
to the brain. Hence, when describing the brain 
by its intrinsic activity, we refer to the origin of 
the activity that is to be traced back to the brain 
itself. Accordingly, the concept of intrinsic activ-
ity refers only and exclusively to the origin of the 
stimuli and thus to the brain itself. 

 Such a neural origin of the brain’s neural 
activity must be distinguished from the bodily 
or environmental origins of the brain’s neural 
activity during the neural processing of intero- 
and exteroceptive stimuli. If the origin of neural 
activity in the brain stems from outside the brain; 
that is, from the body and environment, one may 
speak of “extrinsic activity” (see   Fig. 4-1  ).      

 One may now want to argue that there is no 
purely intrinsic activity in the brain. Th is may 
be so since any activity is always already con-
founded by the unspecifi c intero- and extero-
ceptive inputs from body and environment that 
can never be shut off  completely. One may thus 
propose that the brain’s intrinsic activity is not 
purely intrinsic, but represents rather a mixture 
of both intrinsic and extrinsic activity. 

 Th is, however, should not deter us from 
searching for approximations where the 
brain’s neural activity comes closest to a state 
of pure intrinsic activity. As we will see later, 
the default-mode network (DMN) may be an 
instance where there seems to be a high degree 
of intrinsic activity while the degree of extrinsic 
activity seems to be rather low. 

 Accordingly, when we speak of “intrinsic” 
activity, we refer to a certain balance between 
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neural activities stemming from sources both 
intrinsic and extrinsic to the brain. Th is is the 
way I understand and use the concept of intrin-
sic activity in the following discussion.  

    NEUROCONCEPTUAL PRELUDE IB: 
CONCEPT OF “RESTING STATE”   

 While the concept of intrinsic activity describes 
the origin of neural activity within the brain, the 
term  resting-state activity  refers to the (presence 
or) absence of specifi c stimuli. Specifi c bodily 
(i.e., interoceptive) and environmental (i.e., 
exteroceptive) stimuli may be either present, 
in which case one speaks of stimulus-induced 
activity, or any specifi c stimuli may be absent, 
in which case, at least operationally, one speaks 
of resting-state activity (see Northoff  et  al. 
2010a and b, Logothetis et al. 2009, Duncan and 
Northoff  2012). Experimentally, resting-state 
activity in this sense is probed by measuring 
neural activity while the subject’s eyes are closed. 

 Th e concept of resting-state activity suggests 
by its very defi nition that the brain is at rest. 
Th at, however, is not true. Th ere is the brain’s 
intrinsic activity, which is continuously present 
as sketched above. And there is the continuous 
unspecifi c intero- and exteroceptive input from 
both body and environment that cannot be elimi-
nated completely, even with eyes closed. Neither 
the continuous interoceptive input from the 
body nor the continuous unspecifi c exteroceptive 
input from the senses (other than the visual) that 
remain “open” (the auditory and all other senses) 
can be shut off  completely in the resting state. 

 On whole, this implies that the term “resting 
state” is somewhat paradoxical. Th e concept of 
“rest” implies that the brain does not do anything 
and is completely inactive. Th at however, as 
shown, is not true. Th e opposite holds; namely, 
that the brain is continuously active and is con-
tinuously encoding changes into its own neural 
activity with the changes being related either to 
the intrinsic or to the extrinsic activity. 

 

Intrinsic Activity

Origin of activity
from within or
without the brain

Brain-based
concept 

Resting State

Absence of specific
(exteroceptive) stimuli

Baseline

Operational standard and
reference for measurement
of changes in neural activity

Observer-based
concept

   Figure 4-1     Concepts of intrinsic activity, resting-state, and baseline.    Th e fi gure illustrates the three 
concepts of intrinsic activity, resting-state activity, and baseline. Th e concept of intrinsic activity regards 
the origin of neural activity in the brain that may stem from either inside of the brain (i.e., intrinsic) or 
outside the brain (i.e., extrinsic). Th e concept of the resting-state refers to the absence of specifi c extero-
ceptive stimuli, as this proposes the brain to be in rest with regard to exteroceptive stimuli. Th is concept 
is somehow paradoxical since there is no real “rest” in the brain, which shows ongoing and continuous 
activity even in the supposedly resting-state. Th e resting-state is tested experimentally by closing the 
eyes, indicating the absence of visual stimuli. Th e concept of the baseline describes a standard for mea-
suring neural activity changes in the brain as, for instance, induced by stimuli. As such, the concept of 
baseline is a purely operational concept used for experimental purposes. Th at implies that it is strongly 
related to the observer and his or her way of experimental measurement rather than the brain itself for 
which the concept of intrinsic activity seems to be more paradigmatic.   
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 Th e brain itself, and its continuous encoding 
and generation of neural activity changes, thus 
seems to defy the concept of resting-state that we 
observers apply to experimentally investigate its 
diff erent forms of neural activity. We should be 
careful, however. Th e term “resting state” makes 
more sense once we consider it in the context of 
our observation. All we can do experimentally 
is to eliminate specifi c sensory inputs so that, 
from our experimental perspective as observ-
ers, the state of the brain comes maximally close 
to a pure and real resting-state. Th e term “rest-
ing state” thus stands between the brain itself 
and our observation of it; it may therefore be 
regarded as both a brain- and an observer-based 
concept.  

    NEUROCONCEPTUAL PRELUDE IC: 
CONCEPT OF “BASELINE”   

 Finally, both concepts, intrinsic activity and 
resting-state activity, need to be distinguished 
from that of “the baseline.” Th e concept of the 
baseline refers neither to a specifi c origin (like 
the concepts of intrinsic and extrinsic activity) 
nor to the absence or presence of specifi c stimuli 
(like the concept of resting-state). Instead, the 
term “baseline” pertains very much to the way 
we as observers can observe and investigate the 
brain’s intrinsic activity or resting-state activity. 

 We conduct our experiments by applying 
specifi c stimuli or tasks and investigating their 
eff ects (i.e., stimulus-induced or task-related 
activity). To calculate the degree of activity 
change the stimuli or task elicit in the brain, 
we need to set them against a specifi c standard 
or measure. Th is standard or measure is the 
brain’s  baseline , which oft en is cancelled out and 
neglected in the analysis of imaging data (see 
Raichle et  al. 2001; Raichle 2010; Morcom and 
Fletcher 2007a and 2007b). 

 Accordingly, the term “baseline” refers to a 
standard or reference for our measurement of 
neural activity changes. As such, it is related only 
to the observer and thus to us, rather than to the 
brain itself, independent of any observers. I con-
sequently characterize the term “baseline” as an 
 observer-based  concept (as distinguished from a 
 brain-based  concept). 

 Aft er shedding some light on the concepts 
of “intrinsic activity,” “resting state,” and “base-
line,” we are now ready to further investigate 
how the brain encodes and generates its own 
intrinsic activity and thereby constitutes a spatial 
template.  

    NEUROANATOMICAL BACKGROUND IA: 
MEDIAL-LATERAL DISTINCTION VERSUS 
RADIAL-CONCENTRIC ORGANIZATION 

   Th e brain can be characterized by diff erent 
regions, such as, for instance, the cortical and 
subcortical regions, which are also connected to 
each other by various tracts and fi bers. Th is is the 
anatomy of the brain; its anatomical structure. 
Th e anatomical structure describes the organiza-
tion of regions and connections across the whole 
physical space of the brain; that is, its diff erent 
regions and their connections. Any intrinsic 
activity in the brain, i.e., its resting-state activ-
ity, can only arise on the basis of the brain’s ana-
tomical structure. In short, function is based on 
structure. Before considering the brain’s intrinsic 
activity by itself, its resting-state activity, we will 
therefore discuss the brain’s anatomical structure. 

 How can one describe the anatomical structure 
of the brain? Traditionally, the brain is divided 
into medial and lateral parts as well as into sub-
cortical and cortical regions. Such a medial-lateral 
and subcortical-cortical distinction is mainly 
based on how the observer considers the brain 
from the outside as he views its anatomical struc-
ture. From the outside of the brain, as observed 
by us, the brain can be divided into medial and 
lateral parts as well as into subcortical and cor-
tical regions. Th is led to the medial-lateral and 
subcortical-cortical distinctions as they are com-
monly employed in neuroanatomy in particular 
and neuroscience in general. 

 However, the traditional subcortical-cortical 
distinction especially has been called into doubt 
by the Dutch neuroanatomist Nieuwenhuys, 
who suggested integrated subcortical-cortical 
systems. And he also refi ned the medial-lateral 
distinction into a threefold ring-like (inner, mid-
dle, outer) distinction. Rather than distinguish-
ing between medial and lateral parts of the brain, 
he characterizes the brain anatomically by three 
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diff erent rings that, like the diff erent layers of an 
onion, form a radial-concentric organization. 

 How is such a radial-concentric organiza-
tion of the brain’s anatomy related to its intrin-
sic activity and its spatial pattern? I suggest that 
the spatial organization of the brain’s intrinsic 
activity follows the radial-concentric organiza-
tion of its underlying anatomy. Accordingly, in 
order to understand the spatial patterns of the 
brain’s intrinsic activity, we need to shed some 
light on the radial-concentric organization of its 
anatomy. Th is is the focus in the next sections.  

    NEUROANATOMICAL BACKGROUND IB: 
RADIAL-CONCENTRIC ORGANIZATION 
ON THE SUBCORTICAL LEVEL   

 Let’s start with the subcortical regions. 
Nieuwenhuys proposed a radial-concentric 
organization in subcortical regions; these are 
located concentrically or radially around the 
aqueduct and extend progressively from medial 
to lateral locations (Nieuwenhuys 1996, 1999; 
Nieuwenhuys et  al. 1988/1989). Based on vari-
ous features (see below), he distinguished the 
subcortical regions into three distinct territo-
ries:  core, paracore (including median and lat-
eral paracore territories), and lateral regions, 
which, despite being closely interconnected, 
can be distinguished from each other on 
anatomical-structural grounds. 

 How can we assign such a radial-concentric 
organization to concrete anatomical regions and 
nuclei in subcortical regions? “Core subcortical 
regions” refers to the regions that are located in 
direct proximity to the aqueduct (third ventricle) 
and may thus be described as “paraventricular” 
or “periaqueductal.” Th ese subcortical regions 
include the periaquaductal gray (PAG), the pon-
tine central gray, the medial hypothalamus, the 
septum, the parabrachial nuclei, and the dorsal 
vagal complex. 

 How about the middle ring, the paracore, on 
the subcortical level? Th e subcortical paracore 
regions are located directly adjacent to the core 
regions, where one may distinguish between 
median and lateral paracore regions. Subcortical 
median paracore regions include the raphe nuclei, 
the lateral hypothalamus, and the bed nucleus of 

the stria terminalis. Th ese are closely connected to 
the bilateral paracore regions that include the ven-
tral tegmental area (VTA), the locus coeruleus, 
the substantia nigra, and the nucleus reticularis. 

 How about the third ring in the subcortical ter-
ritory? Th ere is a subcortical territory lateral to the 
paracore and its median and lateral regions. Th is 
most lateral territory is described by Nieuwenhuys 
as “lateral regions”; these include mainly the 
ascending and descending sensory and motor 
tracts. In addition to its anatomical-structural 
features, the subcortical radial-concentric orga-
nization can also be characterized by biochemi-
cal and functional features that distinguish the 
three rings (core, paracore, lateral) in analogous 
ways. Th e inner and middle rings (core and para-
core regions) can be distinguished from the outer 
(lateral-peripheral) ring with respect to their 
fi bers (myelinated or unmyelinated); biogenic 
amines (serotonin, noradrenaline/adrenaline, 
dopamine, histamine); circumventricular organs, 
gonado-steroid receptors, and coherent behavior 
(as induced by localized electrical stimulation of 
the brain) (see Nieuwenhuys 1996, pp. 560–567; 
Feinberg 2009; for details). 

 How can we distinguish the three subcortical 
divisions in functional terms; for example, by the 
stimuli they process? According to Niewenhuys 
and coworkers, the core and paracore regions are 
functionally characterized by their predominant 
involvement in processing interoceptive stimuli 
and regulating the body’s homeostatic milieu, 
vegetative-autonomic functions, and a variety of 
specifi c emotional and motivational processes. 
In contrast, the most lateral or peripheral sub-
cortical ring is rather involved in the processing 
of exteroceptive and sensorimotor stimuli (see 
also Northoff  et al. 2011, and Feinberg 2009 and 
2011 for more details).  

    NEUROANATOMICAL BACKGROUND IC: 
INNER AND OUTER RINGS IN THE   
RADIAL-CONCENTRIC ORGANIZATION 
ON THE CORTICAL LEVEL   

 How is such a radial-concentric organization of 
the subcortical regions into three rings related to 
higher regions and ultimately the cortex? Taking 
MacLean’s and Nauta’s concept of the limbic 
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system (and midline system) as a starting point, 
Nieuwenhuys (1996, 2011, 2012)  proposes the 
subcortical core-paracore system to extend into 
the mesencephalon and diencephalon, where 
it is closely connected to the hypothalamus 
and various regions in the forebrain, includ-
ing the amygdala, septum, hippocampus, and 
parahippocampal gyrus. 

 Th is led to the concept of the “greater, distrib-
uted or extended limbic system” (de Olmos and 
Heimer 1999; Heimer 2003; Morgane et al. 2005; 
Morgane and Mokler 2006). Todd Feinberg 
(2009, 2011) takes this one step further, and pro-
poses the radial-concentric organization to also 
hold on the level of the cortex; he consecutively 
suggests the three subcortical rings to extend and 
continue to the cortex, where he distinguishes 
three corresponding cortical rings. 

 Th e fi rst cortical ring is the inner ring at the 
most medial location directly adjacent to the 
fi rst and second ventricle. Th e cortical inner 
ring includes paralimbic areas that comprise 
the lower parts of the orbitofrontal cortex, the 
perigenual and supragenual anterior cingulate 
cortex (PACC, SACC), the posterior cingulate 
cortex (PCC), the retrosplenial cortex (RSC), the 
temporal pole, and the insula (see Nieuwenhuys 
2012 for a recent paper specifi cally on the anat-
omy of the insula). Th e inner ring on the corti-
cal level must be considered an extension of the 
subcortical inner ring and its core regions, as 
described earlier. 

 Both cortical and subcortical inner ring 
regions are closely connected to each other and 
can thus be proposed to form some kind of func-
tional unity (see below). More specifi cally, the 
cortical regions of the inner ring, like the ante-
rior cingulate (PACC, SACC, PCC), the caudal 
orbitofrontal cortex, the temporal poles, and 
the insula, are characterized by strong inputs 
from especially the subcortical core regions like 
the PAG (see Nieuwenhuys 1996, 573). Due to 
their tight and close connections, he postulates 
the cortical inner ring regions to continue and 
extend the predominant processing of interocep-
tive stimuli from the body as conveyed from the 
subcortical core regions. 

 Another cortical ring is the outer ring that 
is located most laterally at the outer surface of 

the brain. Th is includes the sensory cortex, the 
motor cortex, and lateral cortical regions like the 
lateral prefrontal, parietal, and occipital cortex. 
Such an outer ring on the cortical level must be 
considered an extension of the lateral regions 
subcortically. Hence, both subcortical and corti-
cal outer rings do predominantly process extero-
ceptive stimuli from and to the environment, 
thus concerning the diverse sensory and motor 
stimuli.  

    NEUROANATOMICAL BACKGROUND ID: 
MIDDLE RING IN THE RADIAL-CONCENTRIC 
ORGANIZATION ON THE CORTICAL LEVEL   

 Finally, there is also a middle ring on the corti-
cal level that is sandwiched between inner and 
outer rings and must be considered an extension 
from the subcortical median and lateral para-
core regions. Th e middle ring includes regions 
like the medial orbitofrontal cortex, the ven-
tromedial and dorsomedial prefrontal cortex 
(VMPFC, DMPFC), and the medial parietal 
cortex (MPC), which have recently been sub-
sumed under the concept of  cortical midline 
structures  (CMSs) (Northoff  and Bermpohl 
2004 Northoff  et al. 2006).Th e VMPFC and the 
DMPFC receive, for instance, strong input from 
especially the raphe nuclei as median paracore 
regions, and the locus coeruleus as lateral para-
core regions (Morgane et al. 2005; Nieuwenhuys 
1996). Th erefore, subcortical and cortical middle 
rings are closely linked and must therefore be 
considered a functional unity. 

 In contrast to the inner and outer rings, 
the middle ring does not receive any direct 
input from either the body or the environment 
and may therefore predominantly integrate 
intero- and exteroceptive stimuli as processed 
in the other two rings. For instance, Feinberg 
(2009) proposes the middle ring to account for 
intero-exteroceptive integration, which ulti-
mately constitutes what he describes as “integra-
tive self-system” (see Volume II, Part VII, for the 
discussion of the self in the context of the corti-
cal midline structures). 

 Taken together, the traditional medial-lateral 
twofold anatomical dichotomy is here chal-
lenged by a threefold anatomical distinction 
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between three diff erent concentric rings, inner, 
middle, and outer, that extend from subcortical 
to cortical regions. On the cortical level, these 
three rings can be characterized as paralimbic 
(inner ring), heteromodal/CMS midline (middle 
ring), and exterosensorimotor/lateral associa-
tion (outer ring). 

 Subcortically, the three rings correspond to 
the distinction between core, median/lateral 
paracore, and lateral subcortical regions. Due to 
the strong connections between subcortical and 
cortical regions within each ring, inner, middle, 
and outer rings must be considered to be three 
distinct anatomical-structural and functional 
unities (see   Fig. 4-2  ).      

 Th e question now is how this anatomical 
structure translates into the brain’s resting-state 

activity and its pattern and distribution across 
the diff erent regions and rings of the brain, 
thereby constituting the resting-state’s spatial 
structure. For that, I now consider recent fi nd-
ings from the imaging of the brain’s resting-state; 
that is, its intrinsic activity (see below for con-
ceptual clarifi cation of both terms).  

    NEURONAL FINDINGS IA: NEURAL 
ACTIVITY IN THE RESTING STATE 
DURING EYES CLOSED AND OPEN—
INITIAL FINDINGS   

 How does the radial-concentric anatomical- 
structural organization translate into the brain’s 
intrinsic activity? For that answer, we may need 
to investigate the brain in what is called the 

 

inner ring     : core-paralimbic system (grey)
middle ring  : paracore-midline system (dark white)
outer ring     : lateral-lateral system (lighter grey)
ventricular system (dark grey)

   Figure 4-2     Radial concentric anatomo-spatial organization in subcortical and cortical regions.    Th e 
fi gure illustrates the three diff erent rings in the anatomical organization of subcortical and cortical 
regions. Th e inner ring is marked in grey and describes the core-paralimbic system located adjacent to 
the ventricles (marked in dark grey ) on both levels subcortical and cortical. Th e middle ring is marked 
in dark white (and signed as medial on the cortical level) and describes the paracore-midline system 
located adjacent to the inner ring on both subcortical and cortical levels. Finally, the outer ring concerns 
the most lateral regions (lateral-lateral system) and is marked in lighter grey (and signed by lateral 
on the cortical level) on both levels subcortical and cortical. Th e threefold ring-based radial anatomi-
cal organization is supposed to replace the twofold medial-lateral dichotomy, which concerns only the 
cortex rather than, as the former, integrating subcortical and cortical regions into an anatomical con-
tinuum. Th e exact assignment of the diff erent subcortical and cortical regions to the three diff erent 
rings is discussed in the text.   
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“resting state,” the absence of any specifi c stim-
uli from the environment (see below for more 
detailed conceptual clarifi cation). Th e standard 
and operationalized way of doing this experi-
mentally is to close your eyes and to compare 
that neural activity with what you can observe 
when opening your eyes (see also Logothetis 
et  al. 2009, as well as Duncan and Northoff  
2012). I  therefore describe some (of the many) 
recent imaging results on the neural eff ects of 
closing and opening the eyes while the subjects 
are otherwise at rest. 

 Marx et al. (2004) compared the fi xation of a 
light-emitting diode with eyes closed. Open eyes 
with fi xation yielded increased signal changes in 
the lateral orbitofrontal cortex, the lateral and 
medial prefrontal cortex, the inferior parietal 
lobule, the dorsal thalamus, the putamen, the 
caudate, and the globus pallidus, when com-
pared to closed eyes. However, decreased signal 
changes were observed in visual (that is, pri-
mary, secondary, and tertiary), somatosensory, 
acoustic, and vestibular areas, meaning that sig-
nal changes in the regions were reduced when 
opening the eyes and fi xating on the stimulus 
(i.e., the light-emitting diode). Th e authors also 
investigated two further conditions, eyes open 
in a dark room and eyes open in an illuminated 
room while no fi xation was required. Th ese two 
conditions led to signal changes in predomi-
nantly visual areas when compared to each other, 
as well as to eyes open with fi xation, and eyes 
closed. 

 Another study by McAvoy et al. (2008) also 
compared the neuronal diff erences between 
eyes open and closed in functional magnetic 
resonance imaging (fMRI). Th ey observed 
that the BOLD spectral density and thus the 
BOLD oscillations were mostly modulated in 
visual (primary, secondary, and tertiary), audi-
tory, sensory-motor, and retrosplenial cortex 
when switching from eyes closed to eyes open. 
Using a 7 Tesla scanner,, Bianciardi et al. (2009) 
observed that spontaneous activity (as distinct 
from evoked activity) in visual areas was signifi -
cantly reduced (that is, up to 44% in amplitude 
and 25% in coherence) in the eyes-open and 
fi xating condition, compared to the eyes-closed 
condition.  

    NEURONAL FINDINGS IB: NEURAL 
ACTIVITY IN THE RESTING STATE 
DURING EYES CLOSED AND OPEN—
RECENT FINDINGS   

 A study in our group (Qin et al. 2013) also inves-
tigated the change in activation pattern during 
the transition from eyes closed to eyes open. In 
addition to the visual cortex, the bilateral audi-
tory cortex was also activated more strongly 
during eyes open when compared to eyes closed. 
Hence, the unspecifi c visual input during eyes 
open exerted also a cross-modal eff ect on the 
auditory cortex and its specifi c resting-state 
activity level. 

 Th e involvement of the auditory cortex was 
also confi rmed in another study by Qin et  al. 
(2013). He compared auditory cortical activity 
during the presence and absence of the fMRI 
noise using a special acquisition technique called 
“sparse sampling.” Th is allowed him to observe 
the auditory cortex in a true resting state; that is, 
absence of “scanner noise,” even in fMRI. 

 In a next step, he investigated how such a 
resting-state activity in the auditory cortex is 
modulated by opening and closing the eyes: eyes 
open leads to considerable activity increases in 
the auditory cortical activity and concurrent 
changes in visual-auditory cortical connectiv-
ity. Th ese data further support the assumption of 
cross-modal eff ects between, for instance, visual 
and auditory cortex being already present in the 
resting-state. 

 Another recent study by Jao et  al. (2013) 
observed a decrease in various dynamic mea-
sures of brain function during eyes open in dif-
ferent regions, including the visual cortex, other 
sensory cortices, medial and lateral cortical 
regions, and subcortical regions like the thala-
mus. For instance, the degrees of functional con-
nectivity, signal variability, and amplitude of low 
frequency fl uctuations decreased during eyes 
open when compared to eyes closed. 

 Taken together, these results (and others 
not detailed here, also using EEG in addition to 
fMRI; see Chapter 5 for the EEG results) show 
clear neuronal diff erences between eyes open and 
eyes closed. As expected, the data show neural 
activity diff erences, mainly in the visual cortex, 
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but also in various other subcortical and cortical 
regions, which, following the results, concerned 
especially lateral prefrontal and parietal regions 
in the outer ring (see later for discussion of the 
inner and middle rings’ regions during eyes open 
and closed).  

    NEURONAL HYPOTHESIS IA: SHIFT FROM EYES 
CLOSED TO EYES OPEN AS SHIFT FROM INNER 
TO OUTER RING   

 I distinguished three diff erent subcortical-cortical 
rings on neuroanatomical grounds. Th ereby the 
outer ring on the cortical level concerned espe-
cially sensorimotor and lateral frontal and pari-
etal regions, whereas the inner ring concerned 
mainly cortical midline and limbic regions. Th e 
question now is whether, and if so, how, such a 
radial-concentric anatomical structure is mir-
rored on the functional level of the brain’s intrin-
sic activity; that is, its resting-state activity. 

 Since it concerns exteroceptive input, one 
would expect the diff erence between eyes open 
and closed to induce neural activity changes, 
predominantly in the regions of the outer ring 
like the sensory cortex and the lateral frontal 
cortex. Th is was indeed the case in various neu-
ronal measures like signal variability, functional 
connectivity, and amplitude of low frequency 
fl uctuations, as the aforementioned results show. 

 Th e sensory regions included not only the 
visual cortex but also other sensory regions such 
a as the auditory and somatosensory cortex. In 
addition, lateral cortical regions like the lateral 
prefrontal and parietal cortices also changed 
their neural activity during the transition from 
eyes closed to eyes open (see the next section 
for the involvement of midline regions in eyes 
closed and open). 

 Th e observed activity pattern during the tran-
sition from eyes closed to open is well in accor-
dance with the neuroanatomical assumption of 
an outer ring. Th e regions activated during the 
shift  from eyes closed to open, the sensory cor-
tices and the lateral cortical regions (as well as 
the lateral subcortical regions), conform (more 
or less) to the regions that form the outer ring 
on anatomical-structural grounds. Th is means 
that there seems to be some kind of relationship 

between the anatomical-structural organiza-
tion and the functional level of the resting-state 
activity.  

    NEURONAL HYPOTHESIS IB: “INTERO- AND 
EXTEROCEPTIVE STATES” DURING EYES CLOSED 
AND OPEN   

 How can we specify the link between anatomical- 
structural organization and the functional level 
of the resting-state activity? On the basis of their 
results (see earlier), Marx et al. (2004) propose 
an “interoceptive state” of the brain when the 
eyes are closed and the person is at rest. Closing 
the eyes means that the visual (and in an ideal 
case, all sensory and thus exteroceptive) inputs 
are prevented from entering and modulating the 
brain’s activity. 

 Th e only input the brain receives here is the 
interoceptive input from the body. Hence, if we 
subtract the neural activity induced by the exter-
nal or exteroceptive sensory input during eyes 
open from the one during eyes closed, the brain’s 
activity related to interoceptive stimuli may 
surface in the “interoceptive state” of the brain 
(see also Chang et al. 2013 for a recent study on 
the dependence of the resting-state functional 
connectivity on the heart rate variability, thus 
further supporting the assumption of an intero-
ceptive state in resting-state activity). 

 How can we characterize such an “interocep-
tive state” during the brain’s resting-state activ-
ity? Th e “interoceptive state” of the brain can be 
characterized functionally by the predominance 
of interoceptive input into the neural activity 
of the brain. Th is is operationalized and tested 
experimentally by closing the eyes. Accordingly, 
we seem to tap into a predominant “interocep-
tive state” when we measure neural activity dur-
ing eyes closed. 

 If, in contrast, the exteroceptive input domi-
nates the neural activity of the brain during the 
supposed resting-state as it does during eyes 
open, one may speak, analogously, of an “extero-
ceptive state.” Note that the person is still at rest 
(by defi nition) since the person does not need 
to process specifi c stimuli or tasks (see earlier 
for more detailed explanation of the concept 
of “resting-state”). In a nutshell, I  suppose eyes 
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closed to refl ect an “interoceptive state” while 
eyes open leads to an “exteroceptive state.”  

    NEURONAL HYPOTHESIS IC: OUTER RING 
AND THE “EXTEROCEPTIVE BASELINE” OF THE 
RESTING-STATE ACTIVITY 

    How can we now further specify both “intero- 
and exteroceptive states of the brain”? Th ese are 
states of the brain when the person is at rest, 
meaning that the subject does not need to do 
anything actively by himself, such as processing 
particular stimuli or performing specifi c tasks 
(motor, sensory, cognitive, social). If during such 
a resting state, i.e., the absence of specifi c stim-
uli or tasks, the unspecifi c interoceptive input 
(from the body) dominates, one can speak of an 
“interoceptive state of the brain.” If, in contrast, 
the exteroceptive input (from the environment) 
predominates, the brain is rather in an “extero-
ceptive state” with only unspecifi c but no specifi c 
exteroceptive input. 

 What is the functional role of such a “extero-
ceptive state of the brain” and its unspecifi c 
exteroceptive input? Barry et  al. (2007) pro-
pose that the processing of such a unspecifi c 
visual input (as during eyes open) prepares 
and activates the visual cortex (and other sen-
sory cortices) for the subsequent processing of 
more specifi c visual (and other sensory) inputs. 
Th ereby the unspecifi c visual input sets a base-
line neural activity into motion that serves as 
threshold for the subsequent processing of the 
more specifi c visual stimuli. 

 Barry et al. (2007) consequently speak of what 
they describe as an “activation baseline.” Th e 
concept of the “activation baseline” describes 
the recruitment of neural activity especially in 
sensory cortex by unspecifi c exteroceptive; that 
is, sensory, stimuli that activate the respective 
regions. Th is is the level of activation in espe-
cially the sensory cortical regions that more 
specifi c sensory stimuli encounter and must 
surpass in order to be processed and induce 
stimulus-induced activity. 

 Th e “activation baseline” is constituted of 
exteroceptive stimuli and operates as thresh-
old for any subsequent neural processing of 
more specifi c exteroceptive stimuli. Due to the 

shaping of the activation baseline by exterocep-
tive stimuli, I prefer to speak of an “exteroceptive 
baseline” (rather than an activation baseline). 
Th e term  exteroceptive baseline  better indicates 
the kind of stimuli that set the threshold or level 
of baseline for any subsequent neural processing. 

 In addition to such a conceptual refi nement, 
I  also suggest neuroanatomical extension is in 
play. Rather than being limited to the sensory 
cortex (and especially the visual cortex) as the 
concept of the activation baseline implies, I con-
sider the exteroceptive baseline to apply to other 
regions, too. Th e earlier described fi ndings dur-
ing the shift  from eyes closed to open indicate 
that various regions to change their activity 
level, mostly those in the outer ring. Th erefore, 
I  hypothesize the “exteroceptive baseline” to 
signify resting-state activity, especially in the 
regions of the outer subcortical-cortical ring.  

    NEURONAL HYPOTHESIS ID: INNER RING 
AND THE “INTEROCEPTIVE BASELINE” OF THE 
RESTING-STATE ACTIVITY   

 How about the resting-state activity in the sub-
cortical and cortical regions of the inner ring? As 
detailed earlier, the inner ring is characterized 
by the predominant processing of interoceptive 
stimuli. Th is may be best visible when closing 
the eyes, thereby coming into what Marx et  al. 
(2004) described as “interoceptive state.” Barry 
et al. (2007) refer to such interoceptive state as 
the “arousal baseline,” which describes an unspe-
cifi c state of arousal related to the predominantly 
interoceptive input. 

 However, as in the case of the “activation 
baseline,” I prefer to specify the kind of stimuli 
that set the resting-state activity level. I  there-
fore speak of “interoceptive baseline” that, as 
I  suggest, characterizes the resting-state activ-
ity level in the inner ring. I hence postulate that 
the “interoceptive baseline” is most prevalent in 
regions like the anterior and posterior cingulate 
cortex as well as in the insula as the inner ring’s 
core regions (see   Fig. 4-3  ).      

 I here distinguish between “intero- and 
exteroceptive baselines” that are supposed to 
characterize the resting-state activity in inner 
and outer rings, respectively. Th ereby, both 
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baselines describe the resting-state activity level 
that as an operational term refers to the brain’s 
intrinsic activity (see earlier discussion). I  pro-
pose that the brain’s intrinsic activity in the inner 
and outer ring is maintained predominantly by 
the neural processing of the continuous input of 
unspecifi c intero- and exteroceptive stimuli. 

 In contrast to the specifi c intero- and extero-
ceptive inputs, the continuous input of unspe-
cifi c intero- and exteroceptive stimuli can never 
be completely shut off  and thus prevented from 
entering the brain. Due to the continuous 
input of such extrinsic stimuli, i.e., intero- and 
exteroceptive, the brain’s resting-state activ-
ity is  not  as purely intrinsic as the term sug-
gests; there is always already some extrinsic 

ingredient as related to the unspecifi c intero- 
and exteroceptive input.  

    NEURONAL FINDINGS IIA: RESTING-STATE 
ACTIVITY IN MIDLINE REGIONS – SIGNAL 
CHANGES 

   So far, I  have considered mainly the regions 
of the outer ring when discussing the results 
from eyes open and eyes closed. Th is, however, 
neglects the fact that the middle and inner rings’ 
midline regions, like the VMPFC, the PACC, the 
DMPFC, and the PCC, do also change their level 
of neural activity during the transition from eyes 
closed to eyes open. We could also see in the ear-
lier described results by Marx and McAvoy as 
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   Figure 4-3     Diff erent baselines in the brain.    Th e fi gure shows the three diff erent kinds of baselines 
I hypothesize to be present in the brain and their relation to the basic anatomy. Th e “neural baseline” 
describes the resting-state activity of the brain that is generated within the brain itself as distinguished 
from being traced back to stimuli from outside the brain. Th e neural baseline is best visible in the mid-
line structures and thus the middle ring (see Fig. 4-1), which do not receive direct intero- or exterocep-
tive input. Th e “interoceptive baseline” describes the resting-state activity in the brain that can be traced 
back to the interoceptive input from the body that the brain receives continuously. Since interocep-
tive stimuli enter the brain through its inner ring, the region adjacent to the ventricles, I marked the 
interoceptive baseline accordingly. Finally, one may also want to speak of an “exteroceptive baseline” 
that describes the resting-state activity that can be traced back to the continuous exteroceptive input 
through the senses (except for the visual sense, all four other senses still process exteroceptive stimuli 
during rest). Since they are processed mostly in lateral regions of the outer ring, I marked the exterocep-
tive baseline accordingly.   
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well as others, the involvement of these regions. 
Th is has been further substantiated in a more 
recent study by Qin et al. (2012a) from our group 
and others (see later, as well as Jao et al. 2013). 

 Comparing blocks of 20s with eyes open 
with blocks of 20s with eyes closed, Qin et  al. 
(2012a) showed that eyes open induced signifi -
cantly stronger signal changes in various mid-
line regions when compared to eyes closed (see 
  Fig.  4-4a  ). Th is concerned regions from both 
inner and middle rings like PACC and PCC, as 
well as VMPFC, DMPFC, and the precuneus. 
Hence, the regions of the inner and middle ring 
seem to change and modulate their neural activ-
ity in response to changes in the visual input 
during the transition from eyes closed to open 
(see   Fig. 4-4a  ).      

 How can we gather further empirical sup-
port for the possible involvement of the midline 
regions in the brain’s resting-state activity? For 
that, we now focus on neuronal measures other 
than mere signal changes; these include func-
tional connectivity, signal variability, and ampli-
tude of low frequency fl uctuations and how they 
change during the transition from eyes closed to 
open. To do that in fMRI, one has to investigate 

longer periods like 5–6 minutes of either eyes 
closed or open. Let’s now look into whether 
opening the eyes changes functional connectiv-
ity (and the other neuronal measures) between 
the various midline regions within, for instance, 
inner and middle rings.  

    NEURONAL FINDINGS IIB: RESTING-STATE 
ACTIVITY IN MIDLINE REGIONS – FUNCTIONAL 
CONNECTIVITY   

 Yan et  al. (2009) investigated and compared 
diff erent resting-state conditions with each 
other:  eyes closed, eyes open without fi xation 
cross, and eyes open with fi xation cross. Using 
fMRI, they measured functional connectivity 
by constructing connectivity maps for the tar-
get regions as well as low-frequency oscillation 
amplitude (0.01–1 Hz). Th ey focused in particu-
lar on the default-mode network (DMN) (see 
later for more details about the DMN), and more 
specifi cally on the CMSs, while neglecting the 
other regions of the brain. 

 Th ey observed that generally the functional 
connectivity between anterior (PACC, VMPFC) 
and posterior (PCC, precuneus) midline regions 
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   Figure  4-4a     Resting-state activity in inner and middle  ring.      Activated brain areas based on the 
contrast Eyes open (EO) > Eyes closed (EC) from a block-design experiment (20sec eyes open, 20 eyes 
closed with multiple blocks). Th e results were significant at  p  < 0.05 (FWE corrected). For display 
purposes, the results are exhibited with a threshold of  p  < 0.005 uncorrected. Note the predomi-
nant involvement of cortical midline regions which cover the inner and middle ring.  PCC, posterior 
 cingulate cortex; rTPJ, right temporoparietal junction; lTPJ, left  temporoparietal junction; cACC, 
 caudal cingulate  cortex; pACC, perigenual anterior cingulate cortex; VC, visual cortex; lAC, left  
 auditory cortex.   
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changed signifi cantly during the transition from 
eyes closed to both-eyes-open conditions (see 
also Jao et al. 2012). Interestingly, the eyes-open 
condition with fi xation cross showed even higher 
degrees of functional connectivity between these 
regions when compared to eyes open without 
fi xation cross. 

 Th e changes—i.e., increase in the degree of 
functional connectivity between anterior and 
posterior midline regions during eyes open with 
and without fi xation cross—seem to go along 
with changes in entropy, signal variability, and 
amplitude of low-frequency fl uctuations (see 
Chapter 5 for details about low-frequency fl uc-
tuations) in the same regions (see also Jao et al. 
2013 and Duncan et al. 2013). 

 Taken together, these fi ndings demon-
strate neural activity changes in the inner and 
middle rings’ midline regions during the tran-
sition from eyes closed to open. Th is is exem-
plifi ed by changes in neuronal measures like 
functional connectivity, low frequency fl uc-
tuations, entropy, and signal variability. Most 
important, the regional occurrence of these 
changes seems to more or less conform to the 
anatomical-structural boundaries as related to 
the inner and middle rings and their respective 
regions.  

    NEURONAL FINDINGS IIC: STRUCTURE AND 
FUNCTION IN POSTERIOR MIDLINE REGIONS   

 Do the changes in resting-state activity really 
remain within the anatomical-structural bound-
aries of the three rings and their respective 
regions? For that answer, I  turn to the young 
neuroscientist Daniel Margulies, originally from 
New York and now works in Berlin. 

 Margulies et al. (2009) investigated the func-
tional connectivity of the precuneus and the 
posterior cingulate in the resting state of both 
humans (eyes open) and monkeys, using fMRI. 
Based on their resting-states’ functional con-
nectivity to other regions in the brain, he dis-
tinguished diff erent parts (central, posterior, 
anterior) within the precuneus (cognitive:  con-
necting to prefrontal regions; visual: connecting 
to visual cortex; sensorimotor:  connecting to 
sensorimotor cortex). 

 Most important in the present context is his 
fi nding that the resting-state’s functional con-
nectivity pattern of the PCC diff ered very much 
from that of the adjacently located precuneus, 
with both regions showing almost no overlap. 
Unlike the precuneus (and its distinct parts), the 
PCC mainly connected to limbic and paralimbic 
regions in medial prefrontal and temporal cortex 
(anterior cingulate cortex, hippocampus, ventro- 
and dorsomedial prefrontal cortex). 

 How do these fi ndings relate to the three 
anatomical-structural rings postulated here? Th e 
resting state’s functional connectivity of the PCC 
unfolded mainly along the inner (and in part 
middle) ring, while that of the precuneus was 
instead associated with regions in the middle 
(and in part outer) ring. Th is is further sup-
ported by the observed correspondence between 
human and monkey data in the Margulies et al. 
(2009 study as well as by similarities between 
their functional fi ndings and early tracer studies 
showing anatomical–structural connections.  

    NEURONAL FINDINGS IID: FUNCTION 
CONFORMS TO THE RADIAL-CONCENTRIC 
STRUCTURE OF THE THREE RINGS   

 What do these data tell us? Th ey show that, to 
some degree, functional connectivity in the 
resting state preserves the structural divisions 
of the anatomical-structurally defi ned three 
radial-concentric rings. Th is means that changes 
in neural activity during the resting state, as 
during the transition from eyes closed to open, 
occur along the anatomical-structural boundar-
ies of the three rings: inner, middle, and outer. 

 Th ere may thus be a certain degree of cor-
respondence between anatomical structures, 
i.e., the three rings, and functional activity, i.e., 
resting state, with the latter being structured 
and organized along the lines of the former (see 
Chapter 5 for extensive discussion of the relation-
ship between structure and function in the brain). 

 How about the functional connectivity 
between the diff erent rings? Zou et  al. (2009) 
observed that the visual cortex showed nega-
tive correlations with the thalamus, especially 
the dorsomedial thalamus and the ventrolat-
eral nuclei of the thalamus, during eyes closed, 
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which was signifi cantly weakened when opening 
the eyes. 

 An analogous fi nding of a weakening of func-
tional connectivity between regions from diff er-
ent rings was also observed by Qin et al. (2012a). 
Th ey showed that the transition from eyes closed 
to eyes open is accompanied by a decrease in 
the strength of functional connectivity between 
visual cortex and midline regions like the PCC, 
PACC, and DMPFC (see   Fig. 4-4b  ).      

 Taken together, the fi ndings demonstrate 
the involvement of midline regions from inner 
and middle ring during the transition from 
eyes closed to eyes open. Th ereby, functional 
connectivity seems to rather increase between 
regions within the inner/middle rings, while 
it apparently decreases between regions from 
diff erent rings. 

 More generally, this lends further empiri-
cal support to the assumption that the func-
tional level of resting-state activity seems 

to be structured and organized along the 
boundaries of the three rings as defi ned on 
anatomical-structural grounds. In other words, 
there seems to be some degree of correspon-
dence between anatomical-structural and 
functional levels, which will be discussed and 
supported further in the next sections (see also 
Chapter  5 for extensive discussion on the rela-
tionship between structure and function).  

    NEURONAL FINDINGS IIIA: RESTING-STATE 
ACTIVITY IN THE DEFAULT-MODE NETWORK 

   Why do I  emphasize the regions of the middle 
(and inner) ring so much? Th e regions of the 
inner and middle ring form the core regions of 
the DMN. Early studies in humans using posi-
tron emission tomography (PET) identifi ed high 
oxygen and glucose consumption in the rest-
ing state in a particular set of regions, including 
anterior and posterior cortical midline regions 
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   Figure 4-4b     Functional connectivity of visual cortex with auditory cortex and other cortical regions. 
 Histogram of Z-values for the functional connectivity between visual cortex and activated regions 
from contrast [EO > EC] (block design experiment) during EC and EO. FC, Functional connectivity.. 
indicates  p  < 0.05 uncorrected. Compared with EC, FC between the visual and auditory cortices was 
significantly reduced during EO ( t  = 2.87,  p  = 0.01 uncorrected), as was FC between visual cortex and 
pACC ( t  = 2.46,  p  = 0.024 uncorrected). Note the reduction of functional connectivity between midline 
regions and the visual cortex from eyes closed (EC) to eyes open (EO) ( p  < 0.05, FWE corrected). Visual 
cortex was taken as seed region, the functional connectivity between visual cortex and the default-mode 
network (DMN) was signifi cantly reduced, as well as the functional connectivity between visual and 
auditory cortex. MPFC, medial prefrontal cortex; rAC, right auditory cortex; lAC, left  auditory cortex; 
rTPJ, right temporoparietal junction; lTPJ, left  temporoparietal junction; PL, paracentral lobule (own 
nonpublished data).   
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like the VMPFC, the DMPFC, the diff erent parts 
(sub-, pre-, and supragenual) of the ACC, the 
PCC, and the precuneus, as well as other regions 
like the lateral parietal cortex and the hippocam-
pus (see Raichle et al. 2001; Simpson et al. 2001; 
Greicius et al. 2004). 

 Th ese regions have consequently been sub-
sumed under the concept of the DMN that 
includes the cortical midline structure as their 
core regions (Raichle et  al. 2001; see Buckner 
et  al. 2008 and Broyd et  al. 2009 for recent 
reviews; see Morcom and Fletcher 2007a and 
2007b for a critical view; and Northoff  et al. 2010, 
Buckner et  al. 2008, Raichle 2009, 2010). Since 
then there have been numerous investigations 
that established the DMN well in both humans 
(for excellent reviews, see Buckner et  al. 2008; 
Raichle 2009, 2010)  and animals (see Vincent 
et al. 2007; Lu et al. 2012; Mantini et al. 2011). 
Furthermore, there is also a strong developmen-
tal aspect to the DMN that is left  out completely 
here (see Power et al. 2010 for a review). 

 Complementing the early PET investigations, 
the DMN was also observed in fMRI. During 
presentation of external stimuli like, for instance, 
emotional or cognitive tasks, these regions show 
predominantly negative signal changes in fMRI, 
deactivation, or negative BOLD response (NBR) 
in their neural activity (Simpson et  al. 2001; 
Wicker et  al. 2003, Grimm et  al. 2009). Th e 
regions showing such a deactivation or NBR dur-
ing stimulation must be distinguished from those 
that show activation or positive BOLD responses 
(PBR) in fMRI. Th is has led to the distinction 
between task-positive regions and task-negative 
regions. Task-negative regions are regarded as 
“typical” resting-state regions where negative sig-
nal changes, i.e., deactivation, are elicited in fMRI 
during specifi c tasks like cognitive tasks. In con-
trast, the concept of task-positive regions refers to 
the regions that show positive signal changes, i.e., 
activation in fMRI during cognitive (or other) 
tasks (see also Northoff  et al. 2010). 

 While being deactivated during stimulus- or 
task-induced activity, the regions of the DMN 
show high activity and a high degree of intrin-
sic functional connectivity in the resting state 
(Damoiseaux et al. 2006; Fox et al. 2005; Greicius 
et al. 2004; Buckner et al. 2008; Beckmann et al. 

2005; Fransson 2005). At the same time, the 
task-negative regions of the DMN a are nega-
tively correlated; for example, anticorrelated with 
the task-positive regions during the resting state. 

 Th is means that higher functional connec-
tivity within the DMN and its task-negative 
regions is accompanied by lower degrees in 
functional connectivity in the task-positive net-
work and its more lateral regions. Accordingly, 
task-positive and task-negative regions are not 
only anatomical-structurally but also function-
ally distinguished; that is, in their resting-state 
activity, i.e., in BOLD responses (positive versus 
negative) and functional connectivity (opposite 
or anticorrelating changes).  

    NEURONAL FINDINGS IIIB: DEFAULT-MODE 
NETWORK AND THE BRAIN’S INTRINSIC 
ACTIVITY   

 Based on these fi ndings, the DMN has been 
characterized as a resting-state network that 
typically shows high neural activity especially 
in the resting-state. Th e DMN is therefore asso-
ciated with the brain’s resting-state activity, as 
distinguished from its stimulus-induced activ-
ity, which is supposed to be mediated by other 
regions. Such an anatomical distinction between 
resting-state and stimulus-induced activity 
contradicts, however, the observation of spon-
taneous activity that is resting-state activity in 
basically all regions and networks of the brain. 

 While the DMN may be unique in several of 
its neuronal features, it is clear that the occurrence 
of certain levels of activity during the resting state 
is not confi ned to the DMN. All regions in the 
brain, inside and outside the DMN, show intrin-
sic activity, including sensory regions, lateral cor-
tical areas, and subcortical regions (see Freeman 
2003; Shulman et  al. 2004, 2009; Buckner et  al. 
2008; Wang et al. 2007; Hunter et al. 2006). 

 Th ere is thus what has been described as 
 spontaneous activity  throughout the whole brain 
and its various regions and networks. Further 
support for spontaneous resting-state activity 
across the whole brain comes from electrophysi-
ological studies that show spontaneous neuro-
nal oscillations and synchronizations in various 
parts of the brain, including the hippocampus 
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and the visual cortex (Buzsá ki 2006; Buzsaki and 
Draguhn 2004; Arieli et  al. 1996; Llinas 1988; 
Singer 1999, 2009; Fries et al. 2001, 2007). 

 Stepping from the regional to the network 
level, other networks besides the DMN can 
be distinguished, with all networks show-
ing resting-state activity. For instance, Menon 
(2011) distinguished the central executive net-
work (lateral parietal and prefrontal cortex) 
from the salience network (insula, dorsal ante-
rior cingulate cortex, amygdala, ST/VTA) within 
the task-positive regions. Th e salience network 
seems to include regions from especially the 
inner ring, while the central executive net-
work predominantly implicates the outer ring’s 
regions. Both salience and central executive 
networks are distinguished from the DMN, the 
resting-state network. 

 In sum, the whole brain, including all its 
regions and networks, shows neural activity in 
the resting-state. Th e brain’s intrinsic activity 
thus seems to be everywhere in the brain, exclud-
ing neither regions nor networks. Th erefore, 
while the DMN may have a special yet unclear 
role, it cannot be considered unique in showing 
resting-state activity. What is clear neverthe-
less is that the DMN’s level and features of its 
resting-state activity are diff erent from that of 
other regions and networks.  

    NEURONAL HYPOTHESIS IIA: “NEURAL 
STIMULI” AND “NEURAL BASELINE” IN THE 
MIDDLE RING   

 So far, I  have characterized the inner and 
outer rings’ resting-state activity—that is, their 
intrinsic activity—by the terms “interoceptive 
baseline” and “exteroceptive baseline.” But this 
left  the exact characterization of the middle 
ring’s resting-state activity open. Th e earlier 
described data show that the middle ring’s mid-
line regions are subsumed under the concept of 
the DMN that shows particularly high levels of 
resting-state activity and other neuronal features 
that distinguish it from other regions and net-
works in the brain. 

 How is such a high resting-state activity in the 
regions of the middle ring possible? Unlike in the 
inner and outer rings’ regions, the regions of the 

middle ring do not receive any direct input; that 
is, intero- or exteroceptive stimuli, from body 
and environment (see earlier for details). 

 Where, then, does their high degree of 
resting-state activity stem from? Th e middle ring’s 
regions’ high resting-state activity level cannot 
have its origin in the stimuli from either the body 
or its environment, since they do not receive any 
direct intero- or exteroceptive input. Th e source 
of its high resting-state activity can only be the 
brain itself; for example, the spontaneous activity 
in the midline regions of the middle ring. 

 How can we characterize the high spontane-
ous activity in the midline regions of the middle 
ring? As said, it does not stem from either intero- 
or exteroceptive stimuli in the body or environ-
ment. Instead, it must originate from within the 
brain itself, within the midline regions of the 
middle ring, and has therefore been described as 
“spontaneous.” 

 Rather than of intero- and exteroceptive stim-
uli, one may therefore want to speak of “neural 
stimuli”:  the concept of “neural stimuli” means 
that the stimuli generating the high resting-state 
activity in the midline regions originate and 
thus stem from within the brain itself, rather 
than from body and environment as intero- and 
exteroceptive stimuli. 

 Th is leads me to propose what I call the “neu-
ral baseline.” Th e concept of “neural baseline” 
describes the predominance of neural stimuli 
(as distinguished from intero- and exteroceptive 
stimuli) that originate from within the brain itself 
and determine the resting-state activity in the 
middle ring and its midline regions. Th erefore, 
as in the cases of the “intero- and exteroceptive 
baselines” of the inner and outer rings, the con-
cept of “neural baseline” determines the origin of 
the resting-state activity in the middle ring. 

 On a whole, I  characterize the resting-state 
activities in the three diff erent rings in diff erent 
ways, based on the origins of the predominant 
stimuli. Th e inner ring can be characterized by 
strong input from interoceptive stimuli, which 
signifi es its resting-state activity as “interocep-
tive baseline.” In contrast, the outer ring shows 
rather strong exteroceptive input, implying that 
its resting-state activity may be described as 
“exteroceptive baseline.” 
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 Finally, the middle ring shows neither direct 
interoceptive nor exteroceptive input, so that 
the input from within the brain itself, the neu-
ral stimuli, dominate here; the corresponding 
resting-state activity may therefore be designated 
as “neural baseline.” We will see later, in Volume 
II, that the balance between the three rings’ 
resting-state activity level is central, as it can be 
altered in psychiatric disorders like depression 
or schizophrenia (see Chapters 22 and 27).  

    NEURONAL HYPOTHESIS IIB: 
INTERO- AND EXTEROCEPTIVE STIMULI 
LOWER THE RESTING-STATE ACTIVITY 
LEVEL IN INNER AND OUTER RINGS   

 Do the neural stimuli originate exclusively in 
the midline regions of the middle ring? Th is 
would be rather contradictory to the above 
described observation that spontaneous activ-
ity is observed throughout the whole brain, 
including the regions from all three rings, 
inner, middle, and outer. Since spontaneous 
activity is generated in and by the brain itself, 
one would assume that neural stimuli are pres-
ent in all regions of the brain. Th is means that 
all three rings and their respective regions can 
be characterized by neural stimuli from within 
the brain itself as input to its own resting-state 
activity. 

 If the neural stimuli originate throughout the 
whole brain their corresponding resting-state 
activity, and thus the “neural baseline” should 
hold in all regions of the brain. Th is means that 
the neural baseline cannot be limited to the mid-
line regions of the middle ring but should extend 
to both the inner and outer ring. Th at however 
is to neglect the strong intero- and exterocep-
tive input the regions of the inner and outer ring 
receive from body and environment. 

 Th e continuous intero- and exteroceptive 
inputs in the regions of the inner and outer ring 
supersede their neural input and thus the neu-
ral baseline. What we described earlier as the 
“intero- and exteroceptive baselines” that char-
acterize the resting-state activity in inner and 
outer rings may thus be specifi ed now. One may 
therefore suggest interaction between neural and 
interoceptive stimuli in the inner ring, while in 

the outer ring, the neural stimuli may interact 
with the exteroceptive stimuli. 

 Th e respective baselines in inner and outer 
rings, intero- and exteroceptive baselines, may 
thus result from the interaction between neural 
and intero- or exteroceptive stimuli. Th erefore, 
based on the earlier described fi ndings, one may 
tentatively propose that the increased intero- 
and exteroceptive input lowers or decreases the 
resting-state activity level in inner and outer 
rings (when compared to the middle ring and its 
default-mode network).  

    NEURONAL HYPOTHESIS IIC: LESS 
DISRUPTION OF RESTING-STATE 
ACTIVITY IN MIDDLE RING BY 
EXTRINSIC STIMULI   

 Such a interaction of neural stimuli with other 
stimuli from outside the brain, i.e., intero- and 
exteroceptive stimuli from body and environ-
ment, is apparently minimized in the midline 
regions of the middle ring. Why? Unlike the 
inner and outer regions, the regions in the middle 
ring do not receive any direct input from outside 
the brain, or intero- and exteroceptive stimuli. 

 Th e spontaneous activity in the midline 
regions of the middle ring as generated by the 
neural stimuli themselves is less confounded by 
intero- and exteroceptive stimuli than the inner 
and outer ring regions’ resting-state activity. 
Th e resulting level of resting-state activity in the 
middle rings’ midline regions is consequently 
closer to the original spontaneous activity level 
than in the inner and outer rings. 

 Since it less interrupted by other stimuli from 
outside the brain, or intero- and exteroceptive 
stimuli, the level of resting-state activity may be 
higher in the middle ring, compared to that in 
the inner and outer ring. Th is is exactly what the 
data show, as described earlier in the high levels 
of resting-state activity in the DMN. 

 Th at inclines me to suggest the following 
hypothesis. I postulate that the higher levels of 
resting-state activity in the midline regions of 
the middle ring as the central part of the DMN 
is related to the absence of any direct input from 
outside the brain, i.e., intero- and exteroceptive 
stimuli from body and environment: 
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 Why is all that relevant? By introducing the 
concepts of the diff erent baselines—neural, 
intero- and exteroceptive—in relation to the 
three rings, inner, middle, and outer, I  aim to 
link the anatomical-structural level of the brain 
to its functional level of resting-state activ-
ity. Th e fi ndings do indeed suggest there is 
a certain degree of correspondence between 
anatomical-structural and functional levels 
in that the resting-state activity levels and its 
three baselines (intero- and exteroceptive and 
neural) seem to be structured and organized 
along the lines and boundaries of the three 
radial-concentric rings. 

 Th ere is thus what I  describe as  neuronal 
relevance  to our characterization of the three 
baselines in that they allow us to establish 
anatomical-structural-functional correspon-
dence. And that correspondence may in turn 
be central in structuring and organizing the 
resting-state activity in spatial terms, amounting 
to what I later describe as “spatial structure.” To 
understand that, however, we need to fi rst inves-
tigate how the three baselines from the three 
rings interact with each other: this will be focus 
in the next sections.  

    NEURONAL HYPOTHESIS IIIA: PARALLEL-
SEGREGATED VERSUS INTERACTIVE-INTEGRATIVE 
CODING BETWEEN THE THREE RINGS’  
RESTING-STATE ACTIVITIES   

 How can the brain encode the relationship 
between the three different resting-state 
activities? One can suggest different models of 
how the interaction between the resting-state 
activity levels of the different rings and their 
respective networks could possibly take place. 
In other terms, one could describe differ-
ent possible encoding strategies on the net-
work level, which I  will do in the following 
discussion. 

 One encoding strategy is that the three rings 
and their networks may act largely in a parallel 
and segregated way; their particular resting-state 
activity levels may then be constituted and deter-
mined independent of each other, due to the 
diff erent origins of the respectively dominating 
stimuli and their baselines. 

 Th is encoding strategy may be described 
as “parallel-segregated coding.” Since it is 
very much based on the stimuli generated 
and processed in each of the three rings, the 
parallel-segregated coding may be considered 
the extension of stimulus-based coding on the 
level of neural networks (see   Fig. 4-5a  ).      

 How does such a parallel-segregated coding 
relate to the earlier described empirical fi ndings? 
One would expect the increase in exteroceptive 
input during eyes open to yield neural activity 
changes predominantly in the regions of the 
outer ring, and more specifi cally in visual cortex 
and other sensory regions. While this can indeed 
be observed, there are also changes in the midline 
regions and thus in inner and outer rings’ regions 
that should not occur if parallel-segregated cod-
ing holds. Hence, the empirical fi ndings do not 
support the assumption of parallel-segregated 
coding in the neural processing of the three dif-
ferent rings’ resting-state activities. 

 Alternatively to parallel-segregated cod-
ing, one may propose what I refer to as 
“interactive-integrative coding.” “Interactive- 
integrative coding” means that the encoding of 
stimuli in the one ring is constitutively depen-
dent on what happens in the other rings. In that 
case, any change in, for instance, the outer ring’s 
resting-state activity level should go along with 
changes in the inner and middle ring, and vice 
versa. Th is means that the resting-state activity 
levels in each of the three rings are constituted 
in balance and adjustment to the ones of the 
respective others. 

 More specifi cally, the intrinsic activity in 
the outer ring is encoded relative to the ones 
of the inner and middle rings (and vice versa). 
Th is is possible only if there is interaction and 
subsequent integration between the three rings’ 
resting-state activities in the gestalt of diff er-
ence. “Interactive-integrative coding” may 
consequently be regarded as the extension of 
diff erence-based coding on the level of neural 
networks (see   Fig. 4-5b  ). 

 How does such “interactive-integrative cod-
ing” stand in relation to the empirical data? 
Changes in resting-state activity in the outer 
ring, as during eyes open, go along with changes 
in the inner and middle rings’ resting-state 
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activity and connectivity. Th ere is thus interde-
pendence between the diff erent rings’ intrinsic 
activities. 

 Th is is further supported by the observed 
anti-correlation in functional connectiv-
ity between task-positive and task-negative 

regions, as described earlier. Accordingly, 
I  postulate the interactive-integrative cod-
ing strategy to be more empirically plausible 
than parallel-segregated coding of resting-state 
activity in diff erent neural networks like the 
three rings.  
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   Figure 4-5     Diff erent encoding strategies in the relationship between the three rings.  Th e fi gures show 
the relationship between the three rings and diff erent kinds of neural coding on the level of neural 
 networks and their intrinsic activity. ( a ) In the case of stimulus-based coding, neural activity in the 
three rings is processed largely in parallel and segregated from each other. Th is implies clear-cut seg-
regation between the three diff erent baselines (exteroceptive, interoceptive, neural) in their respective 
rings (outer, inner, middle) with not much interaction between them. Th is amounts to stimulus-based 
coding of the brain’s resting-state activity on a network level. ( b ) In the case of diff erence-based coding, 
neural activity in the three rings is processed largely through dependence on each other, which presup-
poses integration and interaction between each ring. Th is implies interaction between the three dif-
ferent baselines (exteroceptive, interoceptive, neural) and their respective rings (outer, inner, middle), 
making segregation impossible. Th is amounts to diff erence-based coding of the brain’s resting-state 
activity.   
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    NEURONAL HYPOTHESIS IIIB: DIFFERENCE-
BASED CODING BETWEEN THE THREE RINGS’ 
RESTING-STATE ACTIVITIES 

   How can we now specify such a interactive- 
integrative coding? I  suggest that interactive- 
integrative coding presupposes diff erence-based 
coding on the level of neural networks and thus 
the three rings. To explicate that, let us fi rst go 
back to the empirical fi ndings. 

 Th ere were two main fi ndings reported ear-
lier with regard to functional connectivity. First, 
there is a remarkable surfacing of the anatomi-
cal structure and its three rings in the results on 
resting-state functional connectivity during eyes 
closed. Th e changes in resting-state functional 
connectivity during eyes closed and the transi-
tion to eyes open seem to more or less conform 
to the anatomical-structurally defi ned boundar-
ies of the three rings. Th ere is thus quite a high 
degree of correspondence between anatomical 
structure and the functional level of resting-state 
activity. 

 Th e second main fi nding shows that a purely 
exteroceptive stimulus—that is, opening the 
eyes—that is predominantly processed in the 
regions of the outer ring leads to neural activity 
and functional connectivity changes within the 
regions of the inner and the middle ring. Th is 
means that there must be some kind of inter-
action between outer and inner/middle rings 
and their respective resting-state activity lev-
els, which is also refl ected in the observation of 
decreased functional connectivity between rings 
(see earlier). 

 What kind of neuronal mechanisms underlie 
and make possible the interaction between the 
three rings and their levels of resting-state activ-
ity? Th is is the question of how the relationship 
between the three rings’ resting-state activities 
is encoded into neural activity. More generally 
put, we are asking how the relationship between 
diff erent neural networks is encoded into neural 
activity. 

 Let us recall the discussion from the fi rst 
Part: Th ere we proposed diff erence-based coding 
to hold during the encoding of extrinsic stimuli 
into stimulus-induced activity on both cellular 
and regional levels of neural activity. Rather than 

encoding the single stimulus itself into neural 
activity (as suggested in stimulus-based coding), 
diff erence-based coding suggests that the tem-
poral and spatial diff erences between diff erent 
stimuli are encoded into neural activity. 

 How does that stand in relation to the rela-
tionship between the three rings and their 
resting-state activities? I  suggest that the brain 
uses exactly the same strategy when encoding the 
relationship between the three rings’ resting-state 
activities that constitute their diff erent base-
lines. Rather than the encoding the resting-state 
activity of each ring by itself in an isolated and 
independent way, the relationship between the 
resting-state activity levels of the three diff erent 
rings is encoded into their neural activity. 

 In a nutshell, I postulate diff erence-based cod-
ing (rather than stimulus-based coding) to deter-
mine the encoding of the three rings’ resting-state 
activities. Th is means that the resting-state activ-
ity level in for instance the inner ring is encoded 
relative to and thus in diff erence to the ones in 
middle and outer rings (and vice versa). 

 Th e interaction between the diff erent rings’ 
resting-state activity is thus built-in by the encod-
ing of diff erences into the resting-state activity 
level of each ring. Such a mutual dependence in 
the encoding of their resting-state activity is well 
compatible with the observed anti-correlation 
between task-negative and  –positive net-
works that refl ect mainly middle and outer 
rings. In contrast, this anticorrelation between 
task-negative and  –positive networks remains 
incompatible with stimulus-based coding where 
no such a anti-correlation would be possible. Th is 
will become even more clear in the next section.  

    NEURONAL HYPOTHESIS IIIC: DIFFERENCE-
BASED CODING AND THE ANTI-CORRELATION 
BETWEEN INNER/MIDDLE AND OUTER RINGS’ 
RESTING-STATE ACTIVITIES   

 I propose that what is encoded in each of the 
ring’s baselines; that is, inner, outer, middle 
rings’ resting-state activity levels, is not so much 
the degree of the respectively dominating stim-
uli; that is, interoceptive, exteroceptive, and 
neural, by themselves in isolation and indepen-
dent of each other. Instead, the neural activity 
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level of the one ring’s baseline is always already 
encoded relative and thus in diff erence to the 
ones of the respective others (and vice versa). 
What we observe as resting-state activity level in 
one ring may be the result of its prior interaction 
and integration with the ones of the respective 
other rings. 

 Accordingly, the resting-state activity levels 
in the three rings, that is their respective base-
lines, must be considered to be diff erence-based 
(i.e., between the three diff erent rings or net-
works) rather than stimulus- or network-based. 
Each rings’ or networks’ resting-state activity 
level thus refl ects an integral or diff erence value 
between the three diff erent rings/networks and 
thus a relative value rather than an absolute value 
that would be exclusively and completely related 
to the respective ring or network alone. 

 How does the assumption of diff erence-based 
coding between the three rings’ baselines stand 
in relation to the empirical data? Based on the 
data described earlier, one must postulate that 
the functional connectivity between outer 
and inner/middle ring is stronger during eyes 
closed than eyes open (see Qin et al. 2012, Jiao 
et al. 2012). 

 A high degree of functional connectivity 
means that the regions of the outer and inner/
middle rings’ activity is more synchronized dur-
ing eyes closed when compared to eyes open. 
Such a increase in neuronal synchronization 
implies that their diff erence in resting-state 
activity levels must be rather low. Th is, however, 
changes once one opens the eyes. Th is changes 
neural activity in visual cortex and thus the 
outer ring, which in turn introduces a larger dif-
ference between outer and inner/middle rings’ 
resting-state activity. 

 How now do the regions’ of the inner/middle 
ring react to that? Th ey also change their level 
of resting-state activity, meaning they increase 
it in order to keep the diff erence to the visual 
cortex and the other regions of the outer ring as 
small as possible. Such an increase in the inner/
middle regions’ activity level is possible only 
if they detach themselves from the functional 
constraints; that is, their functional connectiv-
ity, of the outer ring. Th is means that the inner/
middle regions’ must decrease their functional 

connectivity to the regions of the outer ring 
which is exactly what the data suggest. 

 At the same time the inner/middle rings’ 
regions have to increase their functional con-
nectivity among themselves; this elevates the 
resting-state activity level in the whole middle 
ring and keeps their diff erence to the outer 
ring’s resting-state activity level and its decreas-
ing functional connectivity as low as possible. 
Th is is exactly what the earlier described data 
show with the well established anti-correlation 
between task-negative and task-positive net-
works (that more or less correspond to the dis-
tinction between inner/middle and outer rings).  

    NEURONAL HYPOTHESIS IIID: DIFFERENCE-
BASED CODING OF RESTING-STATE 
FUNCTIONAL CONNECTIVITY AND THE 
INTENTIONALITY OF CONSCIOUSNESS   

 How does the functional connectivity between 
diff erent regions and networks stand in relation 
to diff erence-based coding on the network level? 

 I suggest that functional connectivity 
between diff erent regions or networks presup-
poses diff erence-based coding and its encod-
ing of relative or diff erence values between 
the resting-state activity levels in the diff erent 
regions or networks: Th is implies that the degree 
of functional connectivity between diff erent 
regions or networks can be predicted by the 
degree of neural diff erence values, e.g., contin-
uum between small and large, between the dif-
ferent regions’ or networks’ resting-state activity 
levels (see Chapter 25 for more extensive discus-
sion of this point). 

 Th e encoding of the networks’ resting-state 
activity levels and their functional connectivity 
is not only relevant in neuronal regard but also 
phenomenally. If the resting-state activities’ dif-
ference values tend towards the inner/middle 
regions’ resting-state activity level, the latter is 
relatively stronger than the one in the outer ring. 
Th is may direct our consciousness toward con-
tents related to the own body and the own mental 
states as they stem originally from the interocep-
tive and the neural stimulus inputs into inner and 
middle rings. Th at may for instance be the case 
in mind wandering (see Chapter 26 for details). 
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 If, in contrast, the resting-states’ diff erence 
values tend toward the outer ring’s resting-state 
activity level, the latter is relatively stronger 
than the one in the inner/middle rings. Th is 
may direct our consciousness toward contents 
related to the external environment as they stem 
originally from the strong exteroceptive stimu-
lus input into the outer ring (see Chapter 25 for 
detailed discussion of such a directedness). 

 Accordingly, the direction of the relative dif-
ference value between the resting-state activity 
levels of the diff erent rings may be central in 
directing consciousness toward either internal, 
i.e., mental and bodily, or external, i.e., environ-
mental, contents. Th e diff erence-based coding 
on the network level of the brain’s resting-state 
activity is consequently not only neuronally 
relevant but also phenomenally that is, for the 
directedness that is, intentionality of conscious-
ness. Th is will be discussed in further neuro-
nal and especially neurophenomenal detail in 
Chapters 25 and 26 in Volume II.  

    NEURONAL HYPOTHESIS IVA: THE BRAIN’S 
INTRINSIC ACTIVITY CONSTRUCTS A VIRTUAL 
STATISTICALLY-BASED SPATIAL STRUCTURE IN 
ITS NEURAL ACTIVITY   

 Let me briefl y recapitulate where we stand now. 
I propose that diff erence-based coding operates 
also on the network level of the brain’s intrinsic 
activity. More specifi cally, I  postulate that the 
diff erent baselines (that is, intero- and extero-
ceptive and neural baselines) and thus presum-
ably the intrinsic activities of the three rings are 
determined and encoded in relation and thus in 
relative diff erence to each other. 

 Most important, such a diff erence-based 
coding between the three rings operates and 
supersedes the given anatomical structures and 
divisions. Th is means that the functional level 
of resting-state activity; that is, intrinsic activ-
ity, does not mirror one to one the underlying 
anatomical structures and its three rings. Despite 
the earlier mentioned correspondence, there 
may nevertheless be some discrepancies between 
the anatomical structure and the functional level 
of resting-state activity. Th is, as I  suggest, may 
be due to the determination of each of the rings’ 

resting-state activity levels in terms of integrals 
or relative diff erence values as based on the 
direct comparison between all three rings. 
 Accordingly, I  propose diff erence-based cod-
ing on the network level of the brain’s intrinsic 
activity to be central in making possible or pre-
dispose structural-functional dissociation (see 
Chapter  5 for empirical and conceptual details 
on structural-functional dissociation). 

 What does this mean? By encoding diff er-
ences between the three rings’ resting-state 
activities, a novel spatial structure is constituted 
on the functional level of the brain’s intrin-
sic activity. Such a spatial structure must be 
characterized as functional since it stems from 
and is based on the brain’s intrinsic activity or 
resting-state activity. Such a spatial structure on 
the functional level of neural activity must be 
distinguished from the anatomical spatial struc-
ture of the brain (see   Figure 4-6  ).      

 Th e assumption of such a spatial structure 
is well refl ected in a recent quote taken from 
Leopold and Maier (2012, 2198): “To summarize 
this section on the spatial nature of the sponta-
neous neural activity, correlation and coherence 
measurements in humans and animals demon-
strate a high degree of spatial organization over 
the cortical surface and across cortical laminae. 
In addition, a signifi cant component of the global 
fMRI signal appears to be driven by neural activ-
ity fl uctuations that are themselves coordinated 
over large regions of the cerebral cortex.”  

    NEURONAL HYPOTHESIS IVB: DIFFERENCE-
BASED CODING ALLOWS FOR THE 
DIFFERENTIATION BETWEEN “PHYSICAL SPACE” 
AND “NEURONAL SPACE”   

 How are both anatomical and functional spatial 
structure related to each other? Th e spatial struc-
ture on the functional level of the resting-state 
activity supersedes the anatomical structure like 
the three rings so that both can possibly diff er 
from each other. Th is accounts for the above 
mentioned structural-functional dissociation 
which will be discussed in further detail in the 
subsequent chapter, Chapter 5. 

 At the same time, the spatial structure on 
the functional level of the resting-state activity 
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is based on the underlying anatomical struc-
ture. Since it is based on; that is, predisposed 
by, the anatomical structure, the three rings 
and their radial-concentric organization, the 
intrinsic activities’ spatial structure may still 
bear many remnants of the former. Th is is, for 
instance, apparent in the distinction between the 
task-positive and task-negative regions within 
the context of the DMN that (more or less) par-
allels the distinction between outer and middle/
inner rings. 

 I propose that the brain’s intrinsic activ-
ity constructs a spatial structure in its neural 
activity that supersedes the brain’s anatomical 
structure. We should be aware however that we 
here presuppose two diff erent concepts of space, 
physical space and neuronal space. Th e concept 
of a purely physical space is presupposed by the 
anatomical structure of the brain; that is for 
instance manifest in the radial-concentric orga-
nization of the three rings as described earlier. 
Such a anatomical space as purely physical space 
is superseded by the construction of the spatial 
structure on the functional level of the brain’s 
intrinsic activity. 

 What do I  mean by “superseding”? 
“Superseding” means that the intrinsic activity’s 
spatial structure operates across the anatomical- 
structural boundaries set up by the diff erent cor-
tical and subcortical networks and regions. Th e 
resulting neuronal space of the brain’s intrinsic 
activity thus diff ers and diff erentiates itself from 
the physical space of the underlying brain and its 
anatomical structures. 

 How is such a diff erentiation between the 
physical space of the brain’s anatomical structure 
and the neuronal space of its intrinsic activity 
possible? I  suggest that this is possible by the 
encoding of integrals and thus relative diff erence 
values between the resting-state activity levels in 
the diff erent regions or networks. Accordingly, 
I postulate that diff erence-based coding is a nec-
essary condition of the diff erentiation between 
physical and neuronal space. 

 If, in contrast, the resting-state’s neural activ-
ity were encoded in terms of stimulus-based 
coding, the neuronal space could not super-
sede and thus operate across the physical 
space of the diff erent regions and networks. 
Stimulus-based coding would thus not allow for 

 

Spatial Structure of the
Brain’s Intrinsic Activity (grey
arrows): Neuronal Space

Anatomical Structure of the Brain
(brain): Physical Space

Step from the brain’s anatomy
(light grey) to its encoding of
neural activity (grey) in terms of
difference-based coding

   Figure  4-6     Constitution of Spatial Structure by the Brain’s Intrinsic Activity.    Th e fi gure illustrates 
schematically that the brain’s intrinsic activity constitutes in its neural activity a spatial structure (grey 
arrows within the brain symbolize functional connectivity) that supersedes and operates across the ana-
tomical structure (the brain). Th e physical space of the brain’s anatomical structure is thus superseded 
by the neuronal space of the brain’s intrinsic activity that operates across the former. Th at is made pos-
sible by encoding neural activity in terms of diff erence-based coding as it is indicated on the right with 
the arrow from the anatomical structures and their physical space to the intrinsic activity’s spatial struc-
ture and its neuronal space.   
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any diff erentiation between physical and neuro-
nal space and consequently for the construction 
of a spatial structure by the brain’s intrinsic activ-
ity across its merely physical features.  

    NEURONAL HYPOTHESIS IVC: FROM THE 
SPATIAL STRUCTURE OF THE BRAIN’S INTRINSIC 
ACTIVITY TO THE EXPERIENCE OF SPACE IN 
CONSCIOUSNESS 

    One may now be slightly puzzled. I postulated 
that the brain’s intrinsic activity constitutes a 
spatial structure in its neural activity. Th e spatial 
structure is supposed to supersede and operate 
across the brain’s anatomical structure which, as 
I postulate, is made possible by diff erence-based 
coding. In contrast, I  left  open the exact spa-
tial features of the intrinsic activity’s spatial 
structure. 

 Th e intrinsic activity’s spatial structure 
can be characterized by diff erent neural net-
works that more or less conform to the three 
concentric-radial rings as outlined earlier. Th ese 
networks are negatively or reciprocally related to 
each other as observed in their anti-correlation. 
In addition to such spatial features, one may also 
describe the spatial structure by particular tem-
poral features as we will discuss it in detail in the 
next chapter. Apart from that we however do not 
really know the exact features of the intrinsic 
activity’s spatial structure at this point in time. 
Th is is left  to future research. 

 How however can we know more about the 
intrinsic activity’s spatial structure? Besides 
direct empirical investigation, one may also take 
a more indirect methodological strategy for gen-
erating hypotheses. Th at leads me again to the 
phenomenal realm of consciousness. I postulate 
that the way our subjective experience and thus 
consciousness are spatially structured and orga-
nized may be based on and thus predisposed 
by the brain’s intrinsic activity and its spatial 
structure. 

 Th e phenomenal features of our subjective 
experience of space in consciousness, may then 
give us some hint or clue about how the intrin-
sic activity’s spatial structure must be structured 
and organized in order to make possible such a 
“inner space consciousness” (see Chapter  16). 

One may thus infer from the phenomenal realm 
of consciousness to how the neuronal realm of 
the brain’s intrinsic activity and its spatial struc-
ture must look like. Th is will generate novel 
purely neuronal hypotheses about possible fea-
tures of the intrinsic activity’s spatial structure 
which can be tested experimentally.  

    Open Questions   

 Th e fi rst question pertains to the exact neuronal 
mechanisms that allow for the transition from 
anatomical structure to the functional level of 
intrinsic activity. Metabolism and energy may be 
central here, shedding some light on the neuro-
metabolic coupling as, for instance, investigated 
by R. Shulman. It may indeed be the case that the 
metabolism and the degree of energy provided 
by the body to the brain may set up a very basic 
baseline, a “metabolic or physiological baseline,” 
as one may say. 
 Such a “metabolic or physiological baseline” may 
provide the baseline upon which the three other 
neuronal baselines postulated here, intero- and 
exteroceptive and neural baselines, can operate. 
It would be interesting to see in the future how 
the continuous intero- and exteroceptive input 
in inner and outer rings aff ect the interaction 
with the neurometabolic activity. Based on the 
many investigations in the context of the DMN, 
one may propose that the continuous intero- 
and exteroceptive input may lower the degree of 
neurometabolic coupling and hence the intrinsic 
activity level in the respective rings. Th is, how-
ever, is rather speculative at this point. 
 Th e second question pertains to the function and 
purpose of the intrinsic activity’s spatial struc-
ture. As I will discuss in the next chapter in more 
detail, others like Fingelkurts et al. (2010a and b, 
Fingelkurts and Fingelkurts 2011) also suggest a 
spatial (and temporal) structure to be constituted 
in the brain’s resting-state which they call “opera-
tional space and time.” However, they neglect its 
particular structure and organization and also do 
not clearly delineate the mechanisms, processes, 
and encoding strategies that underlie the consti-
tution of such a spatial structure by the brain’s 
intrinsic activity. 
 Fingelkurts and Fingelskurts (2011) consider 
the intrinsic activity’s spatial and temporal 
structure to be essential for consciousness; this 
is so because they propose the phenomenal 
space of consciousness to be isomorphic to and 
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thus already ingrained in the spatial structure 
of the brain’s intrinsic activity. Th is amounts to 
what one may want to call “neuro-phenomenal 
isomorphism” which however needs to be dis-
tinguished from the concept of neural predis-
position as I use here and in Volume II (see also 
Northoff  2013). I propose that the intrinsic activ-
ity’s spatial structure predisposes consciousness 
rather than being isomorphic to it. For that, refer 
to Volume II. 
 Th e assumption of such a “neuro-phenomenal 
isomorphism” is however problematic. Th is is 
nicely illustrated by a recent study by Huth et al. 
(2012). Th ey measured neural activity during the 
exposure to natural movies in fMRI and then 
used voxelwise models to search for the encod-
ing of the 1.705 object and action categories in 
the movie. By generating a semantic space as 
related to the objects, they were able to compare 
it directly with the neuronal activation space over 
visual and nonvisual cortex. Unfortunately, they 
did not include the brain’s intrinsic activity so that 
the neuronal space refers to stimulus-induced 
activity rather than resting-state activity. 
 What are their results? Rather than each object 
category being associated with one particular 

compartment of the brain’s neuronal space, 
the results showed smooth gradients in neuro-
nal space between the diff erent objects/action 
categories. Such a shared neuronal space with 
its neuronal continuum between the diff erent 
semantic categories was observed and shared 
across diff erent individuals. 
 What do these results imply for the assump-
tion of isomorphism in general? Th ese results 
show that one cannot assume one-to-one rela-
tionship between semantic categories and the 
brain’s neuronal space. Th e brain’s neural activ-
ity seems to operate on the basis of a neuronal 
continuum by means of which it provides a 
shared neuronal space that commonly underlies 
the diff erent semantic categories. Hence, rather 
than being isomorphic to the semantic space 
and its diff erent categories, the brain’s neuronal 
space provides a predisposition and thus, put 
metaphorically, the underlying ground or fl oor 
upon which the diff erent kinds of furniture, the 
objects, stand on. 
 We have to be careful however, Our empirical 
example is about neuro-semantic isomorphism 
rather than neuro-phenomenal isomorphism 
which shall be discussed in Volume II in detail.                
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    Summary   

 Chapter  4 focused on the spatial structure of 
the brain’s intrinsic activity. Th is neglected 
the temporal dimension, which is the focus of 
this chapter. Recent fi ndings show that while 
structural and functional connectivity are oft en 
aligned with each other, they may also dissoci-
ate from each other. Th is means that there may 
be functional connectivity without underlying 
structural connectivity. How is that possible? 
Functional connectivity describes the correla-
tion between two (or more) regions’ activity 
levels across diff erent discrete points in physical 
time and thus how their respective fl uctuations in 
activity are temporally aligned; that is, synchro-
nized to each other. If now functional connec-
tivity dissociates from its underlying structural 
connectivity, it means that the temporal cor-
relations between the two regions’ activity no 
longer adhere to the biophysical-computational 
conduction delays as predisposed by structural 
connectivity. Th is means that functional con-
nectivity operates across and thus supersedes 
structural connectivity and its predisposed 
conduction delays. Such operation across the 
biophysical-computational conduction delays 
makes it possible for functional connectivity to 
link, coordinate and integrate diff erent discrete 
points in physical time. Th is is well manifest in 
the relationship between fl uctuations in diff er-
ent frequency domains in the brain’s resting state 
activity as shown in recent data: low-frequency 
fl uctuations in the resting state’s neural activity 
(0.0001–0.1 Hz) align and coordinate, that is, 
entrain, the high-frequency fl uctuations (1–60 
Hz) to themselves, or the onsets of their phases. 
Such integration of diff erent time windows is, 
as I  suppose, only possible on the basis of the 

encoding of temporal diff erences (rather than 
discrete points in physical time) into neural 
activity; i.e., diff erence-based coding (rather 
than stimulus-based coding). Diff erence-based 
coding allows the brain’s intrinsic activity to 
construct a web of neural diff erences across the 
diff erent discrete points in physical time that are 
associated with the biophysical-computational 
features of the underlying neurons. Th is leads to 
the construction of a virtual statistically-based 
temporal structure that as such supersedes and 
operates upon the biophysical-computational 
predispositions; that is, the conduction delays. 
In addition to the spatial structure as discussed 
in the previous chapter, I  therefore propose 
the constitution of a temporal structure by the 
brain’s intrinsic activity, which, as indicated, is 
not only neuronally but also behaviorally and 
especially phenomenally relevant; that is, for 
consciousness.    

    Key Concepts and Topics Covered   

 Structural connectivity, functional connectivity,
structure-function dissociation, structure- 
function predisposition, low- and high-frequency 
fl uctuations, neuronal statistics, sparse coding, 
diff erence-based coding, temporal structure   

    NEUROEMPIRICAL BACKGROUND IA: 
DEFINITIONS OF THE CONCEPTS OF 
“STRUCTURE” AND “STRUCTURAL 
CONNECTIVITY” 

   I discussed the resting state’s spatial structure in 
the previous chapter. Th e question arises now 
whether there is an analogous temporal structure 

           CHAPTER 5 
 Temporal Structure of Intrinsic Activity       
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in the resting state. I will argue that the consti-
tution of the resting state’s temporal structure 
starts with the spatial structure; i.e., the anatomi-
cal structure of the brain, including its various 
regions and networks. More specifi cally, the data 
will show that functional connectivity allows 
for the constitution of virtual statistically-based 
temporal relationships between the diff erent 
anatomical regions/networks. 

 Th e temporal relationships as established on 
the basis of functional connectivity may super-
sede and operate across the diff erent anatomical 
structures; i.e., the regions and networks. Th is 
makes possible the divergence and dissociation 
of the functional connectivity from the under-
lying anatomical-structural connectivity. Th is 
leads to what I describe as “structural-functional 
dissociation.” 

 Before going into empirical details, we need 
to briefl y describe the concepts of “structure” 
and “function.” Th e brain can be characterized by 
anatomical structures that may be organized in a 
certain way, as discussed in the previous chapter. 

 Th e term “structure” refers here to “the spa-
tial and topological arrangement of connections 
between neuronal elements” (Honey et al. 2010, 
767). Th e diff erent anatomical structures may 
also be connected to each other via tracts run-
ning in the white matter of the brain; these are 
“structural connections” that can, for instance, 
be measured in diff usion tensor imaging tractog-
raphy (see Hagmann et al. 2008; Sporns 2011).  

    NEUROEMPIRICAL BACKGROUND 
IB: DEFINITION OF THE CONCEPTS OF 
“FUNCTION” AND “REST–REST INTERACTION”   

 While the determination of the terms “struc-
ture” and “structural connectivity” is relatively 
easy, the terms “function” and “functional con-
nectivity” are harder to track down. Th e concept 
of “function” may refer to, for instance, behav-
ioral and psychological functions (i.e., aff ec-
tive, cognitive, social, etc.); this, however, is not 
the way the term is used in the present context. 
Instead, I  here reserve the term “function” to 
describe neuronal processes that operate across 
and thereby supersede the anatomical struc-
tures and their given biophysical-computational 

temporal and spatial constraints. Th e concept 
of “function” as used here describes neuro-
nal processes that operate across and therefore 
supersede the anatomical structures. I  conse-
quently distinguish the functional level of neu-
ral activity, such as the brain’s intrinsic activity, 
from the brain’s anatomical structures and its 
biophysical-computational constraints. Th is 
makes possible the dissociation of the func-
tional level of neural activity during the resting 
state from both the biophysical-computational 
constraints of the neurons themselves and the 
anatomical-structural level. When talking about 
“structural-functional dissociation” I  therefore 
refer to this dissociation between neuronal activ-
ity on the one side and biophysical-computational 
constraints and anatomical structure on 
the other. 

 What exactly happens on the level of neu-
ral activity? Th ere may be various interactions 
between the diff erent neural activity levels in the 
diff erent regions and networks. Since as demon-
strated in the previous chapter, diff erent regions 
and networks may show diff erent levels of rest-
ing state activity, there may already be plenty of 
interaction between diff erent regions/networks 
in the resting state itself. One can consequently 
speak of what I describe as “rest–rest interaction.” 

 Th e concept of “rest–rest interaction” 
describes the linkage, coordination, and mutual 
adjustment between diff erent activity levels 
in diff erent regions and networks. As implied 
by the term “function” (see earlier), such rest–
rest interaction operates both spatially and 
temporally by superseding the spatial and 
temporal constraints related to the neurons’ 
biophysical-computational features (and their 
anatomo-structural constraints). In other words, 
rest–rest interaction describes what happens on 
the functional level of neural activity. 

 Th e neural activity may also be modulated 
by specifi c stimuli or tasks. In that case a par-
ticular stimulus or task encounters the brain’s 
intrinsic activity, its resting state activity. Th is 
implies interaction between the resting state 
and the stimulus/task which I describe as rest–
stimulus interaction which in turn leads to what 
is described as stimulus-induced or task-related 
activity. Since this chapter focuses on the brain’s 
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intrinsic activity by itself, I  discuss here only 
rest–rest interaction while the exact neuronal 
mechanisms underlying rest–stimulus interac-
tion will be discussed later in Part IV.  

    NEUROEMPIRICAL BACKGROUND IC: 
DEFINITION OF THE CONCEPT OF 
“FUNCTIONAL CONNECTIVITY”   

 How is rest–rest interaction manifest in the 
neural activity of the resting state? One hall-
mark feature of the brain’s intrinsic activity is its 
functional connectivity as already discussed in 
the previous chapter. Th is raises the question of 
what exactly is referred to when we use the term 
“functional connectivity.” Th e concept of “func-
tional connectivity” is usually taken to describe 
the purely statistical correlation between the 
time series of signal changes associated with two 
or more diff erent regions’ activities (see later for 
more empirical details). 

 Th is highlights two hallmark features of 
the concept of functional connectivity. First, 
describing a correlation between diff erent 
regions’ neural activities, functional connectivity 
is understood in a purely statistical way. Such sta-
tistically based understanding does not yet imply 
any physiological mechanisms that may mediate 
and underlie the observed purely statistical cor-
relations between the diff erent regions’ neural 
activities (see also Fingelkurts et  al. 2004a–c; 
Leopold and Maier 2012; and Friston 2010, for a 
good discussion of this point). 

 Th at also means that the term functional con-
nectivity does not describe any causal mecha-
nisms operating between the two regions’ neural 
activities; this is rather captured by the concept 
of “eff ective connectivity,” which refers to the 
causal impact of one region’s activity on another 
one. In the following I will focus predominantly 
on functional connectivity and how it operates 
across and supersedes the anatomical structure’s 
spatial and temporal constraints. 

 Th e second hallmark feature of the concept 
of functional connectivity is its temporal dimen-
sion. By signifying the correlation between the 
time series of two (or more) regions’ neural 
activities, it operates not only across diff erent 
discrete points in physical space; i.e., the diff erent 

regions, but also across diff erent discrete points 
in physical time as associated with the neural 
activities of the diff erent regions. 

 For instance, increases in functional con-
nectivity between two regions mean that the 
temporal courses of their neural activities—i.e., 
the time series of signal changes—are integrated 
and coordinated, and thus synchronized. In con-
trast, decreases in functional connectivity indi-
cate lower degrees of temporal coordination and 
integration, i.e., synchronization, between the 
temporal courses of the regions’ neural activities. 

 In sum, “functional connectivity” describes 
the spatial and temporal coordination and inte-
gration between the neural activities of diff erent 
regions or networks. Most important, such spa-
tial and temporal integration and coordination 
operate across and thus supersede the spatial and 
temporal constraints as related to the neurons’ 
biophysical-computational features and their 
anatomical structure. 

 Th is makes it possible for the brain’s intrinsic 
activity to constitute a virtual statistically-based 
spatial and temporal structure on the functional 
level of neural activity. Th e spatial structure of 
the brain’s intrinsic activity, as discussed in the 
preceding chapter, is thus complemented by a 
particular temporal structure on the functional 
level of the brain’s neural activity. Th is temporal 
structure and how it is constituted is the focus in 
the present chapter.  

    NEUROEMPIRICAL BACKGROUND ID: THE 
RESTING STATE’S SPATIOTEMPORAL STRUCTURE 
AND THE PHENOMENAL FEATURES OF 
CONSCIOUSNESS   

 Why do I put such strong focus on the consti-
tution of a virtual statistically-based spatial and 
temporal structure by the brain’s intrinsic activ-
ity? I  claim that the resting state’s spatial and 
temporal structure is both neuronally and phe-
nomenally relevant (See also Northoff  2013). 

 Th e constitution of the intrinsic’ activity’s 
spatial and temporal structure makes it possible 
for the brain to operate across and supersede its 
biophysical-computational constraints and to 
establish its own neuronal level of activity as dis-
tinguished from the merely physical level of its 
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anatomical structure. Th is makes the spatial and 
temporal structure neuronally and thus func-
tionally relevant (as distinguished from mere 
anatomical and structural relevance). 

 In addition, the spatial and temporal struc-
ture is also phenomenally relevant; that is, for 
consciousness. As we will see in Volume II, the 
spatial and temporal structure of the brain’s 
intrinsic activity makes possible and thus predis-
poses the association of certain phenomenal fea-
tures of consciousness with the otherwise purely 
neuronal neural activity; this can occur during 
any kind of neural activity including both rest-
ing state itself (as in dreams; see Chapters 25 and 
26) and stimulus-induced activity (as in the con-
sciousness of for instance objects and events in 
the environment; see Chapters 28–30). For now, 
however, we restrict ourselves to the neuronal 
relevance of the resting state’s temporal struc-
ture in order to understand the neuronal mecha-
nisms that allow and predispose its constitution. 
Th is is the focus in the present chapter. 

 NEURONAL FINDINGS IA: STRUCTURAL 
CONNECTIVITY PREDICTS FUNCTIONAL 
CONNECTIVITY 

 How are structural and functional connectivity 
related to each other? For that, I  focus on the 
groundbreaking work by Honey and Sporns, 
who conducted several paradigmatic studies on 
the relationship between structural and func-
tional connectivity. 

 Honey et  al. (2009) investigated structural 
connectivity (SC) in the whole brain using dif-
fusion spectrum imaging (DSI) while the same 
subjects also underwent functional magnetic 
resonance imaging (fMRI) in the resting state to 
determine functional connectivity (FC) through-
out the brain. Th is allowed them to construct SC 
maps based on tractography, which reveals the 
various tracts in the white matter that link and 
connect diff erent regions throughout the brain. 

 FC in the resting state was determined on 
the basis of correlations between the time series 
of signal changes from diff erent regions dur-
ing the resting state. Th ereby both maps were 
constructed on the basis of the same regions of 
interests, which allowed them to directly link SC 

and resting state FC. How is FC linked to SC? 
Honey et  al. (2009) observed positive correla-
tion between structural and functional connec-
tivity maps:  the higher the degree of structural 
connectivity, the higher the degree of functional 
connectivity in the resting state. When they 
took out missing structural data for the struc-
tural connections between particular regions, 
the degree of structural-functional correlation 
increased even further. 

 Th is strongly suggests that structural connec-
tivity predicts and thus predisposes functional 
connectivity in the resting state. Such prediction 
means that functional connectivity in the rest-
ing state will more likely be constituted between 
those regions where there is already some struc-
tural connectivity. Since these fi ndings were 
confi rmed in subsequent studies, one would 
postulate that SC predisposes and therefore pre-
dicts FC in the resting state (see   Fig. 5-1  ).       

    NEURONAL FINDINGS IB: 
“STRUCTURE-FUNCTION PREDISPOSITION”   

 Th is amounts to what I call “structure-function 
predisposition” in the following. Th e term 
“structure-function predisposition” indicates 
that a particular organization on the structural 
level of the brain’s anatomy, like its structural 
connections, makes possible and more likely 
a corresponding organization of neural activ-
ity on the functional level; as, for instance, in 
the functional connectivity of the resting state. 
Such structure-function predisposition not only 
applies to the brain as a whole, as investigated by 
Honey et al. (2009) and others (see Honey et al. 
2010 for a review as well as Sporns 2011 for an 
excellent book) but also for particular networks 
like the default-mode network (DMN). Van den 
Heuvel et al. (2009) started with the investigation 
of resting state functional connectivity in espe-
cially the DMN and revealed high correlation of 
the time series in the signal changes between its 
diff erent regions (PCC, PACC, VMPFC, precu-
neus, SACC, medial temporal, bilateral parietal).
Based on the regions showing functional connec-
tivity in the resting state, that is, statistical corre-
lation in the time course of their signal changes, 
they analyzed whether their resting state FC 
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   Figure 5-1     Relationship between structural and functional connectivity.      (a)   Overall SC–rsFC relation-
ships. ( A ) Scatter plot (single acquisition, 20 min) of rsFC against SC at high resolution for participant B, 
showing edges with nonzero SC. ( B ) Scatter plot (single run, 16 min) of simulated rsFC against SC (from 
participant B) at high resolution, showing edges with nonzero SC. ( C ) Th e probability densities of rsFC 
values between structurally connected and unconnected region pairs, data for participant B at the high 
resolution. ( D ) Same as ( C ), but for simulated rsFC. ( E ) ROC curves, indicating the signal detection per-
formance when inferring SC by thresholding empirical ( grey ) and simulated ( black ) rsFC maps at the high 
resolution.     (b)   Computational model of functional connectivity. ( A ) Scatter plot of empirical rsFC versus 
simulated rsFC obtained from the nonlinear model, down-sampled to the low resolution. ( B ) Comparison 
of SC, rsFC (empirical), and rsFC (nonlinear model) for 2 single-seed regions, the posterior cingulate in 
the right hemisphere (rPC) and the precuneus in the left  hemisphere (lPCUN). Th e plot displays SC and 
rsFC values for the seed regions in relation to all 66 regions within the corresponding low-resolution 
matrices. ( C ) Mapping of SC, rsFC (empirical), and rsFC (modeled) within the DMN. Lighter grey col-
ors indicate stronger SC and rsFC. Within the posterior cingulated/precuneus, medial orbitofrontal cor-
tex, and lateral parietal cortex in both hemispheres we selected a cluster of 5 ROIs at positions that most 
closely matched the coordinates of peak foci of the DMN. Th ese 30 ROIs served as the seeds from which 
SC and rsFC were determined. ( D ) Structural connectivity within the DMN. We selected the top 200 most 
correlated ROIs within the DMN and plotted all structural connections among them.     (Reprinted with 
permission of  Proceedings of the National Academy of Sciences  from Honey CJ, Sporns O, Cammoun L, 
Gigandet X, Th iran JP, Meuli R, Hagmann P. Predicting human resting-state functional connectivity from 
structural connectivity.  Proc Natl Acad Sci USA . 2009 Feb 10;106(6):2035–40.)   
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corresponds to specifi c white matter tracts and 
thus SC. Th ey could demonstrate that the cingu-
lum tract corresponds on the structural side to 
the resting state functional connectivity between 
anterior and posterior cingulate cortical regions, 
whereas the resting state functional connectiv-
ity between right and left  anterior DMN (medial 
prefrontal cortex) was structurally mediated by 
the genu of the corpus callosum. 

 Finally, the left  and right frontal-occipital 
fasciculus correlation corresponds structur-
ally to the resting state functional connectivity 
between the medial prefrontal cortex and the 
bilateral parietal cortex. Since these regions are 
core regions of the DMN (see Chapter 4), they 
support the assumption that the DMN can be 
characterized not only in functional—that is, 
neuronal (and also metabolic), terms as for 
instance refl ected in high degrees of resting state 
functional connectivity,—but also anatomically 
and thus structurally (see Honey et  al. 2009; 
Hagmann et al. 2008; Sporns 2011). 

 Taken together, these fi ndings demonstrate 
that functional connectivity in the resting state is 
oft en based on and aligns itself with the under-
lying structural connectivity. Th is means that 
structural connectivity predisposes and predicts 
functional connectivity in the resting state, which 
I describe as “structure-function predisposition.”  

    NEURONAL FINDINGS IC:  
“STRUCTURE-FUNCTION DISSOCIATION”   

 Does the prediction and predisposition of func-
tional connectivity in the resting state by struc-
tural connectivity mean that there is a one-to-one 
relationship between structure and function? We 
should be careful here. Th ere may be functional 
connectivity in the resting state where there is no 
corresponding structural connectivity. 

 For instance, as shown in both imaging data 
and simulation studies, resting state functional 
connectivity may be high between two regions 
that are not connected structurally in a direct 
way but, if at all, only indirectly (see Honey et al. 
2009). Moreover, FC may even be present when 
there is no SC at all, whether direct or indirect. 
Th ese data imply that the reverse inference from 
functional to structural connectivity remains 

impossible:  SC can predict resting state FC, 
while the reverse with resting state FC predict-
ing SC does not hold. 

 Resting state FC may thus dissociate from 
SC by connecting regions functionally and thus 
neurally with each other that are neither directly 
nor indirectly connected anatomically by struc-
tural connections. In short, function may dis-
sociate from structure, which I describe by the 
term “structure-function dissociation” in the 
following. Th e term “structure-function disso-
ciation” indicates that the functional level of the 
brain’s neural activity in (for instance) the rest-
ing state and its functional connectivity does not 
completely conform and align to the structural 
level of the brain’s anatomy; i.e., its regions and 
networks; in a one-to-one way. 

 How can the two terms “structure-function 
predisposition” and “structure-function disso-
ciation” be compared with each other? Th e fi rst, 
“structure-function predisposition,” emphasizes 
the dependence of FC on SC, whereas the sec-
ond, “structure-function dissociation,” focuses 
more on the independence of FC from SC.  

    NEURONAL FINDINGS ID: INTRA-INDIVIDUAL 
VARIABILITY OF FUNCTIONAL CONNECTIVITY IN 
THE RESTING STATE 

   How can such independence of FC from SC be 
further characterized? In addition to constitu-
tion of FC in the absence of SC, FC also shows 
a much higher degree of variability than SC. 
Honey et  al. (2009) investigated resting-state 
FC in the same subjects twice on separate days, 
which allowed them to correlate the two diff er-
ent FC maps from the two days. 

 Interestingly, the FC maps obtained on dif-
ferent days in the same subject did not show 
a high correlation with reliability coeffi  cients 
ranging only from  r  = 0.39 to  r  = .61 in the dif-
ferent individual subjects. Th is was further con-
fi rmed by their simulation model of functional 
connectivity that showed more or less equally 
low reliability coeffi  cients. Th ese data suggest 
quite a high degree of intra-individual variabil-
ity in resting state FC; this is rather remarkable 
given that the anatomical structure—structural 
connectivity (SC)—did not obviously change 
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between the diff erent days when resting state FC 
was measured. 

 Th e observation of intra-individual vari-
ability in resting state FC is thus possible only if 
FC remains somehow independent of SC which 
entails a certain degree of structure-function 
dissociation. In short, the observation of 
intra-individual variability of resting state 
FC further supports the assumption of 
structure-function dissociation. Taken together, 
the fi ndings demonstrate that while structural 
connectivity predicts the resting state’s func-
tional connectivity, the latter may also deviate 
and thus dissociate from the former. Th is means 
that what I described as “structure-function pre-
disposition” goes along with “structure-function 
dissociation” with both being apparently com-
patible and complementary rather than being 
contradictory.  

    NEUROMETAPHORICAL EXCURSION: 
ESTABLISHED AND NON-ESTABLISHED PATHS   

 How can we better illustrate the relationship 
between structure and function in the brain? For 
that I  turn to an imaginary example, a “neuro-
metaphorical comparison,” as I describe it. 

 If there is a well-established path from your 
house to the supermarket, you usually take that 
path. Th e established and regular path predis-
poses the route you actually take, thus corre-
sponding to “structure-function predisposition.” 
Now, however, the supermarket is about to close 
in fi ve minutes. Hence, you do not want to take 
the established 1-km path to the supermarket, 
because it takes at least about 10 minutes if you 
are walking. 

 How, now, can you get to the supermarket 
within maximum fi ve minutes? You could take 
the car. Th at, however, is not an option, because 
your car broke down and is in for repairs. Or 
you could run rather than walk the established 
path; that should bring you there in less than the 
10 minutes which it usually takes to walk. Th is 
is not an option either, however, because you 
recently strained your leg muscles while playing 
soccer; this makes running impossible. Th e only 
way for you to get to the supermarket in time is 
thus to take a shorter, more direct path. 

 Th ere is no established and regular path, 
however besides the one that takes 10 min-
utes. What do you do? You take a more direct 
though non-established way that leads through 
the corn fi eld and brings you in about maximal 
3 minutes to the supermarket. You thus deviate 
from the regular and established path by taking a 
non-established way. 

 Th is is what also happens in the brain when 
the functional connectivity takes a rather 
non-established way:  in this case the functional 
connectivity deviates and dissociates from the 
underlying structural connectivity, entailing 
“structure-function dissociation.” One may con-
sequently say that sometimes our brain’s intrin-
sic activity takes a rather direct and fast though 
non-established path when it wants to adjust, coor-
dinate, impact, and modulate the diff erent resting 
state activity levels between diff erent regions. 

 In the same way as you take the more 
direct though non-established way through 
the corn fi eld to the supermarket, the brain’s 
intrinsic activity and its functional connectiv-
ity sometimes also prefer the direct route to 
another region, independent of the underly-
ing anatomical-structural paths and their con-
straints. Accordingly, in the same way you want 
to go shopping in time, the brain’s intrinsic activ-
ity in one particular region may also want to 
“shop” in another region’s activity in time, since 
otherwise, as in the case of the supermarket, it 
may be too late. 

 NEURONAL HYPOTHESIS IA: STRUCTURAL 
CONNECTIVITY IS NEITHER NECESSARY NOR 
SUFFICIENT FOR FUNCTIONAL CONNECTIVITY 

 How is the here-described structure-function 
dissociation possible? Let me fi rst character-
ize it in more detail. “Structure-function dis-
sociation” indicates that FC can occur without 
SC. Th e assumption is that SC is not necessary 
for FC, since otherwise any FC would presup-
pose SC. However, we need to distinguish the 
suggestion that SC is not a  necessary  condition 
from the one that it may nevertheless  predispose  
subsequent FC. 

 Let’s go back to our supermarket example. 
Th e established and regular path “predisposes” 
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you to take it on your way to the supermarket. 
However, the established path is not  necessary  
for you to get to the supermarket because other 
ways like the one through the corn fi eld also lead 
you there. Moreover, the presence of the estab-
lished path does not by itself lead you to the 
supermarket. You still have to walk it. Hence, the 
existence of the path itself (independent of your 
walking) is not suffi  cient by itself for you to get 
to the supermarket. Th e necessary condition, the 
established path, may thus be present while the 
suffi  cient one, you walking that path, remains 
absent. 

 Th is corresponds in the brain to the obser-
vation that SC can also occur without subse-
quent FC, as demonstrated by Honey et  al. 
(2009, 2010). Th is means that SC is not suf-
fi cient for FC because otherwise SC would 
always occur in conjunction with FC. How 
is it possible that SC is neither necessary nor 
suffi  cient for FC? Th is suggests that the neu-
ronal mechanisms underlying the constitu-
tion of FC must remain somehow independent 
of the anatomical-structural features that 
characterize SC. 

 Let us specify that and go back to what FC 
exactly means. As pointed out at the beginning 
of this chapter, FC describes a mere statisti-
cal correlation between the time series of the 
diff erent regions’ neural activities. Th e case of 
structure-function dissociation implies that such 
statistical correlation between diff erent time 
series of the regions’ neural activities can occur 
in the absence of any SC.  

    NEURONAL HYPOTHESIS IB: “FUNCTIONAL 
FREEDOM” OF THE BRAIN’S INTRINSIC 
ACTIVITY AND CONSCIOUSNESS   

 Th is raises the question for the neuronal (or phys-
iological) mechanism (see also Fingelkurts et al. 
2004; Friston 2011; Leopold and Maier 2012 for 
a good discussion of the concept of functional 
connectivity) that makes such statistical corre-
lation between the diff erent regions’ time series 
and thus FC possible in the absence of SC. Th e 
neuronal mechanism underlying such statistical 
correlation must remain independent to some 
degree of the anatomical-structural features of 

SC. Th erefore, the neuronal mechanism in ques-
tion must operate across and supersede the ana-
tomical and structural features of the brain. 

 Why do I  emphasize the independence of 
the neuronal mechanism in question from the 
underlying anatomical and structural features of 
the brain? By operating across and thus super-
seding the brain’s anatomical-structural features, 
the intrinsic activity can construct its own spatial 
and temporal structure on the basis of the neuro-
nal mechanism in question. 

 By remaining independent of the 
anatomo-structural level, the functional level 
of the brain’s intrinsic activity, fi guratively put, 
“gains a certain degree of functional freedom 
from the brain’s anatomical structure.” Such 
“functional freedom” may allow the brain’s 
intrinsic activity to diverge and dissociate from 
the brain’s anatomical structure to which it no 
longer conforms and aligns. Th is is well refl ected 
in the earlier described “structure-function dis-
sociation” that signifi es the independence and 
thus the “functional freedom” of the brain’s 
intrinsic activity. 

 How is such “functional freedom” manifest 
in the brain’s intrinsic activity? I  argue that it 
is manifest in the construction of a statistically 
based and virtual spatial and temporal struc-
ture that supersedes and operates across the 
anatomo-structural features of the brain. Most 
importantly, I postulate that the constitution of 
such spatiotemporal structure is not only neu-
ronally relevant but also phenomenally; that 
is, for consciousness. Let me briefl y indicate 
this point. 

 How is the resting state’s spatial and tem-
poral structure related to consciousness? By 
showing “functional freedom” and remain-
ing (more or less) independent of the brain’s 
anatomical-structural features, the functional 
level of the brain’s intrinsic activity can constitute 
novel spatial and temporal features (see below 
and Chapter  4 for details). Th ese novel spatial 
and temporal features predispose the association 
of the phenomenal features of consciousness to 
the otherwise purely neuronal activity changes 
during either resting state or stimulus-induced 
activity. Th is will be the main focus in Volume II 
(parts V–VII).  
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    NEURONAL HYPOTHESIS IIA: NEURONAL 
MECHANISMS OF FUNCTIONAL CONNECTIVITY   

 Let us return to the more specifi c neuronal 
mechanisms themselves, and particularly those 
that underlie the constitution of functional con-
nectivity. What kind of neuronal mechanisms 
could underlie the statistical correlation between 
two regions’ neuronal activities as observed in 
FC? Possible suggestions are so-called travel-
ing waves, shared innervation, and intrinsic 
local oscillations or fl uctuations (see Hagmann 
et al. 2010; Deco et al. 2011; Murphy et al. 2009; 
Cabral et al. 2011). I will here briefl y discuss the 
fi rst two neuronal mechanisms—traveling waves 
and shared innervation—while leaving the third 
one, intrinsic local oscillations or fl uctuations, 
for later discussion. 

 Th e term “traveling waves” describes bouts 
or waves of neuronal excitation that move across 
diff erent regions that may connect them and 
account for the statistical correlation of their 
neural activities across diff erent discrete points 
in physical time, that is, FC. It seems, however, 
that such traveling waves may be more the result 
of a prior neuronal mechanism that links the 
two regions’ neural activities rather than being 
the neuronal mechanism itself. Hence, traveling 
waves may correspond on the neuronal side to 
what we describe statistically as FC. 

 Th e traveling waves may consequently be 
considered a possible neuronal correlate of 
the purely statistical FC. However, the travel-
ing waves do not reveal the neuronal mecha-
nisms; that is, the neural predisposition, that 
drives and thus makes necessary and possible 
the constitution of FC and thus its underlying 
traveling waves. 

 How about the “shared innervation”? Th e 
assumption of “shared innervation” refers to a 
common cortical source for both regions’ neural 
activities as, for instance, a third region that feeds 
both regions. What does such a relation to a third 
region look like? Despite not being connected 
directly with each other via SC, two regions may 
nevertheless both be structurally connected to a 
third region that is then shared between the two 
regions. Such a shared third region may make 
it possible to constitute FC between the two 

regions, even though they show no direct SC 
with each other. Accordingly, even though direct 
SC can remain absent, shared innervation pre-
supposes at least some indirect SC between the 
regions showing FC. Th is, however, is not com-
patible with the empirical fi ndings that show FC 
in the absence of any SC whether direct or indi-
rect (see earlier discussion). Th is makes the sug-
gestion of shared innervation rather implausible. 

 Taken together, diff erent neuronal mecha-
nisms like traveling waves and shared innerva-
tion (and local oscillations) have been discussed 
as underlying the constitution of functional 
connectivity. However, the suggested neuronal 
mechanisms turn out to be problematic, given 
the empirical data.  

    NEURONAL HYPOTHESIS IIB: DIFFERENCE-
BASED CODING AND FUNCTIONAL 
CONNECTIVITY 

   Both suggested neuronal mechanisms, traveling 
waves and shared innervation, seem to be insuf-
fi cient to account for the neuronal mechanisms 
that constitute FC. I  propose that the constitu-
tion of FC independent of SC makes necessary 
the assumption of a particular neural mecha-
nism that remains independent of the underly-
ing anatomical and structural features. More 
specifi cally, I suggest that diff erence-based cod-
ing is the neural mechanism that drives and 
makes necessary the constitution of FC. 

 Let me be more specifi c and sketch the fol-
lowing scenario. Region a’s neural activity occurs 
at the time point  x , while region b’s neural activ-
ity happens slightly later at time point  x  + 1. How 
now can both regions’ neural activities be linked 
such that they can statistically correlate with each 
other as observed in FC? I postulate that region 
a’s neural activity at time point  x  is encoded rela-
tive and thus in diff erence to the one of region b 
at time point  x  + 1. And obviously the converse 
holds for region b whose neural activity at  x  + 1 
is coded relative and thus in diff erence to the one 
of region a at time point  x . 

 If now the two points,  x  and  x  + 1, are not too 
far, that is, temporally distant, from each other, 
their respective regions’ neural activities, that is, 
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regions a and b, can be linked and synchronized 
to each other. Such linkage may then, in turn, 
result in what we observe as statistical correla-
tion between the time series of signal changes 
from the neural activities of diff erent regions; 
i.e., functional connectivity. If, in contrast, the 
two time points,  x  and  x  + 1, are temporally too 
distant from each other, the two regions’ neural 
activities cannot be linked and thus correlate 
with each other, resulting in the absence of FC 
(see   Fig. 5-2  ).      

 Diff erence-based coding in this sense oper-
ates across distinct discrete points in physical 
time such as  x  and  x  + 1.  Th is, in turn, makes 
it possible to link and integrate distinct discrete 

points in physical time, which we observe as 
statistical correlation between the time series of 
the signal changes from the two regions’ neural 
activities. Let us describe this in further detail by 
focusing on increases and decreases in FC.  

    NEURONAL HYPOTHESIS IIC: ENCODING OF 
SPATIAL AND TEMPORAL DIFFERENCES DURING 
CHANGES IN FUNCTIONAL CONNECTIVITY   

 Increase in FC may then refl ect the successful 
encoding of one coherent temporal diff erence 
between the distinct discrete points in physical 
time of the two regions’ neural activities. Since 
such neural diff erence spans between the two 

 

Region A: Neural
activity changes
across distinct
points in time

Region B: Neural
activity changes
across time

Degree of temporal
difference in neural
activities between
region A and B

Degree of matching
between the statistical
frequency distribution of
regions’ A and B neural
activities 

Degree of correlation
between the region A
and B across time =
Functional connectivity

Time

   Figure  5-2     Diff erence-based coding and functional connectivity.  Th e fi gure shows the relationship 
between functional connectivity and diff erence-based coding. Two regions ( upper part ) show changes in 
their neural activity across time, as indicated by the bars. While their activity may initially and fi nally be 
temporally out of tune (right and left  side of upper part), it may synchronize transiently (in between), as 
indicated in the middle side of the upper part. Here they show similar onsets and heights in their neural 
activity. Th is means that now the degree of neural diff erences between their respective neural activities 
across diff erent discrete points in physical time and space decreases as indicated in the upper middle 
part. Such decrease in neural diff erences across time and space goes along with an increase in the degree 
of the statistically based comparison and matching of the regions’ neural activities, as indicated in the 
lower middle part. Th at, in turn, implies an increase in the degree of functional connectivity ( lower 
part ). Hence, the degree of functional connectivity may be directly and inversely proportional to the 
degree of spatiotemporal diff erences between two regions’ neural activities: the lower the spatiotem-
poral diff erences in neural activities between two (or more) regions’ neural activities, the higher their 
respective degree of functional connectivity.   
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regions and the discrete time points of their 
neural activities, we observe statistical corre-
lation between the time series of the regions’ 
signal changes. Diff erence-based coding in this 
context may then be characterized by the encod-
ing of spatial and temporal diff erences between 
diff erent regions’ neural activities, which in 
turn makes possible the construction of what 
we describe as FC. How about decreases in FC? 
Decrease in FC may indicate that the temporal 
diff erence between the distinct discrete time 
points may either be too large or too small (i.e., 
beyond the neurons’ spatial and temporal capac-
ities that they can possibly process on the basis 
of their biophysical-computational features; see 
later) to be linked and integrated into one coher-
ent neural diff erence. Th at means that the degree 
of diff erence-based coding, the encoding of spa-
tial and temporal diff erences, also decreases. 

 Th e two regions’ neural activities and thus 
the time series of their signal changes consecu-
tively no longer correlate with each other in 
our statistical analysis indicating a decrease in 
or even absence of FC. Accordingly, decrease 
or even absence of FC means that the degree of 
diff erence-based coding decreased due to the 
impossible encoding of the (too large or too 
small) temporal and spatial diff erences between 
the diff erent regions’ neural activities. 

 Taken together, I here suggest diff erence-based 
coding to be a candidate for the neuronal mech-
anism that allows to constitute FC during both 
presence and absence of SC. I consequently sug-
gest that diff erence-based coding is at work dur-
ing both “structure-function predisposition” and 
“structure-function dissociation.” Th is makes it 
clear that diff erence-based coding operates on the 
functional level of neural activity and therefore 
supersedes the spatial and temporal constraints 
of the anatomical-structural level of the brain and 
its biophysical-computational constraints.  

    NEURONAL FINDINGS IIA: FUNCTIONAL 
CONNECTIVITY IN DIFFERENT RANGES OF 
FREQUENCY FLUCTUATIONS   

 “Functional connectivity” describes the coor-
dination between the temporal fl uctuations 
from diff erent regions’ neural activities (see also 

Cabral et al. 2011). Resting-state activity in dif-
ferent regions may now fl uctuate in diff erent 
frequencies of their fl uctuations (see later for 
details). 

 One may now question the relationship 
between functional connectivity and the diff er-
ent frequency domains in the neural activities’ 
fl uctuations. Th is leads us to the few available 
studies that directly test and measure the rela-
tionship between frequency fl uctuations and 
functional connectivity (see, however, the simu-
lation study by Cabral et al. 2011). 

 Using functional near infrared spectros-
copy (fNIRS), Sasai et  al. (2011) demonstrated 
that inter- and intrahemispheric connectivity 
(as operationalized by the temporal correlation 
of continuous oxy-HB signals as measured in 
fNIRS) operate in diff erent frequency domains. 
Interhemispheric connectivity as, for instance, 
between homologous right and left  occipital and 
frontal regions was high within a wide frequency 
range, 0.009–0.1 Hz. Th is contrasted with intra-
hemispheric connectivity as between frontal and 
posterior regions, where the frequency range 
of high functional connectivity was restricted 
to 0.04–0.1 Hz. In sum, these results show that 
the degree of functional connectivity and the 
frequency domain of the fl uctuations are closely 
related to each other. 

 Further empirical support comes from 
Shmuel and Leopold (2008). Th ey investigated 
the right and left  visual cortex (V1) in mon-
keys in fMRI and electrophysiology and how 
both regions’ neural activities are related to each 
other. Th is is of particular interest since there are 
no direct structural connections between right 
V1 and left  V1. Th ey observed FC between right 
V1 and left  V1 which can thus be considered an 
instance of structure-function dissociation.  

    NEURONAL FINDINGS IIB: RELATIONSHIP 
BETWEEN FUNCTIONAL CONNECTIVITY AND 
FREQUENCY FLUCTUATIONS   

 How about the relationship between fl uctuations 
and FC? Th eir results showed that neural activity 
in the right V1 (as measured with fMRI) was cor-
related with activity fl uctuations in the lower fre-
quency range (around 0.1 Hz) in the left  V1 (see 
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also Vincent et al. 2007 for an analogous fi nding). 
Th is means that right V1 and left  V1 showed 
functional connectivity despite there being no 
direct interhemispheric structural connections 
between them. Furthermore, these results point 
out that functional connectivity is linked to a 
particular frequency domain in the fl uctuations 
of the regions’ neural activities across time. 

 Another investigation by Nir et  al. (2008a 
and 2008b) provides some evidence in the same 
direction from human subjects on whom they 
performed intracranial recordings in bilateral 
auditory cortex during rest and sleep. Based on 
the local fi eld potentials (LFP) as recorded intra-
cranially, they observed that right and left  audi-
tory cortical LFPs correlated especially strongly 
with each other in lower frequency ranges (<0.01 
Hz), while this correlation was weaker in higher 
frequencies (>0.01 Hz). Interestingly, an analo-
gous observation was made in another group of 
subjects that underwent fMRI; these data showed 
that (fMRI-based) signal changes in right and 
left  auditory cortical activities correlated with 
each other; that is, showing FC, especially in the 
low-frequency fl uctuations (<0.1 Hz). 

 Taken together, these results show that FC 
may be linked to particular frequency ranges or 
domains in the fl uctuations of the regions’ neu-
ral activities. Th ereby it seems that especially 
low-frequency fl uctuations (around and lower 
than 0.1 Hz) seem to be of special relevance in 
constituting FC.  

    NEURONAL HYPOTHESIS IIIA: FUNCTIONAL 
CONNECTIVITY AND FLUCTUATIONS OF NEURAL 
ACTIVITY 

   Th e data show that the FC is closely linked to par-
ticular frequency domains in the fl uctuations of 
the regions’ neural activities. Th e question now is 
how these observations relate to diff erence-based 
coding as sketched earlier. For that, we need to 
describe what exactly the concept of “frequency 
fl uctuations” refers to. Frequency fl uctuations 
describe the changes of neural activity across dif-
ferent discrete points in physical time. 

 Such changes may occur in short time inter-
vals in which case higher frequency fl uctua-
tions are yielded (as, for instance, >1 Hz). Or 

the changes in neural activity may take longer 
to occur, thus presupposing longer time inter-
vals and thereby yielding low-frequency fl uctua-
tions (as for instance < 0,1Hz). Taken together, 
frequency fl uctuations describe time intervals, 
that is, temporal diff erences, between changes in 
neural activity. 

 How does that relate to functional connec-
tivity and its constitution by diff erence-based 
coding? Diff erence-based coding implies that 
functional connectivity is constituted by com-
puting (and thus encoding) the temporal dif-
ferences between two regions’ neural activities 
into one coherent neural diff erence. How can we 
now characterize the temporal patterns of each 
region’s neural activity in a more specifi c way? 
Very simple. Each region’s neural activity fl uctu-
ates in certain frequencies which means that its 
activity changes are determined by neural diff er-
ences and more specifi cally by the temporal dif-
ferences of the respective frequency range. 

 If now the neural diff erences—that is, the 
temporal diff erences and thus the respective 
frequency ranges—are similar between two dif-
ferent regions, their respective neural activities 
correlate with each other, thus showing FC. If, in 
contrast, their neural diff erences and thus their 
temporal diff erences diff er grossly from each 
other, their respective neural activities cannot 
correlate with each other, meaning that there 
this is no FC. 

 I consequently hypothesize that diff erence- 
based coding of functional connectivity is 
closely linked to the frequency fl uctuations of 
neural activity. Frequency fl uctuations describe 
temporal diff erences in neural activity changes 
across diff erent discrete points in physical time. 
Th e neural activity changes ultimately refl ect the 
statistical frequency distribution of the regions’ 
neural activity across time; i.e., their “neuronal 
statistics” if one wants to say so (see below for 
detailed explanation).  

    NEURONAL HYPOTHESIS IIIB: ENCODING OF 
“NEURONAL STATISTICS” AND FUNCTIONAL 
CONNECTIVITY   

 What does this imply for the interaction between 
the diff erent regions’ neural activities? Th e 



ENCODING INTRINSIC ACTIVITY110

interaction between two regions’ neural activi-
ties amounts then to a comparison and matching 
between the statistical frequency distributions of 
their neural activity changes; i.e., their neuronal 
statistics: 

 If the regions’ neuronal statistics match well 
with each other and operate thus in the same 
frequency range, their neural activities correlate 
and yield FC. If, in contrast, the regions’ neuronal 
statistics do not match with each other, meaning 

that they fl uctuate in diff erent frequency ranges, 
their neural activities will not correlate and 
therefore yield no FC (see   Fig. 5-3  ).      

 Th is means that, ultimately, FC can be traced 
back to the comparison and matching between 
diff erent statistical frequency distribution; i.e., 
neuronal statistics, the statistics of the fre-
quency fl uctuations of the two regions’ neu-
ral activities across diff erent discrete points in 
physical time. 

 

Degree of functional connectivity
between regions’ a and b neural
activities

Degree of temporal difference
between regions’ a and b
frequency fluctuations

(a)

Degree of functional connectivity
between regions’ a and b neural
activities 

Degree of matching between statistical
frequency distributions of regions’ a and
b frequency fluctuations

(b)

   Figure  5-3     Frequency fl uctuations and functional connectivity.  Th e fi gure shows the relationship 
between functional connectivity and the frequency fl uctuations as characterized by their phase dura-
tions. ( a ) Th e fi gure shows the inverse relationship between the regions’ degree of frequency fl uctua-
tions and their degree of functional connectivity: the higher the degree of frequency fl uctuations within 
each of the regions, the higher the temporal diff erence between the phase durations of their respec-
tive frequency fl uctuations, the less likely temporal synchronization can occur between them, and the 
lower their subsequent degree of functional connectivity. Hence, the degree of functional connectivity 
between regions as spatial measure may be directly dependent on the regions’ temporal relationship, 
that is, the temporal diff erences between the phase duration of their frequency fl uctuations. ( b ) Th e 
fi gure describes the relation of functional connectivity to its underlying process, the comparison and 
matching of the statistical frequency distributions between the two (or more) regions’ neural activities. 
Th e better the two (or more) regions’ neural activities—that is, the phase durations of their frequency 
fl uctuations—match across time, the better their neural activity is matched across space as well, result-
ing in increased functional connectivity.   
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 Since such statistical frequency distribution 
concerns the regions’ intrinsic neural activity, 
I  here speak of “neuronal statistics.” Th e con-
cept of neuronal statistics describes the statisti-
cal frequency distribution of the changes in the 
brain’s intrinsic activity levels across diff erent 
discrete points in physical time (and space, that 
is, in diff erent regions). Th e concept of neuronal 
statistics must be distinguished from the one of 
“natural statistics” that, as introduced in Part I, 
refers to the statistical frequency distribution of 
sensory stimuli (rather than to changes in the 
intrinsic neural activity levels). 

 Based on these considerations,, I propose that 
diff erence-based coding can be specifi ed as the 
matching and comparison between the temporal 
diff erences of diff erent regions’ changes in their 
resting state activity levels. Th is implies that FC 
is constituted by the comparison and matching 
between diff erent neuronal statistics as associ-
ated with the changes in the diff erent regions’ 
intrinsic activity levels. In short, resting state FC 
must be regarded a statistically based feature of 
the brain’s intrinsic activity.  

    NEURONAL HYPOTHESIS IIIC: PREDISPOSITION 
OF FUNCTIONAL CONNECTIVITY BY THE 
BRAIN’S CONDUCTION DELAYS   

 I postulate that resting state FC is constituted 
by matching and comparing the diff erent tem-
poral diff erences and thus the neuronal sta-
tistics of the changes in the diff erent regions’ 
resting state activity levels. Such matching 
and comparison between the regions’ diff er-
ent statistical frequency distributions is purely 
functional. Accordingly, the introduction of 
both diff erence-based coding and the match-
ing between diff erent neuronal statistics allows 
one to tentatively account for the independence 
of FC from the anatomical-structural features 
of the brain; i.e., SC. Th is accounts well for the 
functional level of neural activity and what we 
described earlier as structure-function dissocia-
tion and “functional freedom.” 

 We left  open, however, how its “sibling,” that 
is called “structure-function predisposition,” 
stands in relation to the neural mechanisms 
of diff erence-based coding and the matching 

between diff erent neuronal statistics. Th is is the 
focus in the present section. 

 How is the matching between the regions’ 
neuronal statistics compatible with the predis-
position of FC by SC? SC describes structural 
connectivity and that, in turn, implies certain 
conduction delays between diff erent regions. 
Based on the biophysical-computational con-
straints of the neurons and regions, their 
structural connections limit the speed of the 
information transfer between the two regions’ 
neural activities. Such conduction delay signi-
fi es by itself a particular temporal diff erence, 
the biophysical-computationally based delay 
in the conduction between two regions’ neural 
activities. 

 How does the conduction delay’s temporal 
diff erence stand in relation to the regions’ tem-
poral diff erences in their neural activity changes, 
that is, their neuronal statistics? One may fi rst 
specify the respective temporal diff erences. Th e 
temporal diff erence of the conduction delay is 
biophysical and computationally based, whereas 
the one in the case of the neuronal statistics is 
neuronal and statistically based. 

 How now does the biophysical, computa-
tionally based temporal diff erence and thus 
the conduction delay, impact the other, the 
statistically based diff erence, as the matching 
between the two regions’ neuronal statistics (of 
their intrinsic activity)? Th is leads me to sketch 
diff erent possible scenarios in the relationship 
between biophysical-computational conduc-
tion delays and the regions’ neuronal statis-
tics. In a fi rst scenario, the actual statistically 
based temporal diff erence of the two regions’ 
neuronal statistics may be (more or less) simi-
lar to the biophysical, computationally based 
temporal diff erence of the conduction delay. 
In this case one would expect that functional 
connectivity builds on existing structural con-
nectivity, with the latter thus predisposing the 
former. 

 I consequently hypothesize the following. 
Th e closer biophysical, computationally based 
and statistically based temporal diff erences, 
the more likely structural and functional con-
nectivity will correspond and thus conform to 
each other. More generally, this means that the 
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assumption of structure-function predisposition 
may well hold for instances of similarity between 
biophysical, computationally based and statisti-
cally based temporal diff erences.  

    NEURONAL HYPOTHESIS IIID: 
STRUCTURE-FUNCTION DISSOCIATION AND 
CONSCIOUSNESS   

 Now let’s turn to the second scenario that is 
opposite to the fi rst. Such structure-function 
predisposition may no longer hold in those 
instances where biophysical, computationally 
based and statistically based temporal diff er-
ences diverge from each other. More specifi cally, 
I hypothesize the following: the more biophysi-
cal, computationally based and statistically 
based temporal diff erences diverge from each 

other, the less likely functional connectivity will 
follow structural connectivity and its specifi c 
conduction delays. 

 Instead, functional connectivity will dis-
sociate from structural connectivity by estab-
lishing functional connections with temporal 
diff erences that are either higher or lower than 
the biophysical, computationally based ones 
from the conduction delays:  the higher the 
disparity or diff erence between biophysical, 
computationally based and statistically based 
temporal diff erences, the higher the likelihood 
of structure-function dissociation (see   Fig. 5-4  ). 
Empirically, such a case is, for example, given 
when two regions’ neural activities such as right 
and left  V1 are synchronized with zero delay, 
as reported by the aforementioned study from 
Shmuel and Leopold (2008).      

 

Degree of dissociation between
structural and functional
connectivity

Temporal difference between the
regions’ neuronal statistics of their
intrinsic activity and their respective 
biophysical-computationally-based
conduction delay

Structure-function
predisposition: Functional
connectivity = Structural
connectivity

Structure-function
dissociation: Functional
connectivity |= Structural
connectivity

   Figure 5-4     Structure–function relationship and conduction delays.  Th e fi gure shows the relationship 
between the degree of structure-function dissociation on one hand and the conduction delays on the 
other. Th e y-axis stands for the subtraction of the two (or more) regions’ conduction delays from the 
temporal diff erence in their neural activities (as resulting from the matching of their respective neuro-
nal statistics across time and space). Th e x-axis describes the degree of dissociation between structural 
and functional connectivity as measured in the actual data. I now propose a linear relationship between 
the two variables on the x- and y-axis: the higher the subtraction value (between temporal diff erence val-
ues and conduction values of the two regions), the more the two (or more) regions’ structural and func-
tional connectivity will dissociate from each other. If the subtraction value on the y-axis tends toward 
zero, structural and functional connectivity will not much dissociate from each other (blue circle on the 
left ). If, in contrast, the subtraction value deviates from zero and gets higher with the temporal diff er-
ence in the regions’ activity level being larger than the regions’ diff erence in conduction delays, their 
respective functional connectivity will deviate signifi cantly from their structural connectivity (see blue 
circle on the right).   
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 Taken together, the relationship between 
the neuron’s biophysical-computational con-
duction delays and the functional level of the 
temporal diff erences signaling changes in the 
brain’s intrinsic activity levels can vary on 
a spectrum between maximal and minimal 
degrees of convergence. If there is maximal 
convergence, structure-function predisposition 
predominates; whereas in the opposite in case 
of minimal convergence, structure-function 
dissociation is more likely. Th is makes it clear 
that both structure-function predisposi-
tion and dissociation refl ect diff erent degrees 
of convergence (or divergence) between 
biophysical-computational constraints and 
functional changes in the brain’s resting state 
activity levels. 

 Th is is not only neuronally important but 
also phenomenally; that is, for consciousness. 
Due to the strongly decreased metabolic and 
energy supply, the “functional freedom” of 
the brain’s intrinsic activity (when compared 
to the biophysical-computational constraints) 
seems to be rather low or minimal in patients 
with vegetative state (VS) who have lost 
consciousness. 

 Th ese patients’ intrinsic activity may thus 
no longer be able to constitute a proper spatial 
and temporal structure that remains more or 
less independent of the anatomical-structural 
features of the brain (see Chapters 28 and 29 for 
details). Th is is well manifested in the observa-
tion of reduced functional connectivity in the 
resting state in these patients (see Chapter 28 for 
details). 

 Accordingly, the VS patients may suff er 
from an abnormal shift  of the aforementioned 
continuum toward the pole of maximal con-
vergence with abnormally high degrees of 
structure-function predisposition and low 
degrees of structure-function dissociation. If, 
fi nally, there is no structure-function dissocia-
tion at all anymore, the patients slip into coma 
and ultimately into brain death. Th is further 
underlines the central importance of the rela-
tionship between structure-function predis-
position and structure-function dissociation 
for consciousness, thus signifying phenomenal 
relevance.  

    NEURONAL FINDINGS IIIA: SPONTANEOUS 
FLUCTUATIONS IN THE RESTING STATE   

 So far, I have considered the frequency fl uctua-
tions of the brain’s intrinsic activity only in the 
context of functional connectivity. Th ereby, 
results showed that FC seems to be predomi-
nantly related to low-frequency fl uctuations (see 
earlier), which I have not yet accounted for. We 
therefore may want to describe in more detail the 
low-frequency fl uctuations themselves and how 
they are related to high-frequency fl uctuations 
(see also Bullmore and Sporns 2012). 

 Spontaneous fl uctuations of neural activity 
in the resting state are oft en observed in espe-
cially the DMN, where they are characterized 
by predominant low frequencies (<0.1 Hz). 
However, low- (and high-) frequency fl uctua-
tions in neural activity can also be observed in 
regions other than the DMN like sensory corti-
ces, motor cortex, insula, and subcortical regions 
(like basal ganglia and thalamus) (see Freeman 
2003; Shulman et al. 2004, 2009; Buckner et al. 
2008; Wang et al. 2007; Hunter et al. 2006; Zuo 
et al. 2010; Bullmore and Sporns 2012). Further 
support for spontaneous resting-state activ-
ity changes across the whole brain comes from 
electrophysiological studies showing spontane-
ous neuronal oscillations and synchronizations 
in various parts of the brain, including the hip-
pocampus and the visual cortex (Buzsáki 2006; 
Buzsaki and Draguhn 2004; Arieli et  al. 1996; 
Llinas 1988; Singer 2003; Fries et al. 2001, 2007). 
Th is suggests that spontaneous fl uctuations in 
the intrinsic activity levels may be prevalent 
throughout the whole brain in both humans and 
animals and are not limited to the DMN.  

    NEURONAL FINDINGS IIIB: LOW-FREQUENCY 
FLUCTUATIONS IN THE RESTING STATE   

 Let’s be more specifi c. Th e spontaneous BOLD 
fl uctuations as observed in fMRI are to be found 
in lower frequency ranges like infra-slow fl uc-
tuations (ISFs) (0.001–0.1 Hz). In fMRI the 
low-frequency fl uctuations can be measured by 
what recently has been called “amplitude of low 
frequency fl uctuations” (ALFF) that describe the 
(root means square of the) standard deviation of 
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variability in the resting state activity level across 
time. Th e data show that these ALFF do indeed 
occur in all regions throughout the whole brain. 

 Th e slow-frequency fl uctuations observed in 
fMRI have been proposed to correspond to what 
is measured as slow cortical potentials (SCPs) 
in electroencephalography (EEG; Khader et  al. 
2008; He and Raichle 2009a and 2009b; Betzel 
et al. 2012). Th e SCPs are not easy to obtain in 
EEG because they are subject to artifacts caused 
by sweating, movements, and electrode drift ; 
their measurement therefore requires more direct 
measurement by direct current (DC) recording. 
It remains unclear whether what is measured 
as SCP in EEG corresponds to, is related to, or 
even identical to the low-frequency fl uctuations 
obtained in fMRI (see also Chapter 14 in Volume 
II for extensive discussion of the slow cortical 
potentials). 

 What is the empirical evidence for such cor-
respondence between the low-frequency fl uctua-
tions fMRI signal and the SCPs as measured in 
EEG? Nagai et al. (2004) conducted a combined 
fMRI and EEG study focusing on a particular 
electrophysiological potential, the contingent 
negative variation (CNV). Th e CNV is a nega-
tive shift  in cortical potentials that refl ects an 
SCP; the CNV is induced by expectancy and 
anticipation of particular stimuli or events and 
occurs maximally strong over frontal midline 
electrodes. 

 How are now low frequency fl uctuations 
related to the slow cortical potentials? Nagai 
et al. (2004) observed direct relation between the 
CNV as slow cortical potential as measured in 
EEG and the fMRI-based low-frequency fl uctua-
tions, thus supporting their direct relationship if 
not identity. Other studies extended these fi nd-
ings by showing that parametric variation of the 
cognitive load in, for instance, working memory 
tasks yields corresponding parametric changes 
in both fMRI-based low frequency fl uctuations 
and EEG-based SCP (for reviews, see He and 
Raichle 2009; Khader et al. 2008).Taken together, 
these data provide evidence for the occurrence of 
low frequency fl uctuations in a range lower than 
0.1 Hz in the brain’s resting state activity. Th e evi-
dence for such low frequency fl uctuations comes 
from both fMRI, where they are measured in the 

gestalt of the ALFF, and EEG, where they seem to 
surface in the SCP.  

    NEURONAL FINDINGS IIIC: HIGH-FREQUENCY 
FLUCTUATIONS IN THE RESTING STATE   

 In addition to such low-frequency fl uctuations, 
there are also higher frequency fl uctuations in 
the brain’s resting-state activity. Th ese fl uctua-
tions cover frequencies ranging from 1 Hz and 
higher, thus including delta (1–4 Hz), theta 
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), 
and gamma (>30 Hz) (see Mantini et  al. 2007; 
Sadaghiani et al. 2010). 

 Th is raises the question of how low and high 
frequencies are related to each other in the 
brain’s resting state (see also the recent reviews 
by Fries 2009; Fell and Axmacher 2011; Canolty 
and Knight 2010; Sauseng and Klimesch 2008). 
In the following, I give only a brief overview of 
the main fi ndings while not discussing all studies 
in full detail including the phase–phase coupling 
in specifi c regions like the hippocampus (see, 
for instance, Fell and Axmacher 2011). I  will 
give a more detailed account of the relationship 
between high- and low-frequency fl uctuations in 
Volume II (see Chapters 13, 15, and 20). 

 Vanhatalo et  al. (2004) conducted an EEG 
study in both healthy and epileptic subjects dur-
ing sleep and rest, where, using DC-EEG, they 
were able to record low-frequency oscillations. 
All subjects showed infraslow oscillations (0.02–
0.2 Hz); these were seen widespread over all elec-
trodes and thus the whole brain without showing 
any specifi c visually obvious spatial distribution. 

 Most interestingly, they observed cross- 
frequency phase-power coupling between the 
phases of the slow (0.02–0.2 Hz) oscillations and 
the power/amplitudes of the faster (1–10  Hz) 
oscillations. Th e power/amplitudes of the 
high-frequency oscillations (1–10 Hz) was the 
highest during the negative defl ection phases of 
the slow-frequency oscillations (0.02–0.2 Hz). 
Even the higher frequency K-complexes that 
are characteristic for sleep as well as interictal 
epileptiform events were phase-locked to the 
slow-frequency oscillations in that the former 
occurred preferentially in the negative defl ection 
phases of the latter. 
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 An analogous cross-frequency phase-power 
coupling can also be described as entrainment of 
higher by lower frequencies. Such low–high fre-
quency entrainment may not only occur during 
the resting state as described by the aforemen-
tioned study but also during rest–stimulus inter-
action where it may be central in synchronizing 
neuronal activity; this will be discussed in detail 
in Part IV of this volume. 

 By linking low and high frequencies, such 
low–high frequency entrainment may allow the 
brain’s intrinsic activity to construct a certain 
neuronal unity, a spatiotemporal unity, across 
diff erent discrete points in the physical space 
(i.e., the regions) and time (i.e., the diff erent 
frequency fl uctuations) in the brain. Such neu-
ronal unity or better spatiotemporal unity in the 
brain’s intrinsic activity may be central in allow-
ing for the constitution of the kind of unity, a 
phenomenal unity, we experience in conscious-
ness (see Chapters 13, 15, 18, and 20, where I will 
also go into further detail about the neuronal 
mechanisms underlying low–high frequency 
entrainment). Accordingly, low–high frequency 
entrainment is relevant not only neuronally but 
also phenomenally.  

    NEURONAL HYPOTHESIS IVA: 
PARALLEL-SEGREGATED CODING VERSUS 
INTERACTIVE-INTEGRATIVE CODING 

   How is it possible that the power or amplitude 
of high-frequency oscillations can be locked and 
thus entrained to the phases of low-frequency 
oscillations? If high- and low-frequency oscil-
lations are coded in parallel and independently, 
such low–high frequency entrainment would not 
be possible beyond mere chance. In such a case, 
each time point and consequently each frequency 
range and its respective temporal duration would 
be coded in isolation from the temporal durations 
of the respective other frequency oscillations. 

 Th is would result in what I  described in 
Chapter 4 (in the context of the spatial domain) 
as “parallel-segregated coding” that may be 
regarded as an extension of stimulus-based cod-
ing. Th e assumption of such parallel-segregated 
coding in the temporal domain of low- and 
high-frequency fl uctuations is not empirically 

plausible, however, given the low–high fre-
quency entrainment described earlier. One may 
consequently suggest a diff erent coding strategy. 

 Instead of parallel-segregated coding, one 
may rather propose interactive-integrative cod-
ing (see also Chapter 4, where I applied it in a spa-
tial context) that may be regarded an extension 
of diff erence-based coding. Applied to the tem-
poral domain, “interactive-integrative coding” 
describes the neural coding of the relationship, 
that is, the temporal diff erences, between the tem-
poral durations of the fl uctuations in the diff erent 
frequency ranges. More specifi cally, the temporal 
diff erences between neural activity changes are 
matched and compared with each other: that is, 
the phase durations in the low-frequency fl uc-
tuations are set against the phase durations in the 
high-frequency fl uctuations.  

    NEURONAL HYPOTHESIS IVB: 
DIFFERENCE-BASED CODING AND “TEMPORAL 
NESTEDNESS”   

 What does such matching and compari-
son between the phase durations of low- and 
high-frequency fl uctuations look like? Th e 
phase durations of low-frequency fl uctuations 
are obviously longer and do therefore refl ect a 
larger temporal diff erence than the ones of the 
high-frequency fl uctuations. Th is means that 
a larger temporal diff erence is compared and 
matched with a smaller one. 

 How can they be matched and compared 
with each other? Th is is possible only by testing 
whether the smaller temporal diff erence of the 
high-frequency fl uctuations fi ts into the larger 
one of the low-frequency fl uctuations. If so, the 
phase duration of the higher frequency fl uctua-
tion becomes integrated into the one of the lower 
frequency fl uctuation, resulting in what has been 
described as low–high frequency entrainment 
(see earlier). Th is is manifested in that the maxi-
mal power and amplitude of the high-frequency 
fl uctuation always occur at a particular point 
within the phase duration of the low-frequency 
fl uctuations, thus refl ecting what is described 
as “cross-frequency phase-power coupling” (for 
excellent reviews, see Canolty and Knight 2010; 
Sauseng and Klimesch 2008). 
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 If, in contrast, both larger and smaller tem-
poral diff erences do not fi t together in some 
way or the other, the high-frequency fl uctuation 
remains independent of the lower. Low–high 
frequency entrainment remains consecutively 
impossible. In this case, the amplitude of the 
high-frequency fl uctuation is not tied to a par-
ticular point within the phase duration of the 
low-frequency fl uctuations. 

 Depending on the temporal diff erences 
between their phase durations, low- and 
high-frequency fl uctuations may be integrated 
and linked in diff erent ways. Th ereby, due to 
low–high frequency entrainment, high-frequency 
fl uctuations are nested in the lower frequency 
fl uctuations. One can consecutively speak of “tem-
poral nestedness” (see Canolty and Knight 2010; 
Sauseng and Klimesch 2008; and Betzel et  al. 
2012, for empirical support; also see Chapters 13, 
15, 18, and 20 in Volume II for more details). 

 How can we better illustrate such “tempo-
ral nestedness”? Let us compare the temporal 
nestedness between low- and high-frequency 
fl uctuations to the kind of nestedness that can 
be observed in the case of Russian dolls. As 
we know, each Russian doll contains a slightly 
smaller Russian doll, which in turn contains a 
smaller one, and so forth. Th e smaller dolls thus 
nest inside the next-bigger ones, whereas the 
biggest doll contains the highest number of dolls 
inside it. 

 How does the example of the Russian dolls 
compare to the relationship between low- and 
high-frequency fl uctuations? Th e biggest doll 
showing the largest extension (in space) corre-
sponds in our case to the biggest temporal exten-
sion—that is, the longest phase durations as the 
one of low-frequency fl uctuations. 

 Th e smaller dolls, in contrast, have their 
equivalent in the shorter phase durations of the 
higher frequency fl uctuations that, analogous to 
the smaller dolls, are nested within the next big-
ger one, and so forth. Th e relation between small 
and bigger Russian dolls can thus be well com-
pared to the one between the shorter and longer 
phase durations of high and low frequency fl uc-
tuations in the brain. Th e brain may therefore 
amount to nothing but a Russian doll, at least in 
temporal regard.  

    NEURONAL HYPOTHESIS VA: THE BRAIN’S 
INTRINSIC ACTIVITY CONSTRUCTS A TEMPORAL 
STRUCTURE IN ITS NEURAL ACTIVITY   

 By linking and integrating low- and high- 
frequency fl uctuations with the latter’s smaller 
phase durations nesting and residing in the 
longer ones of the former, the brain’s intrinsic 
activity constructs temporal nestedness. Given 
the diff erent frequency fl uctuations and their 
diff erent possible constellations, diff erent forms 
of temporal nestedness can be yielded that 
ultimately results in the construction of what 
I describe as “temporal structure.” 

 What do I  mean by the concept of “tempo-
ral structure”? Th e term “temporal structure” 
describes the various kind of possible temporal 
relationships between low- and high-frequency 
fl uctuations and their respective phase durations 
and amplitudes. As such, the term “structure” 
refers here to a particular temporal organization 
that spans in a virtual way across diff erent discrete 
points in physical time (and space) (see   Fig. 5-5  ).      

 How can we now characterize such temporal 
structure in further detail? Empirically, the tem-
poral structure can be characterized as “highly 
dynamic” in that it continuously changes. It 
seems that there are changes within time units 
of 100–200ms, the so-called  microstates , as 
observed in EEG results on resting state activity 
(see deVille et al. 2010; Britz et al. 2010; Michel 
and Murray 2012; Hutchinson et  al. 2012). 
However, there are certain “core” microstates 
that appear more oft en than others, so that there 
is a certain structure and organization, a “tempo-
ral structure” as I say. 

 Th e temporal structure of the brain’s intrinsic 
activity must be considered as truly functional 
as based on neuronal mechanisms and processes 
(see beginning of this chapter for the defi nition 
of “functional”). Being functional and signify-
ing the level of the brain’s intrinsic activity, the 
concept of temporal structure must be distin-
guished from the brain’s anatomical structure 
as based on its biophysical-computational fea-
tures, such as the conduction delays. Th is makes 
it clear that the temporal structure of the brain’s 
intrinsic activity is clearly functional rather than 
structural.  



TEMPORAL STRUCTURE OF INTRINSIC ACTIVITY 117

    NEURONAL HYPOTHESIS VB: THE TEMPORAL 
STRUCTURE OF THE BRAIN’S INTRINSIC 
ACTIVITY IS NEURONAL AS WELL AS 
DIFFERENCE- AND STATISTICALLY BASED   

 Moreover, the temporal structure of the brain’s 
intrinsic activity is ultimately based on the 
matching and comparison between diff er-
ent temporal diff erences; that is the diff erences 
from the phase durations between low- and 
high-frequency fl uctuations. 

 Th erefore, very much like the spatial struc-
ture, the brain’s temporal structure is statistically 
based rather than biophysically computationally 
based. Th at is what I  mean when I  character-
ize both temporal and spatial structure as neu-
ronal rather than as merely physical (see also 
Chapter 4). 

 As detailed by the example of structure- 
function dissociation, the statistically based tem-
poral structure operates across and supersedes 
the biophysical, computationally based con-
duction delays and their respective anatomical 
structure. Th is means, however, that the statisti-
cally based temporal structure is not isomorphic 
to the biophysical, computationally based tem-
poral structure of the conduction delays. 

 Accordingly, the temporal structure of the 
brain’s intrinsic activity cannot be identifi ed in a 
one-to-one way and is thus not isomorphic with the 
brain’s biophysical-computational and anatomical 
structure (see also Fingelkurts et al. 2010a, 2010b, 
2011; for the assumption of a more or less analo-
gous spatial and temporal structure in the resting 
state when they speak of “operational space-time”; 
however, they do not detail the mechanisms and 
processes that are necessary to constitute such 
“operational space-time”). In other words, there is 
no isomorphism between anatomical-structural 
and physiological-functional levels in the brain 
and thus between its biophysical-computational 
features and the spatial and temporal structure of 
the brain’s intrinsic activity.  

    NEURONAL HYPOTHESIS VC: LINKAGE 
BETWEEN SPACE AND TIME—SPATIOTEMPORAL 
STRUCTURE   

 Besides not being isomorphic to the 
biophysical-computational structure of its 
underlying anatomy, the intrinsic linkage with 
the spatial structure must be considered another 
hallmark feature of the temporal structure. Th ere 
is, I  postulate, an intrinsic integration between 

 

Temporal Structure of the
Brain’s Intrinsic Activity (red
arrows): Neuronal Time

Anatomical Structure of the
Brain (blue brain): Physical Time

Step from the brain’s anatomy (blue) to
the encoding of its neural activity (red)
in terms of difference-based coding

   Figure 5-5     Constitution of temporal structure in the neural activity of the brain’s intrinsic activity.   
 Th e fi gure illustrates schematically that the brain’s intrinsic activity constitutes in its neural activity a 
temporal structure (white horizontal lines symbolize fl uctuations in neural activity with the grey verti-
cal lines symbolizing cross-frequency coupling) functional connectivity that supersedes and operates 
across the anatomical structure (brain). Th e physical time of the brain’s anatomical structure is thus 
superseded by the neuronal time of the brain’s intrinsic activity that operates across the former. Th at 
is made possible by encoding neural activity in terms of diff erence-based coding, as is indicated on the 
right with the arrow from the anatomical structures and their physical time to the intrinsic activity’s 
spatial structure and its neuronal time.   
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spatial and temporal dimensions within one 
coherent spatiotemporal structure in the brain’s 
intrinsic activity. 

 Let’s be more specifi c. We already saw ear-
lier that functional connectivity is based upon 
temporal diff erences between two regions’ neu-
ral activities. By coding the temporal diff erence 
between the regions’ neural activities, the spa-
tial relationship between the two regions also 
changes by, for instance, increasing or decreas-
ing the degree of functional connectivity. Th is 
already establishes an intrinsic link between spa-
tial and temporal dimensions within FC itself. 

 Th ere is yet another link between temporal 
and spatial dimensions. Low-frequency fl uctua-
tions (<0.1 Hz) show long phase durations that 
seem to require larger and global spatial extension 
across diff erent regions of the brain. In contrast, 
high-frequency fl uctuations (like, for instance, 
gamma >30 Hz) show much shorter phase dura-
tions with lower degrees of spatial extension and 
do therefore operate more locally and regionally 
(see Canolty and Knight 2010; Singer 1999, 2009). 

 Th ese observations point toward an intrinsic 
linkage between spatial and temporal dimen-
sions on the functional level of the brain’s intrin-
sic activity. One may therefore better speak of 
a “spatiotemporal structure” characterizing the 
brain’s intrinsic activity rather than either spatial 
or temporal structure. 

 Such spatiotemporal structure does operate on 
the functional level of the brain’s intrinsic activity 
as distinguished from its anatomical-structural 
features. In addition, the spatiotemporal struc-
ture is statistically based—that is, based on the 
encoding of diff erent neuronal statistics and 
their respective neuronal diff erences—rather 
than biophysically computationally based. Th is 
is what I mean when I characterize the intrinsic 
activity’s spatiotemporal structure as “neuronal” 
rather than physical as well as statistically-based.  

    Open Questions   

 Th e fi rst question pertains to the generation of 
the brain’s intrinsic activity itself. I here described 
how the brain’s intrinsic activity generates and 
constitutes a temporal and spatial structure; that 
is, a spatiotemporal structure. Th ereby I described 
diff erence-based coding and matching and 

comparison between diff erent neuronal statistics 
(i.e., statistical frequency distribution) as cen-
tral neuronal mechanisms. While these neuro-
nal mechanisms are supposed to account for the 
constitution of the spatiotemporal structure by 
the brain’s intrinsic activity, they cannot, however, 
explain how the intrinsic activity itself is generated. 
 For that, one should turn to simulation models 
as they have been investigated by Gustavo Deco, 
a Spanish network modeler (see Deco et al. 2009; 
Gosh et al. 2008a and 2008b; see also Deco et al. 
2011 for an excellent review; see also Mazzoni 
et al. 2007, 2008). Th ese simulation models aim 
to show how the brain’s intrinsic activity is gen-
erated as such, whereas most oft en they seem to 
leave open the exact coding strategy the brain 
itself applies. In the future, one may therefore 
want to align these simulation models with the 
here-postulated suggestions of diff erence-based 
coding and the matching between diff erent neu-
ronal statistics as the neuronal mechanisms that 
may underlie the constitution of the spatiotem-
poral structure of the brain’s intrinsic activity. 
 Th e second main question concerns a more 
detailed characterization of the spatiotemporal 
structure. Neuronally, the spatiotemporal struc-
ture of the brain’s intrinsic activity is not static 
and unchanging; instead, it is dynamic and con-
tinuously changing, as is well refl ected in its vari-
ability (see Garrett et  al. 2011; McDonnell and 
Ward 2011). Th ereby, it generates what have been 
described as “microstates” (see van de Ville 2010; 
Britz et al. 2010; Musso et al. 2010; Lehman et al. 
1998, 2010), neuronal assemblies (Fingelkurts 
et al. 2010a and 2010b, 2011; and many others), or 
“neuronal transients” (Friston 1995, 1997, 2000), 
which refer to stable though transient spatiotem-
poral patterns in the brain’s intrinsic activity. It 
would be interesting for future investigation to 
determine how such microstates compare to the 
here-suggested diff erence-based coding. 
 Finally, we postulated in the fi rst part that 
diff erence-based coding leads to the temporal and 
spatial sparsening of neural activity on cellular 
and regional levels. I have so far focused only on 
diff erence-based coding while neglecting sparse 
coding. If diff erence-based coding is supposed to 
be central for the constitution of the spatiotemporal 
structure of the brain’s intrinsic activity, one would 
expect the latter to also show a sparse pattern in its 
neural activity. In short, the brain’s intrinsic activity 
should be characterized by sparse coding. Th is will 
be the focus in the next chapter, Chapter 6.              
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    Summary   

 Chapter  5 discussed several lines of evidence 
for the assumption of a statistically based spa-
tiotemporal structure in the resting state. Th at 
was supposed to be based on diff erence-based 
coding. Th is raises the question of whether 
diff erence-based coding of the brain’s intrinsic 
activity is associated with sparse coding, as we 
have seen it in the case of stimulus-induced 
activity on both cellular and regional levels 
(see Part I). A  recent study demonstrates that 
the actual spatiotemporal activity patterns con-
strain, that is, sparsen, the possible number 
of the subsequently following spatiotemporal 
activity patterns. Th e actually observed number 
of spatiotemporal patterns in the intrinsic activ-
ity is rather low when compared to the number 
of possible spatiotemporal constellations. Th ese 
and other results suggest that the brain’s intrin-
sic activity and, more specifi cally, its spatiotem-
poral activity patterns, can be characterized by 
a high degree of sparse coding and a rather low 
degree of dense coding. Since sparse coding on 
the cellular level was shown to be closely related 
to Glutamate and GABAergic-mediated neural 
inhibition (see Chapter  2), one would suspect 
both to be also central in mediating the sparse 
coding of the brain’s intrinsic activity. I  hence 
discuss recent fi ndings on the biochemical 
mechanisms underlying the constitution of 
resting-state activity. Th e fi ndings demonstrate 
that the resting-state concentration of glutamate 
is directly related to the degree of resting-state 
functional connectivity between distal and 
thus remote regions. However, GABA seems 
to impact mainly local and thus more proximal 
neural activity. Th e imaging fi ndings demon-
strate that both GABA and glutamate are related 

to the diff erences between diff erent neural activ-
ity levels like eyes open and closed rather than 
being related to one particular activity level by 
itself. I  therefore hypothesize that GABA and 
glutamate are particularly sensitive and tuned 
to encode relative neural activity changes—that 
is, neural diff erences—rather than absolute 
values of neural activity by themselves. Th is 
suggests that glutamate and GABA encode neu-
ral activity in terms of diff erence-based cod-
ing rather than stimulus-based coding. Such 
diff erence-based coding may make possible the 
temporal and spatial sparsening and thus sparse 
coding of the spatiotemporal patterns of the 
brain’s intrinsic activity. In sum, I  hypothesize 
that the brain’s intrinsic activity on a regional 
level can be characterized by diff erence-based 
coding (as distinguished from stimulus-based 
coding) and sparse coding (as distinguished 
from dense or local coding) which both seem to 
be mediated by GABA and glutamate and their 
excitation-inhibition balance (EIB).    

    Key Concepts and Topics Covered   

 Sparse coding, spatiotemporal activity patterns, 
intrinsic activity, resting state, GABA, glutamate, 
diff erence-based coding, excitation-inhibition 
balance   

    NEUROEMPIRICAL BACKGROUND IA: SPARSE 
CODING OF THE BRAIN’S INTRINSIC ACTIVITY   

 Th e previous chapters in this part (Chapters 4 
and 5)  described how the brain’s intrinsic 
activity constitutes a statistically based spa-
tiotemporal structure that operates across 

           CHAPTER 6 
 Sparse Coding of Intrinsic Activity       
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and supersedes both the anatomical struc-
ture and its biophysical-computational con-
straints. Th ereby the term “structure” refers 
to a particular organization that signifi es a 
statistically based template or grid across the 
diff erent discrete points in the physical space 
and time. Th is, as I suggest, is possible only on 
the basis of encoding spatial and temporal dif-
ferences into the brain’s intrinsic activity, thus 
implying diff erence-based coding rather than 
stimulus-based coding. 

 How is the statistically based spatiotempo-
ral structure of the brain’s intrinsic activity for-
matted? We saw so far that it is coded in terms 
of spatial and temporal diff erences, that is, 
diff erence-based coding, while we left  open the 
formatting of the brain’s intrinsic activity. 

 Th e concept of format describes the mani-
festation and thus the result or outcome of 
the coding process. We saw, for instance, that 
the resulting neural activity on a cellular level 
during sensory stimulation was formatted in 
a sparse way in sensory cortex, which presup-
poses sparse coding (see Chapters  1 and 2). 
Analogously, neural activity on a regional level 
was also spatially and temporally sparsened 
during perceptual decision making, as we saw 
in Chapter  3. Th is suggests sparse formatting 
and thus sparse coding (as distinguished from 
dense or local coding) to hold on both cel-
lular and regional levels of stimulus-induced 
activity. 

 How about the brain’s resting-state activ-
ity? We saw that the resting-state activity is 
not static but rather dynamic when under-
going continuous changes in its level of neu-
ral activity (see Chapters  4 and 5). How are 
these changes in the brain’s intrinsic activ-
ity formatted and encoded into neural activ-
ity? Given the observed sparse coding during 
stimulus-induced activity, one would suggest 
sparse coding rather than dense or local coding 
to also determine the formatting and encoding 
of the brain’s intrinsic activity. Th is is the focus 
in the present chapter. 

 Is the brain’s intrinsic activity, as we observe 
it, indeed the result of sparse coding? If so, the 
alleged spatiotemporal structure should be con-
stituted on the basis of prior processes of spatial 

and temporal sparsening. Hence, the fi rst, more 
specifi c aim of this chapter is to gather empirical 
evidence in favor of sparse coding in the brain’s 
intrinsic activity.  

    NEUROEMPIRICAL BACKGROUND IB: 
NEURAL INHIBITION AND THE BRAIN’S 
INTRINSIC ACTIVITY   

 Th e assumption of sparse coding in the brain’s 
intrinsic activity raises the question of how 
the processes of spatial and temporal sparsen-
ing of neural activity operate and are imple-
mented. In the case of stimulus-induced 
activity in the sensory cortex (on the cellular 
and population level), neural inhibition as 
mediated by GABA was supposed to be central 
in allowing for spatial and temporal sparsen-
ing of neural activity (see Chapter 2). Th ereby 
GABA acted in conjunction with glutamate, 
which mediates neural excitation. Th is means 
that the balance between GABA and gluta-
mate, the excitation-inhibition balance (EIB), 
is central in determining the degree of spatial 
and temporal sparsening of stimulus-induced 
activity. 

 How about GABA and glutamate and the 
excitation-inhibition balance (EIB) in the brain’s 
intrinsic activity? One may want to investigate 
how GABA and glutamate and thus the EIB 
modulate the resting-state activity within as well 
as between diff erent regions. In addition, one 
may want to consider how the EIB drives and 
predisposes sparse coding of the brain’s intrin-
sic activity and its continuous dynamic changes. 
Th is is the second more specifi c aim of this 
chapter.  

    NEUROEMPIRICAL BACKGROUND IIA: 
FORMAL SYNTACTIC PROPERTIES IN 
BRAIN, MUSIC, AND LANGUAGE   

 Dan Lloyd was originally a philosopher at 
the Trinity College in Hartford, Connecticut. 
Besides philosophizing, he is also very much 
interested in the mind and more specifi cally in 
how the brain yields what we as observers call 
consciousness and mind. Th us, he is not afraid 
of tackling empirical issues and approaching 
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them from a sometimes unusual perspective (at 
least for the neuroscientists, and defi nitely for 
philosophers). 

 Lloyd has raised the question of whether 
the coding of the brain’s neural activity during 
both resting-state and stimulus-induced activ-
ity is similar to the one of music and language 
(Lloyd 2011). More specifi cally, he was interested 
in the formal coding or syntactic properties (see 
next paragraphs for discussing the term  syntactic  
and how it relates to coding) of all three: brain, 
music, and language. 

 Similar formal coding or syntactic proper-
ties may, for instance, be shared between lan-
guage and brain, which on the philosophical 
side would amount to the thesis of a “language 
of thought”:  despite their diff erent semantic 
and thus content features, language and brain 
may nevertheless share their formal -synaptic 
features and thus the same kind of coding. Our 
thoughts arising from the brain would conse-
quently be structured like the language which we 
use to express them, thus amounting to what is 
described as “language of thought” in philosophy. 

 What are formal-syntactic properties? 
Formal-syntactic properties may, for instance, 
consist in a particular coding of the diff erent ele-
ments and their relationship to each other. Th e 
elements may be tones in music, words in lan-
guage, or activity patterns in the brain. 

 How are these basic elements related and 
combined with each other? Certain tones may 
appear together oft en, while others hardly ever 
occur in conjunction. Th e same holds true for 
words in language as well as for the spatiotempo-
ral patterns and their constellations in the brain’s 
intrinsic (and extrinsic) activity.  

    NEUROEMPIRICAL BACKGROUND IIB: SPARSE 
CODING OF FORMAL-SYNTACTIC PROPERTIES IN 
BRAIN, MUSIC, AND LANGUAGE   

 How do the formal-syntactic properties in the 
diff erent systems—language, music, and brain—
stand in relation to sparse coding? If certain con-
stellations between the diff erent elements (tones, 
words, spatiotemporal activity patterns) occur 
more oft en than others, the full range of possible 
combinations between the diff erent elements 

(i.e., activity patterns, tones, words) may not be 
fully exhausted by the respective system; that 
is, brain, language, or music. Instead, one can 
observe only a limited number of combinations 
between the elements to be actually manifest in 
language, music or the brain’s intrinsic activity. 
In this case one can speak of sparseness and thus 
sparse coding. 

 Dan Lloyd aimed to compare the diff erent 
degrees of sparsening, that is, sparse coding, 
in the brain’s spatiotemporal activity patterns 
when compared to language and music. For 
that, he investigated how words are combined 
in diff erent languages (English, French, Spanish, 
Finnish, Chinese) and how tones are related 
and combined in diff erent pieces of music 
(Schubert, Gershwin, Chinese folk, British folk, 
African folk). 

 In addition, he conducted an analysis 
of diff erent imaging studies during either 
resting-state activity or stimulus-induced 
activity (auditory oddball paradigm). For the 
analysis of the brain imaging studies, he used 
an independent component analysis that yields 
diff erent spatiotemporal activity patterns 
across time and space in the brain; he identi-
fi ed one particular predominating spatiotem-
poral activity pattern at each point in time, 
which allowed him to observe the changes in 
spatiotemporal activity patterns across diff er-
ent points in time. 

 He was now interested in seeing how the dif-
ferent spatiotemporal activity patterns in the 
brain are related and combined with each other 
across time:  whether, for instance, certain spa-
tiotemporal activity patterns occurred more 
oft en than others and whether the full range of 
possible spatiotemporal activity patterns was 
exhausted and actually manifested. 

 Th is, as the constellations of tones and words 
in music and language, was measured with cal-
culations of distinct variants of the standard 
deviations, that is, the variations across time 
and space. Since these measures refer to the 
degree of sparseness in the occurrence of the 
elements (words, tones, spatiotemporal pat-
terns), they indicate the degree of sparse coding 
in the respective system (language, music, brain’s 
intrinsic activity).  
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    NEURONAL FINDINGS IA: DIFFERENT DEGREES 
OF SPARSENESS IN THE FORMAL-SYNTACTIC 
PROPERTIES IN BRAIN, MUSIC, AND LANGUAGE   

 What did Dan Lloyd observe in his results? He 
observed that music was sparser than language. 
Certain notes occurred more frequently and 
others less oft en, whereas all words in language 
were actually used quite oft en. Language thus 
shows a more dense code, while the one in music 
is sparser. One would consequently postulate a 
higher degree of sparse coding in music than in 
language. 

 How does now the brain’s intrinsic activity 
stand in relation to this? Th e results show that 
certain spatiotemporal activity patterns occurred 
rather oft en, while others were rarely or not at 
all observed. Moreover, the number of actually 
occurring sequences relative to the number of 
possible sequences was rather high, so the brain’s 
spatiotemporal activity patterns do not seem to 
exhaust their full range of possibilities. 

 Th is suggests that the brain’s spatiotemporal 
activity patterns exhibited a rather high degree 
of sparseness that is closer to the one of music 
than the one of language. Th e brain’s activity 
patterns across time are thus encoded in a more 
sparse way than words in language. In contrast, 
the brain and its sequence of spatiotemporal 
activity patterns seem to be more or less simi-
lar to the formal constellations and sequences as 
observed between tones in music (  Fig. 6-1  ).           

 How about the diff erence between resting- 
state and stimulus-induced activity with regard 
to the degree of sparseness? Lloyd observed that 
the resting-state studies showed a lower degree 
of sparseness in the distribution of their spatio-
temporal activity patterns across time than the 
stimulus-induced activity studies (that applied 
an auditory oddball paradigm requiring atten-
tion and perception). 

 Lloyd therefore hypothesizes that the 
encounter with specifi c stimuli (as in stimulus- 
induced activity) or tasks (as in task-related 
activity) may drive the brain toward increased 
temporal and spatial sparsening of its own 
spatiotemporal activity pattern and thus to 
a higher degree of sparse coding. Th is is in 
line with other fi ndings that support both 

the observation of sparse coding in the 
brain’s intrinsic activity and its changes dur-
ing stimulus-induced activity (see Wang et al. 
2009; Jao et  al. 2013; Lee et  al. 2011; Zhang 
et  al. 2012; see also Betzel et  al. 2012, for the 
observation of a recruitment of a limited or 
sparse number of spatiotemporally reoccur-
ring core states in resting-state EEG). 

 Taken together, Lloyd’s study shows that 
the brain’s resting-state and stimulus-induced 
activity can be characterized by high degrees 
of spatial and temporal sparseness of its spatio-
temporal activity patterns. As such, the brain’s 
intrinsic activity seems to be more similar to 
the formal activity pattern in music than that 
of language. Furthermore, resting-state activ-
ity seems to show a slightly lower degree of 
sparseness than stimulus-induced activity. Th is 
indicates that the degree of sparse coding is 
not fi xed but can vary across time and space 
in dependence on the respective neuronal 
contexts. .  

    NEURONAL FINDINGS IB: “MUSIC OF THE 
BRAIN” AND ITS “NEURONAL MELODY”   

 What do these fi ndings imply in more concrete 
terms? Let’s start with the example of music 
and the structure between the diff erent tones 
in music. One particular note or tone in music 
strongly determines and predicts which note will 
(or must) come next. 

 Th e same is true for the brain. Here, the 
occurrence of one actual spatiotemporal activity 
pattern seems to determine which spatiotempo-
ral activity pattern will follow (and which ones 
are less likely to occur, or do not occur at all). 
Th e actual spatiotemporal activity pattern limits 
or sparsens the number of spatiotemporal activ-
ity pattern that can possibly follow, thus lead-
ing to sparse coding (rather than dense or local 
coding). 

 Let us describe the situation in the case of 
the brain in further detail. Th e observation of 
a rather low or sparse number of actual spatio-
temporal activity patterns entails that the pre-
vious spatiotemporal activity pattern increase 
the probability of a particular spatiotemporal 
activity pattern as its possible successor, while 
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   Figure 6-1a     Sparse coding in the brain, music, and language.  Th ree-way comparison of music, lan-
guage, and fMRI data. Th e bars represent data from 99 subjects in three experiments. Healthy and 
Schizophrenia subjects both performed an “auditory oddball task,” consisting of identifying a target 
tone in a stream of non-target tones and distracting noises. Th e largest group comprises 64 subjects in 
the rest condition (also known as Default Mode). (a) 1st-order sparseness; i.e., sparsity/density of single 
symbols. (b) 2nd-order sparseness; i.e., sparsity/density of sequential pairs of symbols.     (Reprinted from 
Lloyd D. Mind as music.  Front Psychol . 2011;2:63.)   

making others less likely. In short, the actual 
spatiotemporal patterns have a strong say in 
what will happen next and are therefore pre-
dictive. Th is is diff erent in language. Due to 
the high number of actually occurring constel-
lations, the use of a particular word does not 
really predict the following word. Unlike the 
tones in music and the spatiotemporal activ-
ity patterns in the brain, the words in language 

do not really predict the subsequent words 
and therefore exert no strong impact on future 
words and their combinations. 

 To put it diff erently: we may be more oft en 
caught by surprise by the words in our lan-
guage than when listening to tones in music 
and observing the spatiotemporal patterns in 
our brain’s resting state. Accordingly, we are less 
able to predict the next word in our language 
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than the next tone in music or the next spatio-
temporal activity pattern in our brain’s intrinsic 
activity. 

 Th e similarity between brain and music in 
the degree of sparse coding inclines Lloyd to 
speak of a “music of thought” as distinguished 
from a “language of thought.” Since the brain 
and its spatiotemporal activity pattern mediate 
our thoughts and show degrees of sparse cod-
ing similar to music rather than language, our 
thoughts may be formatted like music. One can 
therefore speak, as Lloyd does, of a “music of 
thought” rather than “language of thought.” 

 One may extend this analogy even further 
and speak of a “music of the brain.” Th e concept 
of a “music of the brain” may fi guratively indicate 
the brain’s similarity to music with regard to the 
degree of sparse coding of its formal-syntactic 
properties, the spatiotemporal activity patterns. 
Hence, to take this almost literally, the brain may 
indeed generate some kind of (formal-syntactic) 
melody during the transitions between its diff er-
ent spatiotemporal activity patterns: a “neuronal 
melody,” if one wants to say so.  

    NEURONAL HYPOTHESIS IA: 
PARALLEL-SEGREGATED CODING OF THE 
BRAIN’S INTRINSIC SPATIOTEMPORAL ACTIVITY 
PATTERNS   

 What does the observation of sparse coding in 
the brain’s intrinsic activity imply for the coding 
of the relationship between the diff erent spatio-
temporal activity patterns? Sparseness implies a 
high degree of predisposition or prediction of 
one neural activity pattern by the respectively 
preceding one. How is that possible? Th is leads 
us to the question of their coding, the process 
of how the spatiotemporal activity patterns are 
generated and how they are related to each other 
such that one can predict the following one. 

 Let us discuss diff erent possible options in 
the encoding of the relationship between the dif-
ferent spatiotemporal activity patterns. One may 
propose parallel-segregated coding between the 
diff erent spatiotemporal activity patterns:  In this 
case, the constitution of each of the spatiotempo-
ral activity patterns remains independent of the 
respective other. Th is means that the preceding 
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   Figure 6-1b      Sparse coding in the brain, music, and language.  Normalized sparseness measures for 
music, brain data, and language (median values). Single symbols (fi rst order), pairs (second), triples, 
and quadruples, and compared, as calculated with the Gini coeffi  cient, the coeffi  cient of variation, and 
the Hoyer index. For 10 of the 12 separate observations, the greatest similarity is between brain data 
and music. In all cases, brain data are more similar to music than they are to language, as measured by 
Wilcoxon rank sum probabilities.     (Reprinted from Lloyd D. Mind as music.  Front Psychol . 2011;2:63.)   
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spatiotemporal activity patterns have no direct 
impact on the constitution of the subsequent ones. 
Th e constitution of each spatiotemporal activity 
patterns depends only and exclusively on the pres-
ent neural activity levels while remaining indepen-
dent of the previous ones, the past patterns. 

 In addition to the neglect of the past patterns, 
the constitution of the present spatiotemporal 
activity pattern will also carry no information 
for the following spatiotemporal activity pat-
terns. Which spatiotemporal pattern will be 
constituted in the future remains completely 
independent of the present one which therefore 
carries no information about future spatiotem-
poral activity patterns. Accordingly, the diff er-
ent spatiotemporal activity patterns are encoded 
independent from each other and thus in a par-
allel and segregated way. 

 Such independence and segregation in the 
encoding of diff erent spatiotemporal activity pat-
terns leads naturally to a higher degree of local 
(one-to-one) or even dense (one-to-many) cod-
ing. Following the results by Lloyd, this seems 
to be the case in language, where one particular 
word may be followed by many possible words. 

 Such dense coding is possible only when the 
diff erent words are coded by themselves inde-
pendent of and segregated from other words. 
I consequently postulate a higher degree of par-
allel and segregated coding in the encoding of 
words in language. 

 While such parallel-segregated coding may 
apply to words and language, it may not, how-
ever, apply to the spatiotemporal activity pat-
terns in the brain. Th is is suggested by the higher 
degrees of sparse coding of spatiotemporal activ-
ity patterns in the brain when compared to the 
words in language. We therefore have to seek for 
an alternative coding strategy, one that is diff er-
ent from parallel-segregated coding.  

    NEURONAL HYPOTHESIS IB: 
INTERACTIVE-INTEGRATIVE CODING OF THE 
BRAIN’S INTRINSIC SPATIOTEMPORAL ACTIVITY 
PATTERNS   

 What is the alternative to such parallel-segregated 
coding? As discussed in Chapters 4 and 5, one 
may consider an interactive-integrative coding 

strategy. Th e diff erent spatiotemporal activity 
patterns in the brain’s resting-state activity may 
then interact with each other; that, in turn, 
makes possible their integration and the con-
secutive constitution of a novel activity pattern 
on the basis of the previous one. 

 In this case, the previous or past spatiotempo-
ral activity pattern thus predisposes, i.e., predeter-
mines and even predicts the constitution of the 
actual spatiotemporal activity pattern in the pres-
ent moment, which, in turn, may predispose the 
subsequent one and so forth. Let me be more spe-
cifi c. Such interactive-integrative coding strategy 
allows for the spatiotemporal activity pattern c to 
be generated in dependence on the previous pat-
tern b, which in turn is dependent on its respective 
predecessor, pattern a. Th is means that pattern b 
is encoded in relation to a, that is (b-a), while the 
generation of the pattern c depends on b (and so 
forth) so that the activity pattern c is a function of 
(b-a), that is (c-(b-a)). And the same applies, of 
course, to the next activity pattern d that will be 
based on c, that is (d-((c-b)(b-a))), and so forth. 

 What does this imply for the characterization of 
interactive-integrative coding of the brain’s spatio-
temporal activity patterns? Interactive-integrative 
coding can be characterized by both interaction 
and integration:  Th ere is interaction between 
past, present, and future spatiotemporal activity 
patterns. 

 Such interaction allows for the integration 
of information from the past spatiotemporal 
activity pattern into the present one which then 
also contains some information about the next 
future pattern, and so forth. Accordingly, unlike 
in parallel-segregated coding, past, present, and 
future spatiotemporal activity patterns transfer 
their respective information and are therefore 
closely, that is intrinsically, interwoven and knit 
together in interactive-integrative coding.  

    NEURONAL HYPOTHESIS IC: 
DIFFERENCE-BASED CODING ALLOWS FOR 
INTERACTIVE-INTEGRATIVE CODING OF THE 
BRAIN’S INTRINSIC SPATIOTEMPORAL ACTIVITY 
PATTERNS   

 How is such interactive-integrative coding pos-
sible? Th e underlying neuronal process must 
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allow for the transfer of spatial and temporal 
features of the previous spatiotemporal activ-
ity pattern into the subsequent one. Th is means 
that the previous spatial and temporal features 
must be somehow encoded into the subsequent 
spatiotemporal activity pattern and related to 
its own spatial and temporal features. In other 
words, past and present spatial and temporal fea-
tures need to be linked with each other in order 
to make possible the integration of the past spa-
tiotemporal activity pattern into the present one. 

 How is such linkage between past and present 
spatial and temporal features possible? I suggest 
that this is possible only by encoding the diff er-
ences between past and present spatial and tem-
poral features into the neural activity related to 
the present spatiotemporal activity pattern. By 
encoding spatial and temporal diff erences, the 
past spatial and temporal features are preserved 
and, metaphorically speaking, carried over and 
transferred to the present spatiotemporal activ-
ity pattern. 

 How can such spatial and temporal diff er-
ences be encoded into neural activity? Th at is 
possible only, as I claim, by encoding spatial and 
temporal diff erences between past and present 
spatial and temporal features into neural activ-
ity rather than their respective discrete points 
in time and space. In other words, I  propose 
diff erence-based coding (as distinguished from 
stimulus-based coding) to allow for the linkage 
between past and present spatial and temporal 
features in the encoding of the brain’s spatio-
temporal activity patterns. Th is implies that the 
encoded spatial and temporal diff erences in the 
present spatiotemporal activity pattern contain 
some information about the preceding and thus 
the past pattern. 

 How about the information about the next, 
the future spatiotemporal activity pattern? Th e 
spatial and temporal diff erences as encoded into 
the neural activity underlying the present spatio-
temporal activity pattern do constrain the degree 
of spatial and temporal diff erences that can pos-
sibly be encoded by the next subsequent spatio-
temporal activity pattern. Th is means that the 
present spatiotemporal activity pattern increases 
the probability that certain particular spatio-
temporal activity patterns will follow, while 

decreasing the likelihood of others. In other 
words, the present spatiotemporal activity pat-
tern contains some information about the ones 
in the future. Taken together, I  postulate that 
interactive-integrative coding of the relationship 
between the diff erent spatiotemporal activity 
patterns presupposes diff erence-based coding 
rather than stimulus-based coding.  

    NEURONAL HYPOTHESIS ID: 
DIFFERENCE-BASED CODING OF THE BRAIN’S 
INTRINSIC SPATIOTEMPORAL ACTIVITY 
PATTERNS AND CONSCIOUSNESS   

 Why are diff erence-based coding and interactive- 
integrative coding important? I  claim that they 
are not only neuronally relevant in determining 
the brain’s spatiotemporal activity patterns, but 
also behaviorally and phenomenally. Let us start 
with behavioral relevance. 

 Th e psychiatric disorder of schizophre-
nia seems to be characterized by abnormally 
reduced degrees of diff erence-based coding in 
(for instance) the auditory cortex due to abnor-
mally high resting-state activity (see Chapters 22 
and 27 for details). Such high auditory cortical 
resting-state activity leads to auditory halluci-
nations and subsequently to sometimes rather 
bizarre behavior in these patients. Th is signi-
fi es the behavioral relevance of diff erence-based 
coding and interactive-integrative coding of the 
brain’s intrinsic spatiotemporal activity pattern 
(see Chapters 22 and 27 for more details). 

 How about the relevance for consciousness, 
the phenomenal relevance? Patients in a vegeta-
tive state (VS) lost their consciousness and show 
decreased functional connectivity and low fre-
quency fl uctuations in their resting-state activ-
ity (see Chapters  28 and 29). Th e decrease in 
the resting state’s neuronal measures may result 
from decreased interactive-integrative coding 
and an abnormally increased parallel-segregated 
coding of the neural activity. 

 Th at, as I  will claim, is central for the 
loss of consciousness as observed in these 
patients. Accordingly, it seems as if certain 
degrees of both diff erence-based coding and 
interactive-integrative coding are necessary 
to allow for the association of consciousness 
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with changes in neural activity during either 
resting-state or stimulus-induced activity.  

    NEURONAL HYPOTHESIS IIA: SPARSE 
CODING OF THE BRAIN’S INTRINSIC 
SPATIOTEMPORAL ACTIVITY PATTERNS   

 How does such diff erence-based coding relate 
to sparse coding? By encoding a chain of spa-
tial and temporal diff erences into the neural 
activity underlying the diff erent spatiotemporal 
activity patterns), the possible range of the latter 
becomes constrained. Th is means that the range 
of spatiotemporal activity patterns that can pos-
sibly be constituted becomes sparsened. 

 Here, the actual spatiotemporal activity pat-
tern constrains the spatiotemporal confi gura-
tions the following activity pattern can possibly 
take. By exerting such a constraining infl uence, 
the number of possible candidates for the fol-
lowing spatiotemporal activity pattern is sig-
nifi cantly reduced and thus sparsened. Hence, 
diff erence-based coding in the constitution of 
the brain’s spatiotemporal activity pattern leads 
(necessarily or unavoidably) to sparse coding. 

 Sparse coding, as discussed in Chapters 1 and 
2, signifi es the encoding of the statistical fre-
quency distribution of stimuli, rather than the 
stimuli themselves. In the case of the resting-state 
activity, one may thus suggest that the resting state 
encodes the statistical frequency distribution of its 
neural stimuli (see Chapter 4) into its own neural 
activity. Rather than speaking of natural statistics 
as in extrinsic stimuli (see Chapters 1 and 2), one 
may then want to speak of an encoding of “neuro-
nal statistics” in the case of the resting-state activ-
ity (see Chapter 9 for details). 

 How can we support the encoding of the sta-
tistical frequency distribution of the neuronal 
stimuli, the “neuronal statistics,” into the neu-
ral activity during the resting state? Statistical 
frequency distribution refl ects nothing but 
variability or standard deviation in the signal 
changes we observe. If now the resting state sig-
nals’ statistical frequency distribution is relevant 
for its encoding of neural activity, its variability 
(or “standard deviation” in a more operational 
sense) should contain important information 
rather than being mere noise. 

 Th is is indeed supported by recent data that 
show the variability in the resting-state activity 
to encode and predict stimulus-induced activity 
and the associated behavior (see Duncan et  al. 
2013; McDonnell and Ward 2011; Garrett et al. 
2010, 2011). Th ough tentatively and indirectly, 
these data lend further support to the assump-
tion that the resting-state activity is based on 
sparse coding and its encoding of statistical fre-
quency distribution, i.e., neuronal statistics.  

    NEURONAL HYPOTHESIS IIB: DIFFERENT 
DEGREES OF SPARSE CODING OF THE BRAIN’S 
INTRINSIC ACTIVITY   

 We have to be careful, though. Th e results by 
Lloyd and others show that the degree of sparse 
coding may diff er between resting-state activ-
ity and stimulus-induced activity. Th e degree 
of sparse coding tends to be higher during the 
exposure to specifi c stimuli or particular tasks, 
and thus during stimulus-induced activity, when 
compared to resting-state activity (see Lloyd 
2011; Zhang et  al. 2012; Lee et  al. 2011). Th is 
means that the degree of sparse coding, the abil-
ity to spatially and temporally sparsen neural 
activity, may be dependent upon the respective 
neuronal context; that is, on the level of the rest-
ing state or stimulus-induced activity. 

 Th erefore, depending on the neuronal con-
text, sparse coding can occur in higher or lower 
degrees. If, for instance, the degree of sparse 
coding decreases, the degree local or dense 
coding may increase. Th e balance may, in con-
trast, be shift ed on the continuum toward the 
sparse pole by an incoming stimulus during 
stimulus-induced activity, as is suggested by the 
earlier described data. Th is means that sparse 
coding and its balance with local/dense coding 
are relevant not only for the brain’s intrinsic activ-
ity but also for its transition to stimulus-induced 
activity, and thus for what we will later describe 
as “rest–stimulus interaction” and “stimulus–rest 
interaction.” Th is will be discussed in further 
detail in Chapter 11 in Part IV of this volume. 

 Accordingly, sparse coding does not operate 
in an all-or-nothing way but rather along the 
lines of a continuum of more-or-less. Th e degree 
of sparse coding can change and fi nds itself in 
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balance to the degree of local or dense coding 
with both reciprocally modulating each other. 

 Why is all that this important? We will see 
in Volume II that the balance between sparse 
coding and local/dense coding is phenomenally 
relevant and thus central for consciousness dur-
ing either resting-state activity (as in dreams; 
see Chapter  25 and especially Chapter  26) or 
stimulus-induced activity (as in our conscious-
ness of the environment; see Chapters 28 and 29). 

 If, for instance, the balance is shift ed too 
strongly toward the pole of local or dense coding 
at the expense of sparse coding, the association 
of consciousness with the neural activity dur-
ing either the resting state or stimulus-induced 
activity will become impossible. Th is seems to 
be the case, for instance, in the vegetative state, 
under anesthesia, and in NREM-sleep. I conse-
quently propose that a certain degree of sparse 
coding is necessary in order to make conscious-
ness possible, as will be discussed in full detail in 
Chapters 28 and 29.  

    NEUROEMPIRICAL BACKGROUND III: 
SPARSE CODING AND GABA IN THE 
BRAIN’S INTRINSIC ACTIVITY   

 Lloyd’s (and the others’) results point out sparse 
coding of the brain’s intrinsic activity, but they 
do not entail a specifi c neuronal mechanism 
that drives the spatial and temporal sparsening 
of neural activity. We saw in Chapter 2 that, on 
a cellular and population level of neural activ-
ity, the excitation-inhibition balance (EIB) as 
constituted by GABA and glutamate, is central 
for mediating diff erence-based coding and ulti-
mately sparse coding. 

 Th is raises the question of whether both 
GABA and glutamate also mediate the regional 
level of neural activity and, more specifi cally, 
the here-suggested diff erence-based coding and 
sparse coding of the brain’s intrinsic activity. I now 
turn, therefore, to recent imaging studies that 
investigate the modulation of the brain’s intrinsic 
activity by GABA and/or glutamate, while I will 
report the results on GABA- and glutamate-ergic 
modulation of stimulus-induced activity in 
Chapter 12 on rest–stimulus interaction. 

 Let us start with GABA. I  here highlight 
a study from our group (Qin et  al. 2012)  that 

provides direct support for the GABA-ergic 
modulation of intrinsic activity. More indi-
rect support comes from challenge studies and 
anesthesia with GABA-ergic agents. Since both 
challenge studies and anesthesia are accompa-
nied by major changes in consciousness, I  will 
describe these studies in detail in Volume II (see 
Chapters  17, 28, and 29). Finally, further sup-
port comes also from modeling and simulation 
studies where GABA and glutamate are shown 
to modulate intrinsic activity (see Deco and Jirsa 
2012; Mazzoni et al. 2007).  

    NEURONAL FINDINGS IIA:  GABA  MODULATES 
THE LEVEL OF RESTING-STATE ACTIVITY IN 
SENSORY CORTEX   

 To investigate the modulation of the brain’s 
intrinsic activity by GABA, Qin et al. (2012) con-
ducted a combined study using fMRI during eyes 
open and closed and positron emission tomog-
raphy (PET) for the imaging of GABA-A recep-
tors during rest. Th ereby we (Qin et  al. 2012a) 
focused on the sensory cortex, more specifi cally 
on visual and auditory cortex (see Chapter 12 for 
results on GABA and stimulus-induced activity). 

 As expected, opening the eyes induced neu-
ral activity in the visual cortex (Qin et al. 2012a). 
Due to well-known cross-modal eff ects (see 
Chapter  10 for details as well as Kayser et  al. 
2005, 2008), opening the eyes also increased 
neural activity in the auditory cortex. Moreover, 
the functional connectivity between visual and 
auditory cortex was signifi cantly stronger dur-
ing eyes closed when compared to eyes open. 
Hence, opening the eyes weakens the functional 
connectivity and thus the degree of statistical 
matching of both regions’ neural activity across 
time; this is consistent with the fi ndings reported 
in Chapters 4 and 5) 

 How are these neural activity changes in 
visual and auditory cortex mediated by GABA-A 
receptors? For that, we measured the binding 
potential of the GABA-A receptors (more spe-
cifi cally the benzodiazepine binding site of the 
GABA-A receptor) using 18F fl umazenil PET. We 
then correlated the density of GABA-A receptor 
binding in visual and auditory cortex with the 
neural activity in the very same regions during 
eyes open and closed as measured with fMRI. 
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   Figure 6-2a     Modulation of resting-state activity by GABA and glutamate Visual cortex:     Upper three parts:  
Th e activation cluster in visual cortex and the correlation between local-to-global ratio of BP of GABA-A 
receptor and BOLD signal in the cluster. Upper: the activated regions in visual cortex during eyes open (EO) 
when compared to eyes closed (EC) (EO > EC,  p  <.05, FWE corrected) as region of interest (ROI). Middle: the 
positive correlation between the estimated coeffi  cients of the contrast: EO > EC and the local-to-global 
ratio of binding potential (BP) of GABA-A receptor in the ROI. Lower: Using the local-to-global ratio of 
binding potential (BP) of GABA-A receptor in the visual ROI to do the voxel-wised correlation analysis in 
the whole brain, the activated cluster in visual cortex ( p  <.05, FWE corrected in visual cortex).  Lower three 
parts:  Th e activation cluster in auditory cortex and the correlation between local-to-global ratio of BP of 
GABA-A receptor and BOLD signal in the cluster. Upper: the activated regions in left  auditory cortex (EO 
> EC,  p  <.05, FWE corrected) as ROI. Middle: the positive correlation between the estimated coeffi  cient of 
the contrast: EO > EC and the local-to-global ratio of BP of GABA-A receptor in the ROI. Lower: Using the 
local-to-global ratio of binding potential in the ROI to do the voxel-wised correlation analysis in the whole 
brain, the activated cluster in left  auditory cortex ( p  <.05, FWE corrected in auditory cortex).   

 Our results (Qin et al. 2012a) show a direct 
relationship between GABA-A receptor density 
and neural activity changes: the higher the den-
sity of GABA-A receptors, the larger the diff er-
ence in signal changes between eyes closed and 
eyes open. Interestingly, this hold true for both 
regions visual and auditory cortex. A  higher 
density of GABA-A receptor consequently goes 
along with a stronger increase in neural activ-
ity in visual and auditory cortex when opening 
the eyes. 

 Th is is strongly suggestive of neural inhibi-
tion playing a central role in determining the 
level of the brain’s intrinsic activity, that is, dur-
ing eyes closed, and its subsequent change when 
opening the eyes. Most important, the density 
of GABA-A receptors only correlated with the 
degree of change in neural activity and thus the 
diff erence in signal changes between eyes closed 
and eyes open. In contrast, no correlation was 
observed with the absolute signal changes dur-
ing eyes open and closed themselves (  Fig. 6-2a  ).       
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    NEURONAL FINDINGS IIB:  GABA  MODULATES 
FUNCTIONAL CONNECTIVITY IN SENSORY 
CORTEX DURING THE RESTING STATE   

 If the density of GABA-A receptors predicts the 
degree of neural activity change during the tran-
sition from eyes closed to eyes open in both audi-
tory and visual cortex, one would postulate that 
their functional connectivity is also modulated 
by GABA. As said earlier, functional connectiv-
ity between visual and auditory cortex decreased 
when opening the eyes. 

 Interestingly, this decrease in functional con-
nectivity was directly related to the density of 
GABA-A receptors in visual cortex:  the higher 
the density of GABA-A receptors in visual cor-
tex, the stronger visual-auditory cortical func-
tional connectivity decreased when opening the 
eyes. In addition to the auditory cortex, the den-
sity of GABA-A receptors in visual cortex also 
predicted the degree of functional connectiv-
ity from the visual cortex to other more distant 
regions like the precuneus, the temporal cortex, 
the sensory cortex, and the frontal cortex (see 
Qin et al. 2013 for details). 

 Taken together, these results (and the 
ones from the challenge studies and anesthe-
sia; see Chapters  17, 28, and 29)  clearly dem-
onstrate modulation of the brain’s intrinsic 
activity, its signal changes and functional con-
nectivity, in visual and auditory cortex by GABA. 
Unfortunately Qin et al. [2012a] did not include 
any measures of glutamate so that we cannot 
make any assumptions concerning neurochemi-
cal specifi city with respect to GABA.  

    NEURONAL FINDINGS IIC:  GABA  MODULATES 
THE  TEMPORAL  FEATURES OF INTRINSIC 
ACTIVITY   

 Fingelkurts et  al. (2004) investigated eight 
healthy subjects in a resting-state condition 
(eyes closed and open) using EEG and MEG 
during pharmacological challenge with loraz-
epam. Lorazepam is a benzodiazepine and acts 
on the benzodiazepine subunit of the GABA-A 
receptors being agonists and thus strengthen-
ing the degree of neural inhibition. Hence, the 
application of lorazepam provides an indirect 

measure of the eff ects of GABA on resting-state 
activity. 

 To assess the infl uence of lorazepam on EEG, 
they investigated its eff ects on delta-, alpha-, 
and beta-frequency bands. Th ey also calculated 
an index of synchrony by correlating the elec-
trical activity between diff erent (transregional) 
electrode pairs as an indicator or measure of 
functional connectivity (between electrodes and 
their underlying activity sites). 

 When compared to placebo, lorazepam 
increased the degree of synchrony of electrical 
activity between diff erent (more or less adjacent 
or proximal) electrode pairs. More specifi cally, 
the number of synchronized electrode pairs as 
well as the strength of synchrony was signifi cantly 
higher during lorazepam when compared to pla-
cebo in the eyes-closed condition. Th is was espe-
cially strong in the alpha- and beta-frequency 
bands. Th e same was observed in the eyes-open 
condition during lorazepam where it concerned 
especially long-range electrode pairs. 

 In addition, they also investigated the impact 
of lorazepam on the global power of diff erent fre-
quency bands. Lorazepam decreased the power 
in the alpha band (8–12Hz) while it increased 
the power in the slow rhythms, for example, 
delta (1–4Hz) and theta (5–8Hz). 

 Accordingly, lorazepam induced a higher 
number of EEG segments with slow theta 
and delta rhythms, while the number of seg-
ments with faster frequencies (alpha, fast-theta) 
decreased. Th is pattern was observed in more 
than 65% of the EEG/MEG channels in both 
eyes open and closed. Finally, lorazepam also 
changed the dynamic temporal features of the 
electrical activity as observed in polyrhythmic 
activity, temporal stabilization, and nonhomo-
geneity (see Fingelkurts et al. 2004 for details). 

 Taken both fMRI-PET and EEG-MEG studies 
together, the fi ndings reported here point out the 
following features. First, GABA seems to mediate 
local neural activity levels of the brain’s intrinsic 
activity as suggested by the combined fMRI-PET 
study. Second, GABA seems to mediate local 
functional connectivity, that is, functional con-
nectivity between direct and closely connected 
regions as observed in both studies (as between 
auditory and visual cortex or between adjacent 
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electrodes pairs). Th ird, GABA modulates the 
temporal features of the brain’s intrinsic activity 
when interfering with the power of its frequency 
bands and its dynamic temporal features.  

    NEURONAL FINDINGS IIIA: GLUTAMATE 
MODULATES THE LEVEL OF INTRINSIC 
ACTIVITY   

 One may now want to raise the question of how 
glutamate, the main excitatory transmitter, mod-
ulates the brain’s intrinsic activity. As in the case 
of GABA, there are not yet many studies on the 
biochemical modulation of the brain’s intrinsic 
activity on a regional level. 

 I here highlight two studies from our group 
(Enzi et  al. 2012; Duncan et  al. 2013; see also 
Kapogiannis et al. 2013) that directly addressed the 
relationship between glutamate and resting-state 
activity. Further though indirect support for the 
glutamate-ergic modulation of intrinsic activ-
ity comes from challenge studies with ketamine 
as well as from anesthesia where glutamatergic 
agents are used. Since both challenge studies and 
anesthesia are accompanied by major changes in 
consciousness, they are discussed in Volume II 
(see especially Chapters 17, 28, and 28). 

 To investigate the specifi c association of glu-
tamate with resting-state activity rather than 
stimulus-induced activity, Bjoern Enzi (Enzi et al. 
2012)  from our group conducted yet another 
combined fMRI-MRS study. He investigated 
whether glutamate modulates local levels of 
resting-state activity in PACC as distinguished 
from stimulus-induced activity in the same region. 

 For that, he applied a reward paradigm to 
elicit stimulus-induced activity in the PACC 
using fMRI. He combined the reward task with 
longer fi xation cross periods—that is, resting 
state—in fMRI, and also measured the resting 
state concentration of glutamate in the PACC 
using MRS. 

 How, now, is glutamate related to resting-state 
and stimulus-induced activity in the PACC? Th e 
resting-state concentration of PACC glutamate 
correlated signifi cantly with the degree of neural 
activity in the fi xation cross period:  the higher 
the resting-state concentration of glutamate in 
the PACC, the higher the signal changes during 

the fi xation cross in the same region. In con-
trast, such correlation did not hold during the 
stimulus-induced activity in the PACC as elic-
ited by during the reward task (see   Fig. 6-2b  ).      

 Th ese data suggest that glutamate modulates 
the level of neural activity in specifi cally the rest-
ing state as distinguished from stimulus-induced 
activity. Th is means that glutamate and its neu-
ral excitation seem to modulate the resting-state 
activity levels. Since glutamate is central in 
mediating cortico-cortical connections, i.e., the 
connections between the neurons’ aff erences and 
eff erences, one would postulate that glutamate 
also modulates the degree of functional connec-
tivity in the resting state.  

    NEURONAL FINDINGS IIIB: GLUTAMATE 
MODULATES FUNCTIONAL 
CONNECTIVITY IN THE RESTING STATE   

 Another study from our group by Niall 
Duncan (Duncan et  al. 2013)  focused on the 
glutamate-ergic modulation of functional con-
nectivity between cortical and subcortical 
regions (see also Schmaal et al. 2012 for analo-
gous results in the context of stimulus-induced 
activity that is reward, which therefore will 
be described in Chapter  12). He measured 
subcortical-cortical functional connectivity dur-
ing eyes open and closed using fMRI, as well as 
the corresponding structural connectivity, using 
diff usion tensor imaging (DTI) and its anisot-
ropy values as measures of the degree of struc-
tural connectivity. 

 Th is was complemented by magnetic reso-
nance spectroscopy (MRS) in the same subjects 
in whom the resting state concentration of glu-
tamate and GABA in the perigenual anterior 
cingulate cortex (PACC) and the left  insula was 
measured. Th e PACC is a core region which is 
closely connected both functionally and struc-
turally with various subcortical regions like the 
ventral striatum (VS), the thalamus (TH), and 
the periaqueductal gray (PAG). 

 He could fi rst observe that the functional con-
nectivity correlated with the structural connectiv-
ity: Th e higher the (anisotropy) values in DTI (and 
thus the stronger the subcortical-cortical struc-
tural connectivity), the stronger the resting-state 
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functional connectivity between the same 
regions during eyes closed (and eyes open). Th is 
means that the functional connectivity followed 
the subcortical-cortical structural connectivity, 
though this was not always the case, especially 
during eyes open (when compared to eyes closed). 

 How about glutamate? Niall Duncan showed 
that the resting state concentration of glutamate 
in PACC predicted the degree of functional con-
nectivity from PACC to the VS, TH, and PAG: Th e 
higher the resting state concentration of glutamate 
in PACC, the higher the degree of resting state 

      Figure 6-2b    Modulation of resting-state activity by GABA and glutamate Visual cortex. ( a ) Position of 
the anatomically defi ned region of interest (ROI) used for percent signal change extraction in relation 
to the MRS voxel placed in the pregenual anterior cingulate cortex (PACC). ( b ) Percent signal change for 
the conditions “anticipation of no outcome,” “anticipation of reward,” and “baseline” derived from the 
aforementioned anatomically defi ned ROI placed in the PACC. **  p  <.01. Error bar represents SEM. ( c ) 
Contrast “baseline > anticipation of reward” ( p [FDR] <.05;  k  >10) with small volume correction for the 
MRS voxel placed in the PACC. ( d)   Correlation.  Pearson-correlation between the Glx/Cr-ratio derived 
from the MRS voxel located in the PACC and the fMRI signal for the conditions ( A ) “baseline,” ( B ) “base-
line—anticipation of reward.” It should be noted that values can be negative, as they represent residuals 
aft er linear correction for age.   
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functional connectivity from PACC to VS, TH, 
and PAG. Th is held specifi cally for PACC gluta-
mate, but it could not be observed for the resting 
state concentration of glutamate in the left  insula. 

 Analogous results though for another region 
were reported in a recent study by Kapogiannis 
et  al. (2013). Th ey measured the resting-state 
concentration of GABA and glutamate in the 
posterior cingulate cortex (PCC) and rest-
ing state functional connectivity using fMRI. 
Cortico-cortical resting state functional connec-
tivity from the posterior cingulate cortex (PCC) 
was modulated positively by the concentration of 

glutamate in the PCC (and negatively correlated 
to GABA in PCC) (see Kapogiannis et al. 2013). 

 Coming back to the Duncan study of 
cortico-subcortical connectivity, most oft en, 
PACC glutamate predicted the diff erence in 
resting state functional connectivity between 
eyes closed and open, rather than each 
alone,  eyes open  or  closed. Interestingly, the 
diff erent subcortical regions, VS, TH, and 
PAG, showed diff erent modulations of their 
functional connectivity to PACC during eyes 
open and closed, x respectively, by glutamate 
(see   Fig. 6-2c  ).      
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   Figure 6-2c    Th e fi gure shows the results of a combined fMRI, DTI, and MRS study with placement 
of the voxel for MRS in medial prefrontal cortex (mPFC). Correlation results between FC, Glu and 
DTI. Example tracts between the mPFC and each of the target regions are shown along with partial 
correlation graphs from the right hemisphere. Correlations between FC and Glu are shown, followed 
by correlations between FC and number of tracts. Note that values represent residuals aft er confound-
ing variables have been regressed out of the data in the partial correlation. Diamonds  =  eyes open, 
triangles = eyes closed. * indicates  p  < 0.05.   
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 Taken together, these results (and the ones 
from challenge studies and anesthesia; see 
Chapters 18, 28, and 29) demonstrate that glu-
tamate modulates neural activity in the resting 
state, such as, its level of neural activity and its 
functional connectivity. Unfortunately though 
there are not many studies at this point in time 
that specifi cally address the exact neuronal 
mechanisms underlying such modulation of 
resting-state activity by glutamate, which also 
seems to mediate stimulus-induced activity, as 
will be discussed later, in Part IV.  

    NEURONAL FINDINGS IVA: GLUTAMATE 
IS TIED TO ENERGETIC METABOLISM   

 Robert Shulman is a researcher at Yale University 
in New Haven, Connecticut. As a physicist, he is 
skeptical about any easy, reductionist account of 
the brain’s function and ultimately of conscious-
ness, as is oft en implied and postulated in cur-
rent neuroscience. One of his main arguments is 
that any neural activity we observe in the brain 
must be set to a standard or reference, the brain’s 
intrinsic baseline (see Chapter  4 for concep-
tual determination) since that predisposes the 
possible degree of change during subsequent 
stimulus-induced activity. 

 He thus would probably be equally skeptical 
about the fi ndings reported earlier. Th is may be 
so because we only measured the brain’s intrin-
sic activity indirectly, via the comparison of 
eyes open and closed. One would instead need 
a more direct and absolute way of measuring 
the brain’s intrinsic activity. Th is, however, as he 
claims, is possible only by including a measure 
of the brain’s metabolism in the resting state that 
directly signifi es its intrinsic activity. Only if we 
can provide a measure of the brain’s metabolism 
and how that is related to glutamate, could we 
make the assumption that glutamate modulates 
the brain’s intrinsic activity. 

 Unfortunately, we did not include such mea-
sure (as, for instance, glucose metabolism or the 
blood fl ow) in the aforementioned studies. Th ere 
is, however, strong evidence from the studies by 
Shulman himself that glutamate is closely related 
to the brain’s energetic metabolism. 

 Th e group around Shulman et al. (2003, 2004, 
2006, 2007, 2009a and b; Patel et al. 2005; Hyder 
et  al. 2013)  investigated the coupling between 
neural and metabolic activity in various stud-
ies. Th ey measured the level of glucose and 
acetate (as labeled by 13C) and could thereby 
calculate the dependence of the neuron’s fi ring 
rate on cerebral energy production rates, that is, 
the rate of glucose oxidation, and the coupled 
rates of transmitters like GABA and glutamate. 
Th is was done during both resting-state and 
stimulus-induced activity. 

 Th ere was a clear relationship between the 
degree of glucose oxidation indicating energy 
demand and the change in the concentration of 
glutamate, with both being coupled to the rate 
of neuronal fi ring. Let us describe this in further 
detail. Glutamate and glutamine were related to 
about 70%–80% of the energy consumption and 
transmitter cycling while GABA required about 
10%–15% of the total energy (with the remain-
ing 10%–15% of energy metabolism being 
needed by the glia). 

 Most important, changes in energy metabo-
lism went along with changes in resting-state 
activity and glutamate levels:  the higher the 
energy metabolism, that is, glucose oxidation, 
the higher were the glutamate levels and the sub-
sequent levels of the neurons’ fi ring rate indicat-
ing the level of the intrinsic activity. Th is clearly 
indicates dependence of both resting-state 
activity and glutamate on glucose metabolism, 
entailing what is described as neurometabolic 
coupling.  

    NEURONAL FINDINGS IVB: INTRINSIC 
ACTIVITY IS “ENERGY HUNGRY”   

 Interestingly, Shulman and his group also 
showed that about 80% of the brain’s total energy 
metabolism accounts for the maintenance of 
the brain’s resting-state activity. In contrast, 
only a small fraction, up to 20%, is reserved for 
stimulus-induced activity, which thus corre-
sponds to a small incremental change (Patel et al. 
2005; Shulman et al. 2003, 2004, 2009a and b). 

 One can therefore say that the brain’s intrinsic 
activity, its resting-state activity, seems to have 
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metabolic and therefore energetic priority over 
stimulus-induced activity. Let us describe the sit-
uation in a slightly diff erent way, in more neuro-
metaphorical terms. Our brain’s intrinsic activity 
is what may be described as “energy hungry.” As 
such, the brain’s intrinsic activity may be com-
pared to somebody who wakes up during the 
night and craves for a chocolate. Th e only diff er-
ence is that the brain does crave for energy not 
only in the night but at any time, day or night. 

 Most important, glutamate seems to play a 
major role in mediating the brain’s craving for 
energy, since otherwise it would not require 
70%–80% of its energy consumption. Th e same, 
however, to a lesser degree, holds true for GABA, 
which consumes 10%–15% of the energy budget. 

 While we currently do not know the exact 
role and mechanisms of glutamate and GABA on 
the regional level of the brain’s intrinsic activity, 
we can infer from such high energy consumption 
that both glutamate and GABA must be some-
how important. Why does the brain devote so 
much energy to GABA and glutamate? We cur-
rently do not know. What we do know, though, 
is that GABA and glutamate must be extremely 
important to the brain and its intrinsic activity. 

 Just imagine ourselves as persons: Who would 
devote as much energy to somebody if she or he 
were not important for one’s own well-being? 
Th e same seems to hold for the brain, which may 
thus not be as diff erent from us persons.  

    NEURONAL HYPOTHESIS IIIA: 
BIOCHEMICAL ANATOMY OF THE 
EXCITATION-INHIBITION BALANCE   

 What do these fi ndings on GABA and glutamate 
imply for the coding of the brain’s intrinsic activ-
ity? I propose that GABA and its interplay with 
glutamate make possible the encoding of spatial 
and temporal diff erences into the neural activ-
ity during the resting state. Th erefore I  suggest 
GABA and glutamate to be central in making 
possible diff erence-based coding of the brain’s 
intrinsic activity. 

 Before getting started, though, we need to 
make a quick and rather abbreviated tour of the 
anatomy of GABA- and glutamat-ergic neurons. 

Glutamate is closely linked to the pyramidal cells 
and neural excitation, while GABA is rather 
related to interneurons and neural inhibition. 
Th e pyramidal neurons, being situated mainly 
in layer 4 of the cortex, receive aff erences from 
other regions and send out long eff erences to 
other regions, with both being mediated by 
glutamate. Th is is diff erent in the interneurons 
that, being strongly present in especially the 
upper layers of the cortex (like layer 1 and 2), are 
mainly connected to the pyramidal neurons in 
the same region. 

 How are pyramidal cells related to the inter-
neurons? As explicated in Chapter 2, the num-
ber of interneurons is much higher than the 
number of pyramidal cells. Since the pyramidal 
cells are connected to and activate the interneu-
rons via their neural excitation, the number of 
interneurons being excited exceeds the number 
of activated pyramidal cells. Th is means that, as 
shown in Chapter 2, the degree of neural inhibi-
tion will ultimately predominate over the degree 
of neural excitation. Th e initial neural excitation, 
as promoted by the pyramidal cells, will thus be 
sparsened by the degree of subsequent neural 
inhibition of the interneurons (see   Fig. 6-3a  ).      

 What does this imply for the character-
ization of the excitation-inhibition balance 
(EIB)? First and foremost, the resulting EIB is 
a diff erence-based signal; that is, it is based on 
the relative diff erence between the degree of 
glutamate-ergic excitation and gaba-ergic inhi-
bition. Such a diff erence-based signal must be 
distinguished from a stimulus-based signal, in 
which case the absolute values of neural inhi-
bition and excitation by themselves, i.e., iso-
lated and independent, would be encoded into 
the EIB. 

 Second, most important, the EIB results from 
the direct interaction between neural excita-
tion and inhibition and their respective cells, 
the pyramidal cells and the interneurons. Since 
the balance of the EIB is strongly tilted toward 
the interneurons, the neural inhibition sparsens 
the neural excitation, as described in detail in 
Chapter 2. Th is means that the EIB itself refl ects 
the result of sparse coding (rather than local or 
dense coding).  
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    NEURONAL HYPOTHESIS IIIB: 
DIFFERENCE-BASED CODING OF THE 
EXCITATION-INHIBITION BALANCE   

 What does this characterization of the EIB on 
the cellular level imply for the regional level of 
neural activity like the brain’s intrinsic activity? 
Th e earlier described data clearly demonstrate 
that both GABA and glutamate modulate the 
level of the brain’s intrinsic activity; this is sug-
gested by the eff ects of GABA and glutamate on 
the degrees of signal changes, functional connec-
tivity, and neural synchrony in the resting state. 

 Even though the exact neuronal mechanisms 
of such GABA- and glutamate-ergic eff ects remain 
unclear at this point, these data seem to strongly 
suggest that GABA and glutamate promote 
diff erence-based coding and sparse coding on the 
regional level of the brain’s intrinsic activity. Th e 
assumption of diff erence-based coding holding 
on the regional level of the intrinsic activity is thus 
supported by the tentative data described above. 

 Th e fi ndings by Qin et al. (2012) clearly dem-
onstrate that the density of the GABA-A recep-
tors only mediated the relative changes in neural 
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   Figure 6-3a    Th e fi gure shows the relationship between GABA, glutamate, neural inhibition and exci-
tation, and the functional connectivity in the resting state. Th e fi gure shows a simplifi ed diagram of the 
anatomo-structural features of glutamatergic-pyramidal excitatory neurons (in layer 4 predominantly) 
and GABAergic inhibitory interneurons (in layers 1 and 2 predominantly) and how they connect 
between two regions via the former’s long transregional eff erences and aff erences. Th ereby GABAergic 
interneurons exhibit an inhibitory impact on glutamatergic excitatory pyramidal cells.   

activity between eyes closed and open, rather 
than their absolute levels of activity. Pending 
future confi rmation and extension of these 
results, this suggests that the GABA-A receptors 
and GABA in general are attuned and sensitive 
to specifi cally detect spatial and temporal diff er-
ences in neural activity. 

 Th e degree of neural inhibition as associated 
with GABA may specifi cally encode relative spa-
tial and temporal diff erences in neural activity—
e.g., changes in neural activity—rather than the 
absolute neural activity levels in isolation by 
themselves. Accordingly, as on the cellular level 
of activity (see Chapter  2), I  hypothesize that 
GABA encodes relative diff erence values rather 
than absolute activity values. 

 How about glutamate? Th e fi ndings by Duncan 
et al. (2013) show the encoding of diff erences in 
functional connectivity between eyes closed and 
open by glutamate, which, however, was not con-
sistent for all subcortical regions. One could tenta-
tively suggest that glutamate, like GABA, may be 
particularly sensitive and tuned to detect spatial 
and temporal diff erences in neural activity rather 
than encoding the absolute values by themselves. 
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 What does this imply for the EIB? Th e EIB 
may be regarded as a signal that by itself is a 
diff erence-based signal that, as such, refl ects the 
encoding of spatial and temporal diff erences. Let 
me explain this in detail. 

 As on the cellular level of neural activity, the 
EIB on the regional level is fi rst and foremost 
a diff erence-based signal that refl ects the spa-
tial (that is, diff erent location of pyramidal cells 
and interneurons) and temporal (that is slightly 
delayed onset of neural inhibition when com-
pared to neural excitation; see Chapter 2) diff er-
ence between neural excitation and inhibition. 
Th is means that the constitution of the EIB is 
based on diff erence-based coding rather than 
the mere addition of neural excitation and inhi-
bition, as in the case of stimulus-based coding 
(see   Fig. 6-3b  ).       

    NEURONAL HYPOTHESIS IIIC: GABA ENCODES 
RELATIVE DIFFERENCES RATHER THAN 
ABSOLUTE LEVELS   

 What do I  mean when I  say that GABA and 
glutamate are “tuned” and “sensitive” to spa-
tial and temporal diff erences between neural 

inhibition and excitation? Let us describe in 
further detail what I mean by such tuning. Take 
the example of neural inhibition: As said above 
and in Chapter 2, the resulting degree of neural 
inhibition depends not only on the level of the 
phasic or tonic activity of the interneurons by 
themselves, but also on its relationship to and 
thus relative diff erence from the degree of neu-
ral excitation. For instance, the degree of neural 
inhibition may change due to changes in neural 
excitation, which shift s their relative diff erence 
and balance toward the excitatory pole. 

 GABA may be particularly sensitive and 
tuned to such relative change in the degree of 
neural inhibition, i.e., relative to neural excita-
tion. Any relative change in the neural inhibi-
tion will consequently lead to changes in the 
release of GABA with the “aim” of keeping the 
excitation-inhibition balance (EIB) stable. 

 How can we better illustrate that? For that, 
I  turn to a thought experiment. Imagine that 
GABA would not be tuned and sensitive to 
detect relative diff erences in the degree of neural 
inhibition, but could detect only absolute levels. 
Any change in the level of neural inhibition itself 
would then go along with a change in the release 
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   Figure 6-3b     Diff erence-based coding of the excitation-inhibition balance in the resting state.  Based 
on Figure 6-3a, this fi gure shows the interplay between the phasic glutamatergic excitatory pyramidal 
cells and the tonic GABAergic inhibitory interneurons in the resting state. What is encoded in the actual 
neural activity is the diff erence between the two, the excitation-inhibition balance ( upper part ) and its 
fl uctuations across time and space (i.e., across the two regions) in the resting state ( upper part ). Th e 
excitation-inhibition balance does, in turn, determine the relationship and thus the degree of functional 
connectivity between the two regions in the resting state ( lower part ).   
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of GABA, independent of its relative diff erence 
from the degree of neural excitation. 

 Most important, this holds true regardless of 
whether the EIB changes. Even if the EIB does 
not change, due to concurrent changes in the 
degree of neural excitation, GABA, unlike in the 
empirical reality, will nevertheless be released 
in order to change the absolute level of neu-
ral inhibition. Th is means that, in our thought 
experiment, GABA is tuned and sensitive to the 
absolute level of neural inhibition rather than to 
its relative diff erence. 

 Consider the reverse case within the frame-
work of our thought experiment. Th e abso-
lute level of neural inhibition does not change 
by itself, whereas its relative diff erence from 
the degree of neural excitation changes due to 
changes in neural excitation. Since the abso-
lute level of neural inhibition does not change, 
GABA will not be released in this scenario of our 
thought experiment. Th is however is diff erent in 
empirical reality, where, due to a change of its 
relative diff erence from neural excitation, GABA 
will be released independently of whether the 
absolute level of neural inhibition is the same. 

 What does our thought experiment tell us? 
It demonstrates that whether GABA (and gluta-
mate) are tuned to either absolute levels or rela-
tive diff erences in the degree of neural inhibition 
(and excitation) makes an empirical diff erence. 
Th is holds in especially those cases with pre-
dominantly unilateral changes in the degree of 
either neural excitation or inhibition. Empirical 
reality suggests that GABA (and glutamate) are 
tuned and sensitive to encode relate diff erences 
rather than absolute levels (see Chapter  2 for 
empirical support).  

    NEURONAL HYPOTHESIS IVA: ENCODING 
OF NEURONAL STATISTICS BY THE BRAIN’S 
INTRINSIC ACTIVITY   

 How is such tuning and sensitivity of GABA 
and glutamate to relative diff erences possible? 
Th e tuning and sensitivity to relative diff erences 
imply that the discrete spatial and temporal 
point of (for instance) neural inhibition is set 
against the one of the actual (or previous) degree 
of neural excitation. 

 And, most important, the change in that rela-
tionship between the two (or more) diff erent 
discrete points, i.e., the spatial and temporal dif-
ference, determines whether the level of GABA 
(or glutamate) changes. Th is means that GABA 
and glutamate are tuned and sensitive to changes 
in spatial and temporal diff erences. 

 How can we further describe such changes 
in temporal and spatial diff erences? Th ey refl ect 
the statistical frequency distribution of the dif-
ferent discrete points in physical time and space 
as associated with neural inhibition and excita-
tion. Th is means that one may want to speak 
here of what I call the “neuronal statistics” (see 
Chapter  9 for details) of the EIB. Accordingly, 
I  postulate that the tuning and sensitivity of 
GABA and glutamate to relative diff erences in 
neural inhibition and excitation amounts to an 
encoding of the neuronal statistics of the EIB. 

 What do I mean by the term “neuronal sta-
tistics”? We recall from Chapter  1 the encod-
ing of extrinsic stimuli—namely exteroceptive 
stimuli—in the various sensory modalities into 
the neural activity of the sensory cortex. Th is 
revealed that the extrinsic stimuli’s statistical 
frequency distribution rather than the single 
stimulus itself is encoded into the neural activ-
ity of the sensory cortex. Since “the statistical 
frequency distribution” refers to the occurrence 
of the extrinsic stimuli in the natural world, the 
authors also speak of an encoding of “natural sta-
tistics” into neural activity. 

 How do such natural statistics stand in rela-
tion to the here-suggested concept of “neuronal 
statistics”? Analogous to the encoding of the 
exteroceptive stimuli “natural statistics,” I now 
suggest that the neural activity changes in the 
intrinsic activity, its “neural stimuli,” as I  said 
in Chapter  4, are encoded into the intrinsic 
activity. 

 Th is means that the statistical frequency dis-
tribution of the intrinsic activity changes them-
selves are encoded into the neural activity during 
the resting state. What is encoded is thus the sta-
tistical frequency distribution of the changes in 
the intrinsic activity. Th erefore one may want to 
say that the brain’s intrinsic activity encodes its 
own “neuronal statistics” into its neural activity 
(see Chapters 8 and 9 for further details). 
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 Th is leads me to the following hypothesis. 
I  hypothesize that the intrinsic activity in the 
brain is based on the encoding of its own neu-
ronal statistics into neural activity. GABA and 
glutamate are essential in maintaining the EIB 
that refl ects the level of the intrinsic activity. 
Th erefore, I  suggest the encoding of the neu-
ronal statistics into the brain’s intrinsic activity 
to be based on GABA and glutamate and their 
excitation-inhibition balance. Accordingly, 
I postulate that GABA and glutamate are central 
in encoding the intrinsic activity’s “neuronal sta-
tistics” into the excitation-inhibition balance of 
its own neural activity.  

    NEURONAL HYPOTHESIS IVB: ENCODING OF 
“NEURONAL STATISTICS” AND SPARSE CODING 
OF THE BRAIN’S INTRINSIC ACTIVITY   

 How can we empirically support the encoding of 
neuronal statistics into the intrinsic activity? For 
direct empirical support, we would need to do 
experiments and analyses analogous to the ones 
described in the case of the encoding of natural 
statistics (see Chapters 1 and 2). Th is remains a 
task for the future. 

 How about more indirect empirical support? 
Th at is, at least tentatively, provided by the earlier 
described results by Qin et  al. (2012), Duncan 
et al. (2013), and Fingelkurts et al. (2004), who 
describe the tuning of GABA and glutamate to 
relative diff erences in signal changes, functional 
connectivity, or frequency bands. 

 How can we further support the assump-
tion that the brain’s intrinsic activity is based 
on the encoding of its own neuronal statistics? 
Analogous to the case of the encoding of natu-
ral statistics, one would expect the encoding of 
neuronal statistics to go along with the temporal 
and spatial sparsening of the neural activity in 
the resting state. In short, encoding of neuronal 
statistics should be refl ected in sparse coding of 
the brain’s intrinsic activity. 

 Th is is exactly what the data initially described 
in this chapter show; namely, the sparse cod-
ing (rather than local or dense coding) of the 
brain’s intrinsic activity. I  consequently postu-
late that the observation of sparse coding sup-
ports (though indirectly) my hypothesis that the 

brain’s intrinsic activity is based on the encoding 
of its own neuronal statistics. 

 Why is all that relevant? Besides the neuronal 
relevance, such encoding of the own neuronal 
statistics may, for instance, be altered in psychi-
atric disorders like depression and schizophre-
nia, which show major abnormalities in their 
resting-state activity as well as in GABA and glu-
tamate (see Chapters 17, 22, and 27). 

 Based on the here-made assumptions, one 
would postulate that such resting state abnor-
malities may lead to abnormal encoding of the 
intrinsic activity’s neuronal statistics into its own 
neural activity. For instance, abnormalities in 
GABA or glutamate may lead to the encoding of 
abnormal degrees of spatial and temporal diff er-
ences which may therefore no longer refl ect the 
proper neuronal statistics of the brain’s intrinsic 
activity.  

    NEURONAL HYPOTHESIS IVC: ENCODING OF 
NEURONAL STATISTICS REQUIRES ENERGY   

 How is the encoding of the neuronal statistics 
possible? I  suggested that GABA and gluta-
mate are central in allowing for the encoding 
of the own neuronal statistics into the brain’s 
intrinsic activity. Th at is the neuronal side of 
GABA and glutamate. Th ere is, however, also 
a metabolic-energetic side of GABA and gluta-
mate. As we demonstrated in the data described 
earlier, glutamate especially is closely related to 
energetic metabolism, requiring a rather high 
percentage of the brain’s total energy budget 
even in the resting state. 

 Why do glutamate (and also GABA) need 
such an high amount of energy even in the 
resting state? Th is remains unclear. Based on 
the assumptions made so far, I hypothesize the 
following:  GABA and glutamate are supposed 
to encode the neuronal statistics of the brain’s 
intrinsic activity. Th is means that GABA and 
glutamate, as shown earlier, are tuned and sen-
sitive to the encoding of spatial and temporal 
diff erences, i.e., relative diff erences, in neural 
inhibition and excitation, rather than to their 
absolute levels. 

 I now postulate that such encoding of spatial 
and temporal diff erences requires energy. Th e 
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energy is needed to detect the diff erent discrete 
points in physical time and space as well as to 
link them by computing their diff erence value. 

 I thus propose the following neuroenergetic 
hypothesis: I postulate that the high energy bud-
get of GABA and glutamate is needed for their 
computing and encoding of spatial and temporal 
diff erences and consequently for the encoding 
of the own neuronal statistics into the intrinsic 
activity. Since the encoding of the neuronal sta-
tistics goes on continuously, independently of 
whether resting state or stimulus-induced activ-
ity predominates, there is already a high energy 
demand in the resting state itself. Th is is quite 
compatible with the data from the group around 
Robert G. Shulman as described earlier.  

    NEURONAL HYPOTHESIS IVD: 
NEUROMETABOLIC COUPLING IS ESSENTIAL 
FOR CONSCIOUSNESS   

 How can I  further support my neuroenergetic 
hypothesis? I  postulate a direct relationship 
between the high energy demand and a particu-
lar coding strategy, the encoding of neuronal 
statistics. Th ere is, as to my knowledge, no direct 
support for the relationship between energy and 
coding. We may, however, search for some  indi-
rect  support. Th at can, for instance, be found in 
the examples of vegetative state (VS) and anes-
thesia (see earlier). 

 In both cases, VS and anesthesia, the global 
metabolism and energy supply of the brain is 
highly reduced across all regions by at least 20% 
if not 40% to 50% (see Hyder et al. 2013; as well 
as Chapters  28 and 29). How is such reduced 
metabolic and energy supply manifested in neu-
ronal activity? 

 Th e intrinsic activity in both anesthesia and 
VS is highly reduced, although, especially in VS 
stimulus-induced activity, it can still be observed 
(see Chapters 28 and 29). If my neuro-energetic 
hypothesis holds true, one would now expect 
the energy reduction in VS and anesthesia to 
be accompanied by reduced encoding of spatial 
and temporal diff erences, that is, the neuronal 
(and natural) statistics, into neural activity dur-
ing either resting state (and stimulus-induced 
activity). 

 Due to such reduced encoding of spatial and 
temporal diff erences into neural activity, the 
low degree of diff erence-based coding may be 
accompanied by a high degree of stimulus-based 
coding. Th is is indeed strongly supported by 
the current data in both anesthesia and VS (see 
Chapters  28 and 29). Since such an abnormal 
decrease in diff erence-based coding goes along 
with a major decrease in the level of conscious-
ness, as well being visible in VS and anesthesia, 
I refer the reader to Volume II for further details.  

    Open Questions   

 One central question concerns the exact role of 
GABA and glutamate in constituting sparse cod-
ing of the brain’s intrinsic activity. While there is 
some evidence supporting the role of GABA and 
glutamate in modulating resting-state activity, 
their function in temporally and spatially spars-
ening the brain’s intrinsic activity remains far 
from clear (see, Deco and Jirsa 2012; as well as 
Mazzoni et al. 2007, for recent simulation studies 
of the intrinsic activity and its relation to GABA 
and glutamate). One would be tempted to sug-
gest that the same principles of how GABA and 
glutamate modulate sparse coding also hold in 
both resting-state and stimulus-induced activity. 
Th is though remains to be shown in the future. 
 Another point in this context is that there are 
not many data about the role of GABA and glu-
tamate, and especially their direct interaction 
(see Heinzel et al. 2008) on the regional level of 
neural activity. Th is contrasts with the available 
evidence on the cellular and physiological level 
(see Chapter  2). Th erefore, future studies may 
need to, not only complement the current lack 
of data on the regional level, but also bridge the 
gap between cellular and regional levels. Th at, in 
turn, will be crucially relevant for lending further 
support to the assumption of sparse coding of the 
brain’s intrinsic activity. 
 Th e second main issue concerns the question 
of the purpose of the brain’s intrinsic activ-
ity. Several suggestions have been made. Some 
authors argue that the intrinsic activity serves to 
regulate the brain’s metabolic load (see Shulman 
et al. 2003, 2004, 2009a and b). Others, coming 
from sleep research, argue that the brain’s resting 
state may serve to clean, maintain, and update 
synaptic connections, especially during the night 
(see Nir et al. 2008a and b; and see Chapters 14, 
15, and 26 for more details on sleep). 



SPARSE CODING OF INTRINSIC ACTIVITY 141

 Finally, many authors (Llinas 2002; Raichle and 
Gusnard 2005; Moshe, 2009a and b; Deco et al. 
2009) propose that the main purpose of the brain 
is making anticipations and predictions of the 
kind of stimuli that may come. Such anticipa-
tions and predictions must be generated dur-
ing the resting state itself prior to the encounter 

of a particular stimulus. How is it possible for 
the resting-state activity to make predictions 
about particular stimuli in the absence of any 
such stimuli? Th is shall be the focus of Part III 
of this volume, where I will discuss the concept 
of predictive coding and how it relates to the 
here-suggested diff erence-based coding.                
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      GENERAL BACKGROUND   

 So far, I  have discussed how extrinsic stimuli 
from the environment are encoded in the neu-
ral activity of the brain, thereby focusing on the 
sensory cortex. As shown in recent data, the sen-
sory cortex encodes into its neural activity the 
statistical frequency distribution of the extrinsic 
stimuli: rather than encoding the extrinsic stim-
uli and their diff erent discrete points in physi-
cal time and space, the sensory cortex encodes 
the spatial and temporal diff erences between the 
stimuli’s diff erent discrete points in physical time 
and space. 

 Such diff erence-based coding implies that 
the resulting neural activity does not refl ect 
the extrinsic stimuli in a one-to-one way but 
that there is instead a many-to-one relationship 
between the number of stimuli and the number 
of activated neurons/regions. Th ere is thus what 
is described as  sparse coding  that holds on both 
the cellular/population and regional level of neu-
ral activity. 

 By encoding its own neural activity on the 
basis of applying diff erence-based coding and 
sparse coding, the brain actively extracts the 
spatial and temporal diff erences between diff er-
ent stimuli and their diff erent discrete points in 
physical time and space. Th e extraction must be 
considered an active process that can only origi-
nate in the brain itself and its intrinsic features. 

 Such active encoding strategy must be 
distinguished from a more passive form of 

         PART II I 
Encoding Predictions   

encoding where each extrinsic stimulus acti-
vates one neuron entailing a one-to-one rela-
tionship between stimuli and neuron. In that 
case the stimulus itself and its discrete point 
in physical time and space would be encoded 
into neural activity independently of the other 
stimuli. Such rather passive encoding strategy 
would lead to stimulus-based coding and local 
coding rather than diff erence-based coding and 
sparse coding. 

 Where is this active contribution of the brain 
itself to its own encoding strategy coming from? 
Based on recent empirical data, I showed in Part 
II that the brain exhibits an intrinsic activity, a 
resting-state activity, that is highly dynamic and 
changes continuously in both its spatial and tem-
poral pattern. 

 Th ese continuous spatial and temporal 
changes in the brain’s intrinsic activity are appar-
ently also encoded in the same way as extrinsic 
stimuli; namely, in terms of diff erence-based 
coding and sparse coding as distinguished from 
stimulus-based coding and local coding. Th is, 
I hypothesized, leads to the constitution of par-
ticular spatial and temporal structure in the 
intrinsic activity itself as it is empirically refl ected 
in its various spatiotemporal activity patterns. 

 Where does this leave us? We showed in Part 
I  that extrinsic stimuli are encoded into neural 
activity in terms of diff erence-based coding and 
sparse coding. Such an active encoding strat-
egy is possible only when the brain itself and its 
intrinsic features make an active contribution. 
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Th is led me consider the brain’s intrinsic activ-
ity, its resting-state activity, that, on the basis 
of diff erence-based coding and sparse coding 
of its own neural activity, constitutes a virtual 
statistically-based spatial and temporal structure. 

 How now can the brain’s intrinsic actively con-
tribute to the rather active encoding of extrinsic 
stimuli in terms of diff erence-based coding and 
sparse coding? In other words, we need to bridge 
the gap from the brain’s intrinsic activity to the 
extrinsic stimuli in order to understand how the 
latter can be encoded in an active rather than 
passive way by the brain and its intrinsic activ-
ity. Th is bridge from the brain’s intrinsic activity 
to the encoding of extrinsic stimuli into neural 
activity will be the focus in the remaining two 
Parts of this volume. 

 I aim to bridge the gap between the brain’s 
intrinsic activity and the extrinsic stimuli in 
two steps. First, I  will investigate the implica-
tions of the brain’s intrinsic activity by itself for 
the encoding of extrinsic stimuli. Th is leads me 
to what is described as “predictive coding,” the 
encoding of predictions of extrinsic stimuli into 
the brain’s neural activity. Th at is the focus in 
Part III. 

 Finally, we will investigate the actual mani-
festation of the extrinsic stimuli in the brain’s 
neural activity, the stimulus-induced activity 
(or “task-related activity”:  I  will use both in a 
synonymous way when I speak in the following 
discussion of stimulus-induced activity). Th is 
leads me to investigate how the brain’s intrinsic 
activity interacts with the extrinsic stimuli, i.e., 
rest–stimulus interaction, as it will be discussed 
in Part IV of this volume.  

    GENERAL OVERVIEW   

 Th e goal of Part III is to discuss predictive coding 
in detail and how it is related to diff erence-based 
coding and sparse coding. Th is means I  now 
pursue the reverse direction when compared to 
part I. While in Part I, I looked at how the envi-
ronment aff ects the brain and how the brain lets 
itself be aff ected, I  now take the reverse stance 
and see how the brain aims to aff ect the envi-
ronment. More specifi cally, by anticipating or 
predicting the possible stimuli coming from the 

environment, the brain exerts an active impact 
on the subsequent stimulus-induced activity as 
associated with the actual stimuli. 

 Chapter 7 introduces predictive coding pre-
dominantly in the context of sensory and motor 
functions and the mirror neuron system. It 
elaborates on the mechanisms of predictive cod-
ing on the regional level of the brain’s neural 
activity and demonstrates that predictive cod-
ing and diff erence-based coding are compatible 
with each other. Such predictive coding is made 
possible by directly comparing and matching 
the predicted stimulus with the actual stimulus, 
with their diff erence yielding what is described 
as a “prediction error,” which in turn is supposed 
to determine the degree of stimulus-induced 
activity. 

 Chapter 8 starts where Chapter 7 ended: the 
generation of the prediction error as the inter-
action between predicted and actual stimuli. 
Taking recent results from studies on reward 
as a paradigm, it is shown that the prediction 
error results from the statistically based match-
ing and comparison between diff erent stimuli. 
Th is concerns the specifi c exteroceptive stimu-
lus that is to be valued by reward, the unspecifi c 
exteroceptive stimuli from the respective social 
context, and the interoceptive stimuli from the 
body. What is encoded into neural activity as the 
prediction error is the comparison and matching 
between the statistical-frequency distributions 
of these diff erent stimuli that is their natural, 
social, and vegetative statistics, as I call it. 

 Chapter 9 takes the example of reward further 
and raises the question of how the prediction 
of a possibly rewarding stimulus is generated 
by itself. For that, I consider recent data on the 
neural overlap between resting-state activity and 
reward-related activity as a starting point. I con-
sequently postulate that the continuous changes 
in the resting-state activity themselves, that is 
their neuronal statistics, may be central in gen-
erating the prediction of the extrinsic stimulus 
as possible reward. Such generation of the pre-
dicted stimulus as possible reward by the brain’s 
intrinsic activity itself and its neuronal statistics 
may be behaviorally manifested in what has been 
described as “seeking” and “wanting” in the lit-
erature on reward.    
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    Summary   

 Rather than focusing on how the environment 
and its various stimuli impact the brain’s neural 
activity, I  now take the reverse stance and dis-
cuss how the brain itself and its intrinsic activity 
can exert infl uence on its own neural processing 
of the extrinsic stimuli from the body and the 
environment. Th is leads me from sparse coding 
to predictive coding. Predictive coding proposes 
that the neural activity during stimulus-induced 
activity does not result from the stimulus itself, 
the actual input, but from its comparison and 
matching with the anticipation or prediction of 
that input, the predicted input. Th e degree to 
which predicted and actual inputs diff er from 
each other is refl ected in what is called “pre-
diction error.” Being based on the direct com-
parison and matching between predicted and 
actual inputs, the prediction error is supposed 
to determine the degree of stimulus-induced 
activity in sensorimotor regions and many other 
regions of the brain. I  here discuss especially 
sensorimotor examples of predictive coding 
and their strong empirical support by recent 
imaging studies. Moreover, I describe how pre-
dictive coding can also be applied to functions 
other than sensorimotor as, for instance, mir-
roring and empathy. Mirroring and empathy 
are mediated neuronally by the so-called mir-
ror neurons that allow for the inference of other 
people’s goal orientation on the basis of the 
observation of their movements. Taking these 
diff erent examples as starting points, I  aim to 
show that predictive coding and thus the pre-
diction error are possible only on the basis of 
encoding neural activity in terms of spatial and 
temporal diff erences; i.e., diff erence-based cod-
ing. I  therefore conclude that predictive cod-
ing presupposes diff erence-based coding rather 

than stimulus-based coding. To put it diff er-
ently, predictive coding may be considered one 
specifi c instance (e.g., with regard to the com-
parison between predicted and actual inputs) 
of diff erence-based coding that is supposed to 
apply to any kind of neural activity throughout 
the whole brain and its various states, including 
both resting-state and stimulus-induced activity.    

    Key Concepts and Topics Covered   

 Predictive coding, visual cortex, motor cor-
tex, actual input, predicted input, common 
code, mirror neurons, reversed inference, 
diff erence-based coding   

    EMPIRICAL BACKGROUND: ENCODING OF 
NATURAL STATISTICS AND PREDICTIVE CODING   

 We demonstrated in the fi rst part that the brain 
encodes the statistical frequency distribution of 
extrinsic stimuli; that is, their natural statistics 
(see Chapters 1 and 2). Th at was complemented 
in the second part by showing the brain’s intrinsic 
activity and its continuous spatial and temporal 
changes. Due to the encoding of its own activity 
fl uctuations in terms of diff erence-based coding, 
the brain’s intrinsic activity was proposed to con-
stitute a statistically based spatiotemporal struc-
ture (see Chapters 4 and 5). 

 How, now, are both the encoding of the 
extrinsic stimuli’s natural statistics on the one 
hand and the brain’s intrinsic activity and its 
spatiotemporal structure on the other related 
to each other? Due to the fact that the extrinsic 
stimuli and their natural statistics are encoded 
into the brain’s intrinsic activity, their natural 

      CHAPTER 7 
 Predictive Coding and Difference-Based Coding       
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statistics should somehow resurface in the brain’s 
intrinsic activity and its spatiotemporal structure 
(though possibly in a slightly diff erent way). Th e 
intrinsic activity itself and its fl uctuations should 
consecutively somehow refl ect and be related to 
the previous extrinsic stimuli. 

 Put slightly diff erent, the manifestation of the 
previous stimuli and their natural statistics in the 
intrinsic activity should lead to the prediction 
of the subsequent stimulus that may possibly 
occur next. Such a prediction on the neuronal 
level (or anticipation or expectation on a more 
psychological level) is considered the nucleus 
of yet another coding strategy, predictive cod-
ing. Predictive coding has recently been widely 
discussed, especially in the context of functional 
imaging and thus the regional level of neural 
activity. 

 What is predictive coding? Briefl y, predic-
tive coding proposes that the neural activity 
related to a particular stimulus results from the 
comparison between the actual input and the 
anticipation or prediction of that input. Such a 
comparison between predicted and actual input 
yields a diff erence, the prediction error, that 
in turn is supposed to determine the degree of 
the subsequent stimulus-induced activity. Th e 
aim of this chapter is to discuss predictive cod-
ing including the prediction error and how they 
stand in relation to diff erence-based coding.  

    NEURONAL FINDINGS IA: PREDICTIVE CODING 
IN  VISUAL CORTEX    

 One of the most typical examples of predictive 
coding is the visual cortex (see, e.g., Alink et al. 
2010; Spratling 2010, 2012a and b; Langner et al. 
2012; Rauss et  al. 2011; Egner et  al. 2010). We 
will not be able to discuss all the studies in detail 
here. Instead, we are only focusing on one earlier 
simulation study by Rao and Ballard (1999) that 
showed predictive coding in a paradigmatic way 
and how it is supported and extended by empiri-
cal data in a more recent study by Alink et  al. 
(2010). 

 In a simulation model of visual processing, 
Rao and Ballard (1999) (see also Rao 2010 for 
the extension to decision making) demonstrated 
that feedback connections from a higher to lower 

visual area carry predictions of the sensory input, 
the predicted input, and associated lower visual 
regions’ activities. Feedforward connections 
from lower to higher visual regions, in contrast, 
were rather related to the discrepancy or diff er-
ence, for example, the residual errors, between 
the predictions and the actual sensory input, for 
example, the actual lower level activities. 

 More specifi cally, eff ects in nonclassical recep-
tive fi elds were related to the predicted input 
from the feedback connections rather than to the 
actual input transmitted by the feedforward con-
nections. Correspondingly, neurons in the non- 
or extraclassical receptive fi elds, especially those 
in layer 2/3, seem to signal specifi cally the diff er-
ence between the actual sensory input and the 
predicted input transmitted from higher areas. 

 How can the predicted input be characterized 
in further detail? Rao and Ballard (1999) pos-
tulate that the predicted input itself ultimately 
refl ects the natural statistics of the predicted 
stimulus. A prediction can only be generated by 
those stimuli that show a certain frequency of 
occurrence; otherwise it is rather unlikely that 
they can be compared and matched with the 
actual sensory input to keep the subsequent pre-
diction error low. 

 Th is means that a low predictable or even 
unpredictable actual sensory input that deviates 
from the natural statistics may yield the largest 
diff erence between predicted input and actual 
input and consequently the strongest neural 
activity. Conversely, one would expect lower or 
reduced neural activity in the case of a highly 
predictable sensory input that does not deviate 
much from the natural statistics and therefore 
also from the predicted input. 

 Alink et  al. (2010) took the latter assump-
tion as a starting point and compared the neural 
activity in V1 and hMT/V5 during predictable 
and nonpredictable visual stimuli using func-
tional magnetic resonance imaging (fMRI). 
Th ey compared physically identical stimuli 
whose onset was varied being either predictable 
or nonpredictable from the trajectory of motion. 
Th is yielded signifi cantly reduced signal changes 
in V1 (but neither in hMT/V5 nor in any other 
region) during the predicted stimuli when com-
pared to the nonpredictable ones. 



PREDICTIVE CODING AND DIFFERENCE-BASED CODING 147

 Th ey then varied the same stimuli with 
regard to predictable and nonpredictable motion 
within the context of apparent motion. Again, 
the predictable stimulus induced reduced sig-
nal changes in V1 (and this time also in hMT/
V5). Surprisingly, the predicted stimuli could 
be behaviorally detected more easily when 

compared to the nonpredictable ones. Hence, 
reduced signal changes during predictable stim-
uli co-occurred with better behavioral detection 
(see   Fig. 7-1  ).      

 Based on the model by Rao and Ballard 
(1999), Alink et  al. (2010) propose that the 
reduced V1 activity during predictable stimuli 
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   Figure  7-1     Prediction of stimuli in visual cortex.  Stimuli presented during experiments 1 and 2. 
( a ) Schematic overview of the spatial layout of the stimuli presented during experiment 1. Th e top and 
bottom solid white bars represent the apparent-motion-inducing stimuli that were presented for 200 ms 
with an interstimulus interval of 150 ms. Th e empty bar represents the test stimulus that was presented 
for 16 ms during upward apparent motion, which occurred during the interstimulus interval following 
the presentation of the lower bar. ( b ) A schematic space–time plot that illustrates the time of presenta-
tion of the test bar relative to linear apparent motion during experiment 1. Th e dotted line represents 
the trajectory of linear apparent motion between the top and bottom bars. For the predictable condition 
(top), the test stimulus is presented at the time at which linear apparent motion passes the location of 
the test bar (41.7 ms aft er the off set of the lower bar). For the unpredictable condition (bottom), the test 
bar is presented at the same location but with a greater delay than the predictable test bar (108 ms aft er 
the off set of the bottom bar), which corresponds to the time at which linear apparent motion already 
passed the location of the test bar stimulus. ( c ) A schematic depiction of the stimuli presented during 
experiment 2. Apparent-motion stimuli were identical to those presented in experiment 1, although 
they were slightly smaller. During the interstimulus intervals, random-dot motion was presented on the 
path of apparent motion. Th e motion direction of these dots was either parallel to the apparent motion 
or 30°, 60°, or 90° anticlockwise from the apparent-motion direction.     (Reprinted with permission of  Th e 
Journal of Neuroscience,  from Alink A, Schwiedrzik CM, Kohler A, Singer W, Muckli L Stimulus predict-
ability reduces responses in primary visual cortex.  J Neurosci . 2010 Feb 24;30(8):2960–6.)    
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may stem from top-down infl uences in higher 
visual areas (see also Spratling 2010 for further 
support of predictive coding in V1). 

 More specifi cally, the higher visual (and pre-
frontal) regions may have yielded a prediction 
about the possible sensory input; this predicted 
input was then compared and matched to the 
actual sensory input with the outcome of this 
matching process determining the degree of 
activity in V1. 

 Since the actual stimulus was well predict-
able, the diff erence between predicted and actual 
input, the prediction error, was rather low and 
therefore induced only small activity changes 
in V1. In the converse case of nonpredictable 
stimuli, the prediction error was rather high and 
induced therefore higher activity changes in V1.  

    NEURONAL FINDINGS IB: GENERATION OF 
PREDICTION ERROR IN  PREFRONTAL CORTEX    

 Where is the prediction, the predicted input, gen-
erated? In a recent imaging study, Summerfi eld 
et al. 2006 applied two diff erent stimuli, houses 
and faces, matched their physical characteristics, 
and matched also the stimuli to the individual 
subjects’ thresholds for perception. When com-
paring face stimuli versus nonface stimuli irre-
spective of their perceptual sets, they could tap 
into those regions that were related to the physi-
cal features of the stimuli; these stimuli yielded 
neural activity changes in the fusiform face area, 
the temporoparietal junction and the inferior 
occipital cortex. 

 In addition, their design also allowed them to 
compare the perceptual sets irrespective of the 
stimuli’s physical features, that is, face sets versus 
house sets. Comparison between these two sets 
yielded neural activity changes in the ventro- 
and dorsomedial prefrontal cortex (VMPFC, 
DMPFC), which must be related to the perceptual 
rather than the physical features of the stimuli. 

 Th e authors argue that the activity in the 
frontal regions refl ects the generation of some 
template, a prediction or anticipation. Such pre-
diction as template is supposed to top-down 
modulate neural activity changes in the visual 
cortex induced by the stimuli themselves and 
their physical features. 

 Accordingly, the prefrontal cortex generates 
some prediction of possible sensory changes, a 
template, against which the actually occurring 
sensory changes are matched and compared. 
Such matching and comparison between the pre-
frontal top-down signals, that is, the predicted 
sensory input, and visual cortical bottom-up 
signals, that is, the actually occurring sensory 
input, allows the brain to shape and constitute a 
visual percept. 

 One should be careful, however, about asso-
ciating the generation of the predicted input 
with the higher order cognitive regions like the 
VMPFC and DMPFC. Recent studies on early 
electrophysiological visual potentials in primary 
visual cortex (like a potential that is called C1) 
have shown that they may already by themselves 
refl ect some kind of predicted input (see Rauss 
et al. 2011). 

 Th e early visual potential in V1 may 
then by itself correspond to the rapid compari-
son between an expected, that is, predicted, 
and actual input with both being generated 
in V1. Th ere may thus be preparatory activity 
early on in visual cortex, that is, in V1, that, 
when compared with the actual input, yields a 
prediction error. Following Rauss et al. (2011), 
this is possible only “when there is an overlap 
between predictable environmental or task 
parameters and the given functional charac-
teristics of a given cortical area” (Rauss et  al. 
2011, 1249). 

 Taken together, the fi ndings in the visual 
domain strongly suggest the generation of some 
kind of predicted visual input that is matched and 
compared with the actual visual input. Th e sub-
sequent stimulus-induced activity is then sup-
posed to result from matching and comparing 
predicted and actual inputs:  the larger the dis-
crepancy between actual and predicted inputs, 
the larger the prediction error, and the greater 
the degree of the subsequent stimulus-induced 
activity. 

 Th is implicates lower- and higher-order 
regions like the visual and the prefrontal cortex. 
Whether there is a strict division of labor with 
the generation of the predicted input in higher 
regions and the actual input in lower regions 
remains unclear at this point.  
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    NEURONAL FINDINGS IIA: PREDICTIVE CODING 
IN  SOMATOSENSORY CORTEX     

 Predictive coding has been demonstrated not 
only in the visual cortex but also in other sen-
sory modalities, such as in the somatosensory 
system as implicated in tickling. Why are we 
much more ticklish when tickled by others than 
by ourselves? Applying a literally ticklish study 
design, Blakemore et al. (1999a and b) used the 
same tactile stimulus and allowed it to be applied 
once by another person and once by the person 
herself who is being tickled. 

 As expected, application of the tickling stim-
ulus by another person was experienced as more 
ticklish and intense than when the person itself 
applied the same stimulus to itself. Blakemore 
used brain imaging and demonstrated that neu-
ral activity changes in regions like the cerebellum 
and the somatosensory cortex diff ered between 
both conditions, tickling by another person ver-
sus tickling by oneself. 

 How can the diff erence between the two dif-
ferent applications of tickling be explained? In 
each case the same physical stimulus was applied 
so that one would suggest that both stimuli 
should lead to the same neuronal eff ects. Th is, 
however, was not true since the eff ects of the 
stimuli very much depended on the person who 
applied it. 

 How is this possible? When applying the 
ticklish stimulus to oneself, the sensory eff ects 
of the self-directed motion and thus the sensory 
consequences of one’s own movements (during 
one’s application of the ticklish stimulus), known 
as  reaff erences , can be cancelled out because 
they can be well predicted on the basis of one’s 
own movement; the stimulus is consequently 
experienced as less ticklish. Th e generation of 
the movements during the self-applied stimulus 
must have thus generated some kind of predicted 
input, a sensory prediction. 

 Th is is well in accordance with the obser-
vation that sensory predictions, the predicted 
input, are generated by linking possible sensory 
eff ects to corresponding motor commands (see 
also Schütz-Bosbach and Prinz 2007a and b, 
who speak of “prospective coding”). Since the 
motor commands stem from a diff erent origin, 

own versus other person, their consequently 
anticipated sensory eff ects, the predicted input, 
are diff erent. Th ese anticipated sensory eff ects, 
i.e., the diff erent predicted inputs, are then 
compared with the actual input, the ticklish 
stimulus. 

 Since now the anticipated sensory eff ects, 
the predicted inputs, are diff erent, the result-
ing signal changes in, for instance, the 
 somatosensory cortex and the cerebellum do 
also diff er even though the actual somatosen-
sory stimulus, the tickling stimulus, is the same 
in both cases. Hence, the diff erence in neural 
activity between own and other tickling must 
stem from the diff erences in the predicted 
inputs, and their matching and comparison 
with the same stimulus, the tickling as the 
actual input. 

 Blakemore et  al. (1999a and b) also dem-
onstrated that the time delay between motor 
command and the resulting tickle is crucial. 
Th e greater the time delay, the more ticklish 
the self-applied percept; this entails that sen-
sory eff ects are more diffi  cult to cancel out with 
greater time delay between movement and sen-
sory feedback. 

 Th is suggests that the sensory feedback dur-
ing self-application of stimuli can be cancelled 
out best when being temporally close to the 
corresponding movement and the respective 
motor command. If, in contrast, both stimuli are 
presented in a temporally distant way, sensory 
eff ects are more diffi  cult to cancel out, this is so 
because it is more diffi  cult to generate sensory 
prediction and thus a proper predicted input 
without reference to some movement and motor 
command.  

    NEURONAL FINDINGS IIB: PREDICTIVE CODING 
IN  MOTOR CORTEX    

 Besides the sensory system (see also 
Schütz-Bosbach and Prinz 2007a and b; 
Noppeney 2008), predictive coding has also 
been observed in motor function. Wolpert and 
Miall (1996) and Davidson and Wolpert (2005) 
demonstrate that the motor system makes a copy 
from any motor command, a so-called eff er-
ence copy. On the basis of this eff erence copy, 
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the motor system can develop what is called a 
forward model that generates an estimate of the 
predicted sensory consequences of the executed 
motor action. 

 Th e generation of forward models allows us 
to predict the sensory consequences of motor 
action at the very time of its execution.   1    When, 
for instance, holding an object in a preci-
sion grip with the fi ngers, suffi  cient grip force 
must be generated to prevent slip and loss of 
the object’s load force. Increase of the object’s 
load force by a self-generated action, such 
as moving the arm, is accompanied by a cor-
responding increase of the grip force with no 
temporal delay. 

 Th is is possible only on the basis of the 
assumption of a forward model that, at the time 
of motor execution, estimates and predicts pos-
sible sensory consequences. While this remains 
impossible when assuming mere sensory feed-
back, that is, reaff erence, that would introduce 
some temporal delay in adapting the grip force 
to the increasing load force. 

 Neuroanatomically, such a predictive feed-
forward model has been associated with the 
cerebellum and the mediodorsal thalamus (see 
Davidson and Wolpert 2005 for an overview). In 
addition to forward models predicting sensory 
consequences, there are also inverse models that 
predict and estimate the motor consequences 
and possible motor commands following some 
sensory input and feedback. Hence, both sen-
sory and motor consequences of ongoing motor 
action are predicted in the gestalt of forward and 
inverse models. 

 Finally, it should be noted that predictive 
coding is not only present in the sensory and 
motor domains but also in more cognitive func-
tions like learning and attention (see Sylvester 
et  al. 2007; Spratling 2008), speech (Kotz and 
Schwartze 2010), mirror neurons (see later 
section), and reward (see Chapters  8 and 9 for 
details). It would be beyond the scope of this 
chapter to show all the details of the literature on 
predictive coding and cognitive functions. Th e 
most important aim at this point is to state that 
predictive coding seems to determine neuronal 
activity in diff erent regions ranging from sen-
sory to nonsensory regions.  

    NEURONAL HYPOTHESIS IA: PREDICTION 
ERROR AND RESTING-STATE ACTIVITY   

 One central claim of predictive coding is that the 
observed neural activity in sensory cortex like 
V1 or somatosensory cortex refl ects the predic-
tion error rather than the actual stimulus itself. 
Th e prediction error results from the diff erence 
between predicted and actual stimulus, and it is 
this diff erence that is supposed to determine the 
degree of subsequent stimulus-induced activity 
in sensory cortex. 

 Th e question is now what kind of neuro-
nal process must occur in order to make the 
determination of the sensory cortex’s activity 
by the prediction error possible. I  hypothesize 
that the neural coding in terms of diff erences, 
that is, diff erence-based coding, may be central 
here. Th is shall be specifi ed and detailed in the 
following. 

 How can we describe the prediction error in 
further detail? Th e prediction error is supposed 
to result from the matching and comparison 
between predicted and actual inputs. Moreover, 
the predicted input is supposed to temporally 
and constitutionally precede the actual input 
and must therefore be related to neuronal activ-
ity prior to the occurrence of the actual input. 

 Th is raises the question for the kind of neu-
ronal activity that is necessary to generate the 
predicted input. One may now want to argue 
that this is the point where cognitive functions 
come into the picture. Due to cognitive opera-
tions, including attention, working memory, 
reasoning, and so on, the predicted input can 
be generated. Neuronally, this implies the search 
for neuronal activity in those regions like the 
prefrontal cortex that are related to cognitive 
functions. 

 Th e most important question here, however, 
is not where such neural activity is generated 
but how it is generated: Where does the neural 
activity underlying the generation of the pre-
dicted input come from, and what are the neu-
ronal mechanisms that generate such neural 
activity? Since there is still an absence of any 
specifi c stimuli, the underlying neuronal activity 
can only be generated on the basis of the brain’s 
resting-state activity, its intrinsic activity (and its 



PREDICTIVE CODING AND DIFFERENCE-BASED CODING 151

various rest–rest interactions, if one wants to say 
so), which may be central for yielding the pre-
dicted input; see Chapters 4–6).  

    NEURONAL HYPOTHESIS IB: REST–
STIMULUS INTERACTION GENERATES THE 
PREDICTION ERROR   

 One may consequently hypothesize that the neu-
ronal mechanisms underlying the generation of 
the prediction error (necessarily) implicate the 
brain’s resting-state activity. Let us specify my 
assumption by applying them to the aforemen-
tioned studies. I  hypothesize that Alink’s et  al. 
(2010) results of diff erential activity levels in V1 
during predicted and nonpredicted input cor-
respond to diff erent resting-state activity levels 
in the same region. Th ese diff erent resting-state 
activity levels may impact stimulus-induced 
activity during the same actual inputs in diff er-
ent ways; this, in turn, yields diff erent predic-
tion errors going along with diff erent levels of 
stimulus-induced activity in V1. 

 Th e same may hold in the case of tickling 
and the somatosensory cortex. Depending 
on whether one tickles oneself or is tickled by 
another person, one may generate diff erent 
predicted inputs, which go along with diff erent 
resting-state activity levels in somatosensory 
cortex (and other regions like the cerebellum; 
see earlier). Since diff erent resting-state activity 
levels entail diff erent modulations of subsequent 
stimulus-induced activity, diff erent degrees of 
neural activity are observed during one’s own 
and another’s application of the same actual 
input, the tickling. 

 Based on these considerations, I hypothesize 
that, on a purely neuronal level, the interaction 
between the resting-state activity and the actual 
stimulus yields the prediction error includ-
ing the degree of subsequent stimulus-induced 
activity in sensory cortex. In short, the predic-
tion error can be traced back neuronally to what 
I call “rest–stimulus interaction” (see Part IV for 
details). 

 Th is implies that the degree of the prediction 
error may in part be dependent upon the level of 
resting-state activity level that immediately pre-
cedes the arrival of the actual input. One would 

consequently postulate that the generation of 
the predicted input must be closely related to 
the brain’s intrinsic activity and the continuous 
changes in its spatial and temporal patterns. Th is 
is a viable hypothesis that shall be developed and 
discussed in more detail in Chapter 9.  

    NEURONAL HYPOTHESIS IC: PREDICTION 
ERROR AND DIFFERENCE-BASED CODING   

 Let us for now turn from the resting-state activ-
ity itself to its interaction with the actual input, 
the stimulus, yielding what I  describe as “rest–
stimulus interaction.” How is such rest–stimu-
lus interaction possible? I  postulate that such 
rest–stimulus interaction is possible only on the 
basis of diff erence-based coding (see part IV for 
details). 

 When the actual stimulus is entering the brain 
via, for instance, the sensory cortex, it encoun-
ters the brain’s intrinsic activity, its resting-state 
activity. Th e activity that can possibly be induced 
by the actual stimulus itself is supposed to be 
dependent on the level of resting-state activity it 
encounters. 

 What is encoded into the resulting 
stimulus-induced activity is thus rather the dif-
ference between the resting-state activity level 
and the (virtual) stimulus-induced activity (if it 
were independent of the resting-state activity). 
Th is means that the resulting stimulus-induced 
activity is based upon and encoded in terms 
of a diff erence-based signal, thus presup-
posing diff erence-based coding rather than 
stimulus-based coding. 

 How is such diff erence-based coding related 
to the prediction error? Th e prediction error is 
based on the diff erence between predicted and 
actual inputs and thus on the comparison and 
matching of their respective statistical frequency 
distributions, their respective statistics (see the 
earlier assumption by Rao et  al. 1999). Th is 
means that the prediction error itself refl ects a 
diff erence-based signal that as such presupposes 
diff erence-based coding. 

 In contrast, the prediction error could not be 
yielded if there were stimulus-based coding; in 
such case the predicted input would be coded 
separately and in parallel to the physical features 
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of the actual input. Since such parallel and seg-
regated coding goes along with diff erent codes of 
predicted and actual inputs, both inputs could no 
longer be directly compared and matched with 
each other (see Chapter 8 for more details). Th is, 
however, makes the prediction error impossible. 
I consequently hypothesize that diff erence-based 
coding rather than stimulus-based coding must 
be (necessarily) presupposed in order to make 
possible and thus to generate the prediction 
error (see   Fig. 7-2  ).       

    NEURONAL HYPOTHESIS ID: 
PREDICTIVE CODING PRESUPPOSES 
DIFFERENCE-BASED CODING   

 How can we lend further empirical support to 
my hypothesis of the prediction error presup-
posing diff erence-based coding? Let’s have 
another look at the results described so far. 
Alink et  al. (2010) observe that a predictable 
input yields lower activity changes in V1 than 
a nonpredictable input in the presence of the 
same actual input. 

 How is this possible? Th e diff erence between 
predicted and actual input is larger in the case of a 
nonpredictable input when compared to the one 
of a predictable input. Diff erence-based coding 
implies that larger diff erences are accompanied 
by larger activity changes. Th is is exactly what 
Alink et al. (2010) observed. Hence, their results 
lend strong support to the assumption that pre-
dictive coding presupposes diff erence-based 
coding. 

 Th e same holds for the study by Blakemore 
et  al. (1999a and b) about tickling. Tickling by 
others is more unpredictable and yields, there-
fore, a larger prediction error and thus a larger 
diff erence when compared to the tickling applied 
by oneself. Such larger diff erence should then 
yield stronger activity changes in, for instance, 
the somatosensory cortex during tickling by oth-
ers when compared to tickling by oneself; this is 
exactly what the authors observed. 

 Taken together, I  hypothesize that the pre-
diction error as the matching and comparison 
between predicted and actual inputs necessarily 
and unavoidably presupposes diff erence-based 
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   Figure 7.2     Diff erence-based coding and predictive coding.  Th e fi gure shows the diff erent stages and 
their presumed underlying neuronal processes during predictive coding. Predictive coding assumes 
that the prediction error results from the comparison between the predicted and the actual input (mid-
dle and right parts of fi gure). Such comparison presupposes the matching between the resting state 
activity and the actual stimulus in sensory cortex, such as in V1 (taken here as paradigmatic example). 
Such matching is possible only on the basis of diff erence-based coding. Th e matching between the sen-
sory cortical resting state activity with the stimulus yields a spatial and temporal diff erence value, which 
in turn will determine the degree of activity change and thus the resulting stimulus-induced activity 
(right part). Th ere is thus rest–stimulus interaction (middle part) (see Part IV for details). Rest–stimu-
lus interaction does in turn rely on the coding of neural diff erence, thus presupposing diff erence-based 
coding. Th e predicted input is supposed to be generated during the preceding resting state on the basis 
of rest–rest interaction between higher cortical midline regions and sensory regions (see left  part). Th at, 
again, is possible only on the basis of coding neural diff erences; i.e., diff erence-based coding.   
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coding rather than stimulus-based coding. Th e 
degree of diff erence between predicted and actual 
input in the prediction error determines the degree 
of the subsequent stimulus-induced activity that 
can therefore be considered a diff erence- rather 
than stimulus-based signal. Accordingly, the pre-
diction error and its associated stimulus-induced 
activity presuppose diff erence-based coding 
rather than stimulus-based coding.  

    NEURONAL FINDINGS IIIA: MIRROR NEURONS 
AND SIMULATION   

 So far I have demonstrated predictive coding to 
hold for sensory and motor functions. However, 
recent research applied the concept of predictive 
coding also to functions other than sensory and 
motor functions. One such example is the mir-
ror neurons, which have been associated with 
the ability to infer other people’s goal orientation 
and intentions. 

 What are the mirror neurons? We are able to 
infer the intentions and goals of other people’s 
movement as we observe it. On the basis of 
observing the other’s action, we are able to infer 
her or his intentions and goals. One neural can-
didate strongly suspected to be involved in this 
process is the mirror neuron system (MNS) that 
includes regions like the premotor cortex, the 
inferior parietal lobule, and the superior tempo-
ral sulcus. 

 Th e MNS shows activity not only during 
action observation but also during action execu-
tion; regions activated during both action obser-
vation and execution include region F5 in the 
premotor cortex of macaque monkey (which 
corresponds to the left  inferior frontal cortex 
(Brodmann area 44)  in humans) and the infe-
rior parietal lobule (Gallese and Goldman 1998; 
Rizzolatti and Craighero 2004). Another region, 
the superior temporal sulcus, has, in contrast, 
been observed to be active only during action 
observation, while not being recruited during 
action execution (see Frith and Frith 1999). 

 Th e mirror neuron system was fi rst detected 
by G. Rizzolatti and V. Gallese in monkeys and 
later confi rmed in humans, too. Both researchers 
are from Parma, Italy. Parma is well known for its 
famous ham and other gustatory delicacies. One 

can thus say that both the excellent ham and the 
detection of the neuronal underpinnings, that is, 
the mirror neurons, of our observation of other 
peoples’ enjoyment of that very same ham come 
from Parma. However, as boastful as the city of 
Parma may be of its ham display windows, be 
assured you will not come across any windows 
displaying mirror neurons. 

 Let’s turn from the display windows of Parma 
to the windows of science. How can the mirror 
neurons, that is, the MNS, reconstitute and infer 
the goals and intentions of the other persons’ 
movements? All that we observe is the other’s 
mere movement while we do not observe her/
his intentions and goals associated with that par-
ticular movement. 

 One possible candidate is the MNS and its 
double involvement in both action execution 
and observation By recruiting exactly those 
regions during action observation in other per-
sons that are also active during the execution of 
the same action in oneself, one is able to infer 
the intentions and goals associated with the 
observed movements in the other person from 
the goals and intentions that guide the execution 
of the same movement in the observing person 
himself. 

 Th is means that the observing person 
quasi-simulates his own goals and intentions 
(which usually guide the execution of his own 
movements) and associates them now with the 
movements he observes in the other person. 
Th e use of the same neural regions for action 
observation and execution seems to allow for 
such simulation of one’s own intentions and 
goals and their subsequent association with the 
observed movements in the other person (see, 
e.g., Rizzolatti and Craighero 2004; Gallese and 
Goldman 1998).  

    NEURONAL FINDINGS IIIB: MIRROR NEURONS 
AND REVERSE INFERENCE   

 Th e central role of simulation is oft en comple-
mented by a neuroanatomical “feedforward” 
recognition model. Th e observed signal is car-
ried forth neuronally from the visual cortex to 
the STS and from there to the inferior parietal 
lobule and ultimately to the highest center, the 
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inferior frontal (premotor) mirror neurons in 
F5. Th is goes along functionally with a feed-
forward movement from the representation of 
the movement kinematics over the movements 
to the goals and ultimately the intentions of the 
observed action. 

 However, this is where the problem starts, 
if one follows Karl Friston as one of the main 
advocates of predictive coding, and his colleague 
J. M. Kilner (Kilner et al. 2007a and b; Zentgraf 
et al. 2011; Friston 2010, Neal and Kilner 2010). 
Kilner laid out the challenges of the simulation 
and feedforward model of action observation 
in excellent papers (Kilner et  al. 2007a and b), 
which since has been supplemented by sup-
porting empirical data on both simulation and 
behavior (Friston 2011; Zentgraf et al. 2011; Neal 
and Kilner 2010). Let me here concentrate on his 
critique as so nicely laid out in his 2007 paper. 

 Following Kilner et  al. (2007), the problem 
starts when assuming the kind of feedforward 
movement, as discussed earlier. In the case of 
action execution, the neural constitution of 
the intentions and goals in the premotor areas 
(F5) cause the neural activity changes in lower 
regions like the motor cortex and other regions; 
these regions’ neural activity is then supposed 
to represent the movements and the kinematics 
that are necessary to realize the respective goals 
and intentions. 

 Th is, however, is not possible in action obser-
vation. Here the scenario is reversed. One can 
only observe the kinematics and the movements 
while having no access to the goals and the inten-
tions themselves, as associated with the observed 
action. Th e inference is consequently reversed in 
that one must infer from the observed kinemat-
ics and movements to the preceding goals and 
intentions that caused the former. Hence, the 
inference in action observation is no longer from 
the intention or goal to the movement, as in 
action execution, but follows the reverse direc-
tion, from movements to intention or goal. 

 Such reversed inference is possible if the neu-
ronal processes occurring during action execu-
tion can be simply reversed. Th is is, for instance, 
possible when the observed sensory input is 
associated with only one particular cause, that 
is, intention and goal. However, the observed 

kinematics and movements can have many 
underlying possible causes, that is, various goals 
and intentions, rather than one specifi c one. 

 For instance, one observes that somebody 
raises his hand. What is the intention and goal 
of that movement? Does the person hail for a 
taxi, prepare to play the next tone on the piano, 
or prepare to throw the ball in handball? By just 
observing the movement and kinematics itself 
we remain unable to tell. 

 Th is makes it rather unlikely that a simple 
reversal of action execution in the gestalt of a 
feedforward recognition model can account for 
the inference of goals and intentions in action 
observation, as well as for the neural activ-
ity in the mirror neuron system during action 
observation.  

    NEURONAL FINDINGS IIIC: MIRROR NEURONS 
AND THE PREDICTION OF INPUTS 

   Another argument against the feedforward 
recognition model is that the monkey premo-
tor cortex in F5 (or in inferior frontal cortex 
in Brodmann area 44 in humans) becomes not 
only active when the action of the other can be 
observed but also when the sight of the other’s 
movement remains hidden (Umiltà et al., 2001). 
If a simple feedforward recognition model is 
at work in inferring the intentions and goals of 
the observed movement, no activity should be 
observed at all in this region when the move-
ment is hidden. Th is is so because then there is 
simply no visual input in lower regions like the 
visual cortex and the STS that could drive and 
activate higher regions like the premotor cortex. 

 Th e fact that despite the absence of visual input 
the premotor cortex becomes nevertheless active 
raises the question for some additional mecha-
nism in inferring the intentions and goals during 
action observation. Such additional mechanism 
could consist in the expectation or anticipation 
of the intentions and goals of the observed action. 
Before we can even observe the other’s action, we 
apparently generate several models or hypoth-
eses, that is, several predicted inputs, that predict 
possible intentions and goals by others. 

 Th ese models or hypotheses and thus the dif-
ferent predicted inputs may have a high or low 
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likelihood given the past and present contexts, 
thus amounting to what is called either high 
or low prior probability (this touches upon the 
Bayesian statistics and its respective concepts, 
which shall not be pursued in further detail here). 
Th e prior probability may, for instance, be raised 
by also including the movements and kinematics 
associated with the respective goals and inten-
tions in the respective hypothesis or model. 

 Why are several predicted inputs gener-
ated? Th e generation of several predicted inputs 
makes it possible to compare and match the 
predicted movements and kinematics as gener-
ated in the diff erent hypotheses or models, i.e., 
the predicted inputs, with the actually observed 
movement and its kinematics. Th is may lead to 
diff erent scenarios as sketched in the following. 

 If the match or correspondence of one par-
ticular hypothesis with the observed movement 
and kinematic is high and thus good, the pre-
diction error is low; the posterior probability is 
consequently high so that the activation induced 
by the observed movement is “explained away.” 
In this case, we are well able to infer the inten-
tions and goals of the actually observed move-
ment and kinematics. If, in contrast, the match 
is low and thus bad, the prediction error is high; 
the posterior probability is rather low so that we 
remain unable to infer the intentions and goals 
of the actually observed movement and kine-
matics in the other person.  

    NEURONAL HYPOTHESIS IIA: INCOMPATIBILITY 
BETWEEN GOAL-ORIENTATIONS AND 
MOVEMENTS 

    Th e mirror neurons—that is, the MNS—raise 
some important questions with regard to predic-
tive coding in general. Kilner et  al. (2007a and 
b) focus on the question of the temporal dimen-
sion, more specifi cally the temporal precedence 
of the other’s goal orientation when compared to 
the observation of the other’s actual movements. 

 Th ey argue that the other’s goal orientation 
cannot be inferred from the observation of the 
other’s movements alone, and instead requires 
an additional prediction of a possible goal ori-
entation as the predicted input, which must tem-
porally precede the actual input, the observed 

movement. Such a predicted goal orientation 
can then be matched and compared with the 
actually observed movement, the actual input. 

 How is such matching and comparison 
between predicted goal orientation and actual 
movement possible? One would expect that dif-
ferent movements can be compared and matched 
with each other as, for instance, fl exion and exten-
sion. Th ereby it may not matter so much whether 
their origin is attributed to either the own or the 
other person since, in both cases, the movements 
will show the same physical features, i.e., the move-
ment kinematics, though in diff erent degrees. 
Since they refer to the same physical features, the 
movement kinematics of one’s own and others’ 
movements can be well compared and matched 
with each other and remain therefore independent 
of the persons who actually execute them. 

 Th e same may hold for diff erent goal orien-
tations; they all refl ect goals and thus the same 
kind of contents and physical features, though 
in diff erent degrees. Th is is, for example, mani-
fested in the intention to throw a ball, where 
it does not matter for the intention itself with 
which person it is associated that is whether it 
is myself or someone else. If I observe another 
person throwing a ball, I can infer her intention 
from my own intention when throwing a ball. 
Intentions are thus compared with intentions in 
very much the same way that movements can 
be compared with movements, no matter which 
person executes them. While movements can 
well be compared and matched with movements 
and goal orientations with goal orientations, 
the comparison between movements and goal 
orientations may be rather problematic. Why? 
Because both involve diff erent physical features. 
Unlike a movement, a goal-orientation cannot be 
characterized by kinematics and the respective 
spatial and temporal trajectories. Movements 
and goal-orientation are thus rather incompat-
ible, which makes their direct comparison and 
matching rather diffi  cult if not impossible.  

    NEUROMETAPHORICAL COMPARISON I: WHY 
WE CANNOT COMPARE APPLES AND ORANGES 

   How can we better illustrate the diff erence 
between movements and intentions with regard 
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to physical features? If one wants to compare 
intentions and movements with each other, 
one, metaphorically speaking, compares apples 
with oranges rather than apples with apples and 
oranges with oranges. And just as one cannot 
compare apples and oranges, one cannot compare 
goal orientation and movements with each other. 

 Let’s dwell a little more on the example with 
apples and oranges. Why can we compare diff er-
ent kinds of apples (that is, “tokens” as the philos-
opher would say) with each other? Because they 
all belong to the same type of fruit subsumed 
under one and the same umbrella concept, that 
is apples; the diff erent apples therefore show the 
same physical features that defi ne the concept of 
apple (as “type” as the philosopher would say). 

 In contrast, the physical features themselves 
may not diff er in kind, but they may nevertheless 
diff er in their degrees, as manifest in the diff er-
ent kinds (or “tokens”) of apples. Diff erent kinds 
of apples may then be characterized as the varia-
tion in the degree of the same physical features 
that signify apples (as “type”)  as  apples. 

 Oranges, in contrast, show diff erent physical 
features and are therefore a diff erent fruit and 
thus a diff erent “type” of fruit. If one now directly 
compares apples and oranges, one simply con-
fuses diff erent fruits, that is, diff erent “types” of 
fruits and compares therefore apples and oranges 
in both literal and fi gurative senses. 

 Why can one speak of confusion here? One 
mixes and thus confuses diff erent types, i.e., dif-
ferent fruits, and thus diff erent physical features. 
Th e take-home message is thus that any kind of 
direct comparison between apples and oranges, 
be it literal or fi gurative, remains impossible.  

    NEURONAL HYPOTHESIS IIB: THE NEED FOR 
A “COMMON CODE” BETWEEN PREDICTED 
GOAL-ORIENTATIONS AND OBSERVED 
MOVEMENTS   

 Such a direct comparison is, however, exactly 
what Kilner et  al. (2007) must presuppose if 
they want their assumption of predictive cod-
ing in the MNS to hold. Th ey must propose 
that the predicted goal-orientations are directly 
compared with the observed movements. Th at 
means that diff erent physical features, the ones 

associated with movements and intentions, are 
directly compared with each other. Th is, how-
ever, as I claim, remains impossible in the same 
way that one cannot directly compare and match 
apples and oranges. 

 What can we do now? We can discard the 
model by Kilner and reject his assumption of 
predicted goal-orientations. Th is would aban-
don the need for direct matching and compari-
son between predicted goal-orientations and 
observed movements, and thus the comparison 
between apples and oranges. Th at, however, 
confl icts with his other, empirically supported 
assumptions described earlier. 

 Alternatively, we may need to search for some 
kind of neuronal mechanism that makes pos-
sible the direct interaction between predicted 
goal-orientations and observed movements. In 
other words, we have to search for some fea-
ture or property that commonly underlies both 
apples and oranges. Th is will be the focus in the 
next section.  

    NEURONAL HYPOTHESIS IIC: DIFFERENCE-
BASED CODING AS “COMMON CODE”   

 How is it possible for the brain to directly com-
pare and match goal orientations and move-
ments? I hypothesize that this is possible only by 
presupposing a common underlying code. 

 What is such a common code? In the case 
of apples and oranges the answer is easy. Both 
apples and oranges share the physical features 
that are associated with fruits as distinguished 
from, for instance, plants in general. Th e com-
mon code that commonly underlies apples and 
oranges thus consists in, metaphorically speak-
ing, their encoding as fruits. 

 What, then, links goal-orientations and 
intentions in the same way apples and oranges 
are linked by their common coding as fruits? 
I  postulate that the encoding of spatial and 
temporal diff erences and thus diff erence-based 
coding provides such a common code between 
goal-orientations and movements. 

 Both goal orientations and movements and 
their respective physical features are encoded in 
terms of their respective spatial and temporal dif-
ferences, and thus, as we have seen in Chapters 1 
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through 3, on the basis of their respective statis-
tical frequency distributions, their statistics. One 
may thus say that the statistically based encod-
ing in terms of spatial and temporal diff erences 
supersedes the physical diff erences between 
goal-orientations and movements. 

 How does the statistically based encoding of 
both goal-orientations and movements in terms 
of their spatial and temporal diff erences make 
possible their direct matching and comparison? 
If both goal-orientations and movements are 
encoded in terms of spatial and temporal dif-
ferences, their direct comparison and matching 
amounts to a comparison of diff erent degrees of 
spatial and temporal diff erences rather than to a 
comparison between diff erent physical features. 

 Accordingly, the encoding in terms of spatial 
and temporal diff erences provides a common 
code. Th is common code allows us to directly 
compare and match goal-orientations and move-
ments with each other, independently of their 
diff erent physical features and diff erent origins.  

    NEURONAL HYPOTHESIS IID: STATISTICALLY 
BASED MATCHING BETWEEN PREDICTED 
GOAL-ORIENTATIONS AND OBSERVED 
MOVEMENTS SUPERSEDES THEIR PHYSICAL 
DIFFERENCES AND DIFFERENT ORIGINS   

 Th is is rather abstract so far. We need to specify 
the coding of diff erences related to both goal 
orientation and movement. Let’s start with the 
observed movement as the actual input. 

 Relying on sparse coding (see Chapters 1–3), 
the actual input does not consist of a particu-
lar stimulus and its respective physical fea-
tures.  Instead, the actual input corresponds 
rather to a diff erence, the diff erences between 
diff erent discrete points in physical space and 
time; that is, the stimuli statistical frequency 
distribution, their natural statistics (see Part I). 
Th is means that the actual input, like an 
observed movement, is encoded in terms of a 
diff erence, a statistically based spatiotemporal 
diff erence that refl ects the actual input’s natu-
ral statistics. 

 How about the predicted input? I  suggest 
that the predicted input may be related to the 
resting-state activity and more specifi cally to its 

continuous changes as manifested in its spatio-
temporal activity patterns, i.e., rest–rest inter-
action as one may want to say. As discussed in 
Chapters 4 through 6, the neural activity in the 
resting state’s spatiotemporal activity pattern is 
also encoded in terms of statistically based spa-
tiotemporal diff erences refl ecting its “neuronal 
statistics” (see Chapters 5 and 6). 

 How, then, is the predicted input itself gen-
erated by the resting state’s neuronal statistics? 
I will leave this open at this point and will discuss 
this in detail in Chapter  9. How can predicted 
and actual inputs be compared and matched 
with each other? Th e statistically based encod-
ing of both actual input and predicted input in 
terms of spatial and temporal diff erences makes 
possible their direct comparison and matching, 
irrespective of their physical diff erences and dif-
ferent origins. If actual input and predicted input, 
i.e., movement and goal-orientation, are com-
pared and matched with each other, two diff erent 
degrees of spatial and temporal diff erences and 
thus two diff erent statistics, neuronal and natural, 
are matched and compared with each other. 

 Accordingly, the common coding of 
goal-orientations and movements in terms of 
statistically based spatiotemporal diff erences 
supersedes their physical diff erences and dif-
ferent origins. Such common coding makes 
possible the direct comparison and match-
ing. Based on such statistical comparisons 
and matching, the observing person can then 
directly infer the other person’s goal orienta-
tion (see   Fig. 7-3  ).      

 How does that stand in relation to our 
 metaphorical comparison with apples and 
oranges? Both oranges and apples encode 
varying degrees of the physical features that 
link them under the concept of fruit. Th e same 
now holds in the case of goal-orientations 
and movements. Th ey are encoded in terms 
of varying degrees of one and the same fea-
ture, spatial and temporal diff erences, which 
ties them together and ultimately makes pos-
sible their direct comparison and matching. 
Accordingly, what the concept of “fruit” is for 
oranges and apples corresponds to diff erences, 
i.e., diff erence-based coding, in the case of 
goal-orientations and movements.  
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    NEURONAL HYPOTHESIS IIE: 
DIFFERENCE-BASED CODING IS REQUIRED IN 
ALL THREE STAGES OF PREDICTIVE CODING   

 What does this imply for Kilner’s account of 
the mirror neuron and the MNS? His assump-
tion of goal-orientation as the predicted input 
must be complemented by the assumption of the 
encoding of both predicted and actual input in 
terms of spatial and temporal diff erences, that is, 
diff erence-based coding. Otherwise their direct 
matching and comparison in gestalt of the pre-
diction error remains impossible; goal orienta-
tion and observed movement can then not be 
linked and associated with each other. 

 Accordingly, Kilner must presuppose a com-
mon code for predicted and actual inputs, for 
example, for goal orientation and observed 
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   Figure 7-3     Common coding in the generation of predicted and actual input.  Th e fi gure shows how the 
generation of both predicted input and actual input presupposes the encoding of spatial and temporal 
neural diff erences into neural activity as common code, i.e., diff erence-based coding. Diff erence-based 
coding as common code makes possible the direct matching and comparison between predicted and 
actual input and therefore the prediction error. Th e generation of the actual input presupposes the 
encoding of the stimulus’ natural statistics; that is, its statistical frequency distribution across time and 
space ( left  upper part ). Th at means that statistically based spatiotemporal diff erences are encoded into 
neural activity; that is, diff erence-based coding. In the same way, the generation of the predicted input 
presupposes the encoding of the resting state’s activity frequency distribution across the diff erent dis-
crete points in physical time and space, that is, its neuronal statistics ( left  lower part ); this again presup-
poses diff erence-based coding. Despite the encoding of diff erent statistics, that is, neuronal and natural, 
neural activity underlying predicted and actual inputs nevertheless share a common code, statistically 
based spatiotemporal diff erences ( middle part ). Th is, in turn, makes possible their direct comparison 
and matching ( right part ) with the consecutive generation of the prediction error.   

movements, in order for his assumption of pre-
dictive coding in MNS to hold. I  suppose this 
common code to consist in diff erence-based cod-
ing as distinguished from stimulus-based coding. 

 What does the assumption of diff erence-based 
coding imply for the empirical characteriza-
tion of predictive coding? I  postulate that 
diff erence-based coding is presupposed in pre-
dictive coding in a double sense. 

 First, as discussed in my fi rst hypothesis, 
the prediction error itself can be considered an 
instance of diff erence-based coding. More spe-
cifi cally, the matching and comparison between 
predicted and actual input are possible only if 
one presupposes diff erence-based coding of the 
neural activity associated with the generation of 
the prediction error that is, the stimulus-induced 
activity. 
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 Second, diff erence-based coding is not only 
required for the matching and comparison 
between predicted and actual inputs but also for 
the generation of both inputs by themselves. Th e 
generation of both predicted input and actual 
input must be based on the encoding of spatial 
and temporal diff erences, i.e., diff erence-based 
coding, rather than on the encoding of their 
respective discrete points in physical time and 
space. Th is is necessary since otherwise there 
would be no common code between both inputs 
any more, which would make their direct match-
ing and comparison and consequently the pre-
diction error itself impossible. 

 Taken together, I hypothesize that predictive 
coding presupposes diff erence-based coding in 
all its diff erent stages in all three stages: genera-
tion of the predicted input, generation of actual 
input, and the constitution of the prediction 
error as the matching between predicted and 
actual inputs.  

    NEUROMETAPHORICAL EXCURSION IIA: 
MARKET AND MONEY 

   Let me get back to the world of metaphorical 
comparisons. Imagine an encounter between 
two merchants in a market who want to make 
a business deal about apples and oranges. One 
wants to sell apples and the other wants to sell 
oranges. Everything is easy as long as they deter-
mine the price of their respective goods; the 
money is then the common currency or code 
that allows them to exchange, match, and com-
pare their respective off ers. 

 Th ings become more diffi  cult, however, once 
one person insists on the number of apples while 
the other prefers to calculate in terms of money. 
Th en there is no common currency anymore; the 
absence of a common code makes direct com-
parison and matching of their respective off ers 
impossible. 

 How does that example relate to predic-
tive coding? Th e diff erent price off ers, presup-
posing money as common currency, from our 
two merchants in the market correspond to 
the two inputs, the predicted and actual input, 
which can be compared and matched with 
each other. 

 Th is is so because both presuppose a com-
mon currency or code, diff erence-based coding 
(as the analogue to money) that makes it possible 
for them to overcome the principal diff erences in 
their respective goods, apples and oranges. Th e 
diff erent price off ers for their respective goods 
correspond to the diff erent degrees of spatial and 
temporal diff erences that are encoded as pre-
dicted and actual input.  

    NEUROMETAPHORICAL EXCURSION IIB: BRAIN 
AS MARKET AND CODE AS MONEY   

 Let’s return from the neuronal market of the 
brain to the daily market of fruits and other 
goods. Such a common code between predicted 
and actual input and thus between the two 
merchants’ off ers is absent, however, if one of 
them prefers to trade in terms of apples rather 
than money. Th is makes direct comparison 
and matching between their respective off ers 
impossible. Correspondingly, in the absence 
of diff erence-based coding as common code, 
actual and predicted input could no longer be 
compared and matched with each other so that 
the subsequent generation of a prediction error 
becomes impossible, too. 

 What does this example tell us about the 
brain in general? Th e whole idea of a market 
as an exchange of diff erent goods is based on 
a common currency. If there were no com-
mon currency, any exchange between diff erent 
goods would prove rather diffi  cult, if not impos-
sible. In that case, only the same goods could be 
exchanged with each other, like apples against 
apples and oranges against oranges. In con-
trast, apples could no longer be exchanged with 
oranges and vice versa. 

 Th e same is true in the case of the brain. If 
a common code like diff erence-based coding 
were lacking and were replaced by, for example, 
stimulus-based coding, the possible exchanges 
between diff erent stimuli as well as between 
brain and stimuli, as in the case of the predic-
tion error (i.e., between predicted and actual 
input) would be rather limited, if not impossible. 
Accordingly, in the same way as the market is 
based on money as common currency, our brain 
and its neural processing of diff erent kinds of 
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inputs like predicted and actual input may pre-
suppose the encoding of diff erences as its com-
mon “currency.”  

    Open Questions   

 One question concerns the problem of whether 
predictive coding is not only neuronally and 
behaviorally relevant, as discussed here, but also 
phenomenally relevant; that is, for conscious-
ness (see, e.g., Seth et al. 2011). We here excluded 
any reference to phenomenal states and focused 
only on behavioral states like sensory and motor 
states. Since predictive coding has been associ-
ated with more cognitive functions, it may also be 
considered cognitively relevant. We thus inves-
tigated here the neuro-sensory, neuro-motor, 
neuro-behavioral, and neuro-cognitive relevance 
of predictive coding. Th is, however, left  open the 
neuro-phenomenal relevance of predictive cod-
ing for consciousness. 
 Do I consider predictive coding to be phenome-
nally relevant? As I understand it, predictive cod-
ing is a functional hypothesis that is also applied 
to the neuronal level of the brain. As such, it 
can well account for the individual variability 
of behavior and its associated contents and their 
underlying stimulus-induced activity. However, 
the kind of functional and neuronal mechanisms 
described by predictive coding do not imply any-
thing about consciousness and why and how it 
can be associated with the behavioral and neuro-
nal states. Th is means that predictive coding may 
be neuronally and behaviorally relevant, but not 
phenomenally. 
 Another question concerns the relationship 
between diff erence-based coding and predic-
tive coding. I  postulate that predictive coding 
can be regarded a subset or specifi c instance of 
diff erence-based coding. However, it remains 
unclear how exactly the encoded spatial and 
temporal diff erences can signify predictions and 
thus the predicted input. One would suggest that, 
analogous to the actual input, the predicted input 
may be characterized by certain spatial and tem-
poral features and thus a particular spatiotempo-
ral structure. 
 How, though, can a mere spatial and temporal 
diff erence as encoded into neural activity via 
diff erence-based coding acquire a spatiotemporal 

structure and thus constitute a predicted input? 
To answer this, we must search for the neuronal 
mechanisms that underlie the constitution of 
a spatiotemporal structure in the resting state 
where the predicted input is generated. And we 
must discover how such a spatiotemporal struc-
ture is transformed into a particular input or 
stimulus, the predicted input, in such way that it 
mirrors the spatial and temporal features of the 
actual input from the environment. Th is will be 
specifi cally targeted in Chapter 9. 
 We are here confronted with the problem of 
how the predicted input is generated. Predictive 
coding seems to more or less take the gen-
eration of the predictive input for granted or as 
given. However, the question cannot be as easily 
discarded. 
 Th ere is no specifi c stimulus in the case of the 
predicted input. Th e predicted input is supposed 
to be generated prior to the arrival of the actual 
stimulus or input so that it must be traced back 
to the preceding resting-state activity in the brain 
itself. How, though, can the resting-state activ-
ity acquire the information about a stimulus 
that may eventually occur in the environment? 
One may propose that there must be some spe-
cial information encoded into the resting-state 
activity itself that makes the generation of the 
predicted input possible. Th is will be discussed 
in further detail in Chapter 9. 
 Before focusing on the predicted input and how 
it is generated by itself, we fi rst need to be clearer 
about the nature of the actual input. Th is includes 
the investigation of the neuronal mechanisms 
that allows generating the actual input. As we 
will see in the next chapter, the answer to that 
question seems to be easy but will turn out to be 
rather complex and diffi  cult. Th e following chap-
ter, Chapter  8, will reveal that diff erent stimuli 
and complex neuronal mechanisms underlie 
what is described as actual input in the context of 
predictive coding.    

    NOTES   

     1.    Th e converse may also hold. Hence, both sen-
sory and motor consequences of ongoing motor 
action are predicted in the gestalt of forward 
and inverse models.             
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    Summary   

 I discussed the concept of predictive coding in 
Chapter  7 and exemplifi ed it by predominantly 
sensorimotor functions. Now I  want to give a 
more complex example of predictive coding with 
reward. “Reward” describes the assignment of 
value to exteroceptive stimuli in the environment. 
Recent imaging investigations demonstrate that 
value assignment does not only depend on the 
to-be-valued stimuli themselves but also on the 
stimuli occurring in the respective social context, 
as demonstrated in recent neuroeconomy. Since 
the respective social context provides further 
exteroceptive stimuli, one may want to speak 
here of extero–extero interaction. Such extero–
extero interaction implies that in addition to the 
specifi c to-be-valued exteroceptive stimulus’ nat-
ural statistics, its “social statistics,” i.e., its relation 
to the accompanying exteroceptive stimuli, may 
also be encoded into the reward system’s neural 
activity. Th e term “social statistics” describes the 
statistically based co-occurrence of the specifi c 
exteroceptive stimulus’ with other more unspe-
cifi c exteroceptive stimuli in its respective social 
context. In addition to the exteroceptive stimuli’s 
social statistics, the interoceptive stimuli from 
the own body also impact and modulate neu-
ral activity in the reward system. Th is again is 
possible by encoding the interoceptive stimuli’s 
statistical frequency distribution across the dif-
ferent discrete points in physical time and space; 
that is, their “vegetative statistics.” One may 
consequently suggest that the neural activity in 
the reward system may be determined by three 
diff erent kinds of statistics:  the natural statistics 
of the exteroceptive stimulus to which value is 

assigned, the social statistics of the exteroceptive 
stimuli in the respective social context, and the 
vegetative statistics of the interoceptive stimuli 
from the own body. I propose that the three dif-
ferent statistics, social, vegetative, and natural, 
are matched and compared with each other; 
this results in what the theory of predictive cod-
ing describes as actual input (and ultimately as 
prediction error); that is, the neural activity 
change in the reward system during value assign-
ment. Such prediction error as the matching and 
comparison between diff erent stimuli and their 
respective statistics is possible, however, only on 
the basis of coding the diff erences between the 
diff erent stimuli, that is, diff erence-based coding, 
rather than coding the stimuli themselves, that 
is, stimulus-based coding. Hence, the example 
of reward demonstrates again predictive cod-
ing to presuppose diff erence-based coding. 
Furthermore, our discussion of reward shows 
that the concept of the prediction error and more 
specifi cally the one of the actual input needs to 
be specifi ed (and expanded) by the matching and 
comparison between diff erent statistics; that is, 
natural, social, and vegetative.    

    Key Concepts and Topics Covered   

 Reward, predictive coding, neuroeconomics, 
social statistics, interoception, vegetative statis-
tics, framing eff ects, prediction error      

      NEUROEMPIRICAL BACKGROUND I: PREDICTIVE 
CODING AND REWARD   

 So far, I have discussed predictive coding mainly 
in the context of sensory and motor functions. 

           CHAPTER 8 
 Predictive Coding and Social 
and Vegetative Statistics        
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To further illustrate the concept of predic-
tive coding and how it relates to the one of 
diff erence-based coding, I now turn to the exam-
ple of reward that will further clarify especially 
the generation of what is described as actual 
input in predictive coding. 

 Th ere has been much literature on reward 
itself and how it is related to predictive cod-
ing (see, for instance, Schultz 2006, 2007a and 
b; Montague and Berns 2002; Montague et  al. 
2006), but it would be beyond the scope of this 
chapter to recount all the literature and the dif-
ferent accounts in full detail. Th e main aim here 
is to point out the basic principles of predic-
tive coding in reward and how those relate to 
diff erent-based coding.  

    NEURONAL FINDINGS IA: PREDICTION ERROR 
AND BEHAVIOR DURING REWARD   

 Investigations in the reward system describe its 
neural activity and behavioral eff ects to be deter-
mined by the “prediction error” (Schultz 2006, 
2007a and b; Montague et al. 2002, 2006). Let us 
start with the behavioral side of things by giving 
the following example. 

 Imagine that you are confronted with a 
situation where you might get some benefi t or 
reward. If deciding, for instance, to -click the 
right mouse button, you expect to get a food 
item, like orange juice. In contrast, if you -click 
the left  mouse button, you will get an electric 
shock. Due to the repetition of that pattern, you 
already predict that you will receive an electric 
shock when erring and clicking the left  mouse 
button. 

 Now imagine that you click the left  mouse 
button and get no electric shock but some orange 
juice; there is some error in your anticipation 
or prediction, resulting in a mismatch between 
the anticipated input and the actual input; that 
is, the prediction error. Th e prediction error 
describes the relationship between two diff erent 
inputs, the predicted input and the actual input, 
whether they match, and if not how much they 
diff er from each other. 

 Most important, what is crucial for deter-
mining the degree of reward you assign to the 
stimulus is not so much the actual input itself 

but rather its relationship to your prediction, 
the predicted input:  if anticipated outcome 
and actual input are identical—that is, if the 
prediction error is zero—you will assign low 
or non-reward value to the actual input. If, in 
contrast, you anticipate an electric shock and 
receive orange juice instead, there is a signifi -
cant positive prediction error. You will con-
sequently assign a greater reward value to the 
orange juice. 

 Now the converse situation:  you antici-
pate orange juice and receive an electric shock 
instead. Th ere again is some prediction error 
though a negative one leading to the assignment 
of a negative value so that you will experience 
the electric shock as aversive and punishing. If, 
however, you anticipate an electric shock and 
also receive it, your prediction error is zero (that 
is, signaling no diff erence between anticipated 
and predicted inputs). Despite receiving the 
same physical stimulus, you may then experi-
ence the electric shock as less aversive and less 
punishing when compared to the case where you 
anticipated orange juice. 

 Taken together, it is the relationship between 
the anticipated input and the actual input that 
accounts for the degree of value assignment, 
that is, reward and punishment, rather than the 
actual input itself.  

    NEURONAL FINDINGS IB: ENCODING OF THE 
PREDICTION ERROR INTO NEURAL ACTIVITY 
DURING REWARD   

 What about the neuronal mechanisms under-
lying reward and its assignment of value 
to exteroceptive stimuli? Reward value has 
been  associated with neural activity in specifi c 
brain regions like the ventral striatum and the 
nucleus accumbens (VS/NACC), the ventrome-
dial prefrontal cortex (VMPFC), and the mid-
brain with the ventral tegmental area (VTA) 
(Breiter et al. 2001; Montague and Berns 2002; 
Knutson et  al. 2001, 2003, 2005; Montague 
et al. 2006; O’Doherty et al. 2004; Schultz 2006; 
Glimcher 2011). Th e very same regions have 
also been associated with salience (Zink et  al. 
2003, 2004)  and product preference (Erk et  al. 
2002; Deppe et  al. 2005; Knutson et  al. 2007; 
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McClure et  al. 2004; Paulus and Frank 2003; 
Menon 2011). 

 Moreover, the prediction error is quite 
well  established in the neuroscientifi c litera-
ture  on reward in both animals and humans 
(see Schultz 2006, 2007; Montague et al. 2002, 
2006; van Duuren et  al. 2008). Various stud-
ies demonstrate direct parametric dependence 
of the reward system’s neural activity on the 
degree of the prediction error (see, Hampton 
et  al. 2008; O’Doherty 2011a and b; Tricomi 
et al. 2010). 

 Th e larger the prediction error, the stronger 
the neural activity changes in these regions of 
the reward circuitry during either a positive or 
negative prediction error, that is, reward or pun-
ishment. What is encoded into the reward cir-
cuitry’s neural activity is thus not so much the 
single stimulus by itself—the actual input—but 
its relationship to the anticipated or predicted 
input: the prediction error.  

    NEURONAL FINDINGS IC: ENCODING OF THE 
SOCIAL CONTEXT INTO NEURAL ACTIVITY 
DURING REWARD   

 Neural activity in reward circuitry, however, is 
not only determined by the relationship between 
predicted input and actual input. In addition, 
the relationship of the actual input to the social 
context may also need to be considered. Th e 
recently emerged discipline of neuroeconomics 
(see, for instance, Hare et al. 2008; Rilling et al. 
2004; Krueger et al. 2008; Montague 2007; Fehr 
and Camerer 2007; Camerer and Fehr  2007; 
Glimcher 2011; Rustichini 2009; Schaefer 
2009; Sharp et  al. 2012; Engelman and Hein 
2013) presents particularly striking examples of 
how social inputs and thus the respective social 
contexts modulate neural and behavioral activity 
changes during reward. 

 Let us give a paradigmatic example of an 
earlier functional magnetic resonance imag-
ing (fMRI) study. Using fMRI, Fliessbach et  al. 
(2007) demonstrated that the activity in reward 
circuitry (like the ventral striatum) was high-
est when the person in the scanner received 
$30 in a gambling task and knew that another 
fi ctive player got less— $10. However, neural 

activity in reward circuitry decreased when the 
fi ctive player got $60, even though the person 
in the scanner still received the same amount as 
before: $30 (see   Fig. 8-1  ).      

 How is this possible? One would expect the 
neural activity in the reward system to remain 
the same in both cases since the person receives 
the same amount of money; that is, $30. But this 
is not the case. Neural activity increased when 
the person in the scanner received a higher 
amount than the person outside, whereas the 
opposite was the case in the reverse scenario. 

 Hence, neural activity in reward circuitry is 
determined not so much by the actual stimulus 
itself and its specifi cally associated value; that 
is, the $30. Instead, neural activity seems to be 
rather determined by the relationship between 
the actual stimulus, the $30, and the stimuli in 
the respective social context, the other person 
receiving either $10 or $60. 

 Th ings become even more complicated when 
considering another example from neuroeco-
nomics, the so-called endowment eff ect. Th e 
endowment eff ect describes the tendency to 
associate greater value with items that one owns 
when compared to those that one does not own. 
Knutson et  al. (2008) showed that the medial 
prefrontal cortex exhibits greater neural activ-
ity changes during buying of a low-priced good 
when compared to the selling of the same good 
for the same price. 

 Since buying concerns oneself and owner-
ship, the diff erence between selling and buy-
ing implies a diff erence in the socio-personal 
context concerning either oneself or the other 
person. Th e results show that the medial pre-
frontal cortical neural activity changes are sensi-
tive to ownership as manifest in their diff erence 
between selling and buying as related to oneself 
and other persons. Interestingly, the degree of 
neural activity in the insula even predicted the 
ownership, whether the item for selling was 
owned by oneself or another person (Knutson 
et al. 2008). 

 Taken together, these (and other not men-
tioned here) results demonstrate that neural 
and behavioral eff ects of reward are very much 
dependent on the respective social and personal 
context and their respective stimuli.  
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    NEURONAL HYPOTHESIS IA: SOCIAL 
CONTEXT DEPENDENCE OF NEURAL 
ACTIVITY DURING REWARD   

 Th e fi rst study demonstrated that neural activ-
ity in the reward system depended on whether 
the person inside the scanner receives a higher 
or lower amount of reward than the one outside 
the scanner. How is that possible? Th is is pos-
sible only when assuming that what is encoded 
into neural activity of reward is not the absolute 
amount of the actual stimulus itself, the $30, the 
person in the scanner receives by itself. Instead, 
the relationship or better the diff erence between 
the two stimuli, that is, the diff erence in the 
amounts of money between the two persons 
inside and outside the scanner, must be encoded 
into the reward system’s neural activity. 

 Both stimuli, the amounts of money, are 
apparently compared and matched with each 
other, with the result of this process determin-
ing the degree of neural activity in the reward 
system. Th is means that the social relationship 
signifi ed by the diff erence between the own and 
the other person’s amounts of money is encoded 
into the neural activity change of the reward 
circuitry. 

 An analogous dependence on the respective 
context can be observed in the second study. 
Here, too, neural activity did not depend only on 
the stimulus itself, which was the same in both 
situations, that is, during buying and selling. 
Instead, the social and more specifi cally the per-
sonal context in which the person fi nds herself, 
whether she sells or buys, determines here the 
neural activity in, for instance, the medial pre-
frontal cortex and the insula. 

 Taken together, both examples (and many 
other examples from neuroeconomics) share the 
dependence of the behavioral and neural activi-
ties on the respective social-personal context. 
One may consequently speak of what I describe 
as “context dependence.” 

 What do I means by the concept of context- 
dependence? Context dependence means that 
both the reward value assigned to the stimulus 
and the reward circuitry’s neural activity do not 
only depend on the stimulus itself and its spe-
cifi c properties. Instead, both reward value and 

neural activity seem to depend on the stimulus’ 
relation to other stimuli occurring at the same 
time in the respective social (and personal) envi-
ronment, that is, another person also receiving 
reward or buying/selling. Since here it concerns 
the social environment, I  speak of “social con-
text dependence” (we will later touch upon other 
forms of context dependence).  

    NEURONAL HYPOTHESIS IB: DIFFERENCE-BASED 
CODING ACCOUNTS FOR THE SOCIAL 
CONTEXT DEPENDENCE OF NEURAL ACTIVITY 
DURING REWARD   

 How is it possible for such social context depen-
dence to determine both behavioral and neural 
eff ects of reward? Let’s discuss the exact underly-
ing processes. 

 Th e exteroceptive stimulus that signifi es the 
reward the person receives in the scanner must 
interact with the exteroceptive stimulus about 
the other person’s reward. One may consequently 
postulate interaction between both exteroceptive 
stimuli in the brain of the person in the scanner, 
thus implying what I  describe as extero–extero 
interaction in the following. Th is extero–extero 
interaction seems to determine both the reward 
value and the reward circuitry’s neural activity 
the person in the scanner shows. 

 While extero–extero interaction may well 
allow for the alleged social context dependence, its 
exact neuronal mechanisms remain unclear. For 
extero–extero interaction to determine behavioral 
and neuronal activity, both exteroceptive stimuli 
must directly interact and be integrated with each 
other. Th is presupposes interactive-integrative 
coding rather than parallel-segregated coding (see 
Chapters 5 and 6 for details) of the two (or more) 
exteroceptive stimuli. 

 As detailed in Chapters  5 and 6, such 
interactive-integrated coding is possible, how-
ever, only if one presupposes diff erence-based 
coding rather than stimulus-based coding. Th is 
means that what is encoded into both neural and 
behavioral activity is the diff erence and thus the 
relationship between the two (or more) extero-
ceptive stimuli rather than the stimuli them-
selves, independent of each other. 
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 How does that apply to our study with per-
sons inside and outside the scanner receiving 
diff erent amounts of money? Th is diff erence in 
the amount of money the two persons receive 
is diff erent in the two situations:. the diff er-
ence between $30 and $10 is diff erent from 
the one between $30 and $60. I  consequently 
postulate that the encoding of stimuli in 
terms of diff erence-based coding (rather than 
stimulus-based coding) accounts for the social 
context dependence of reward.  

    NEURONAL HYPOTHESIS IC: ENCODING OF THE 
STIMULI “NATURAL STATISTICS” INTO NEURAL 
ACTIVITY DURING REWARD   

 How it is possible for the reward system to 
encode the diff erence between diff erent extero-
ceptive stimuli rather than coding the extero-
ceptive stimuli by themselves? Th is is the point 
where we can learn from sparse coding. 

 As discussed in part I, sparse coding claims 
that what is encoded into neural activity of 
the sensory cortex does not correspond to the 
stimulus’ physical feature themselves at one par-
ticular discrete point in physical time and space. 
Instead, the occurrence of the stimuli and its 
physical features across diff erent discrete points 
in physical time and space (within a certain tem-
poral and spatial span) is encoded into the sen-
sory cortex’s neural activity. 

 Th is means that the statistical frequency dis-
tribution of the stimuli’s physical features and 
thus what is called the stimuli’s natural statistics 
is encoded into neural activity. What is meant by 
the concept of “natural statistics”? 

 Th e concept of natural statistics describes 
the statistical diff erences in the occurrence of 
the stimuli and their physical features across 
diff erent discrete points in physical time and 
space (see Chapter  1 for details). Th e encod-
ing of the stimuli’s natural statistics into neu-
ral activity is consequently possible only when 
encoding their spatial and temporal diff er-
ences, that is, the ones between their discrete 
points in physical time and space at which the 
stimuli occur. Since it is based on the coding of 
spatial and temporal diff erence, the encoding 
of the stimuli’s natural statistics presupposes 

diff erence-based coding (see Chapters  1 and 
2 for details). How now does the concept of 
natural statistics apply to the current context 
of reward? Th e behavioral and neural activ-
ity may depend on the encoding of the natu-
ral  statistics of the to-be-valued exteroceptive 
stimulus, that is, the amount of money the 
person in the scanner receives. Th is, however, 
is not the case since then neural and behav-
ioral eff ects should remain independent of the 
amount of money the person outside the scan-
ner receives. 

 Instead, it is the diff erence between both 
exteroceptive stimuli that is encoded into both 
behavioral and neural activity. Th is means 
that, in addition to the natural statistics of the 
exteroceptive stimulus received by the person 
inside the scanner, the natural statistics of the 
one received by the person outside the scanner 
must also be encoded. One may consequently 
hypothesize that the natural statistics of the 
exteroceptive stimuli from both persons inside 
and outside the scanner may be encoded into 
neural activity. 

 Th is, however, is not fully correct either. Such 
encoding of the two exteroceptive stimuli’s natu-
ral statistics would amount to parallel-segregated 
coding. In that case, one would propose that the 
person in the scanner encodes the absolute sum 
of both amounts separately, that is, the one it 
receives by itself and the one the person outside 
the scanner receives. Th is, however, is not in full 
accordance with the data that do not suggest 
the encoding of the absolute amount of money 
by itself. Instead, the data suggest, as discussed 
earlier, that it is the relation, that is, the diff er-
ence, between the two exteroceptive stimuli, that 
is encoded. 

 More specifi cally, the person in the scanner 
encodes its exteroceptive stimulus, that is, its 
amount of money, in relation or diff erence to 
the sum the person outside the scanner receives. 
Th is means that the absolute sum the person 
outside the scanner receives is not so relevant for 
the encoding of the neural and behavioral activ-
ity by the person inside the scanner. Accordingly, 
it is not so much the natural statistics of the 
exteroceptive stimulus from the person outside 
the scanner that is encoded by the person inside 
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the scanner. Instead, the relative diff erence and 
thus the relation to its own sum, that is, its own 
exteroceptive stimulus, may be encoded by the 
person inside the scanner. Such encoding of the 
relationship between two (or more) diff erent 
exteroceptive stimuli that is, target and contex-
tual stimuli may be described by the concept of 
“social statistics.”  

    NEURONAL HYPOTHESIS ID: ENCODING OF 
THE STIMULI “SOCIAL STATISTICS” INTO 
NEURAL ACTIVITY DURING REWARD   

 What exactly do I  mean by the concept of 
“social statistics”? Th e concept of social statistics 
describes the co-occurrence of other exterocep-
tive stimuli in addition to the target exterocep-
tive stimulus. More specifi cally, it describes the 
statistical relationship between the target stimu-
lus and the other stimuli, with the latter occur-
ring in the social context of the former. 

 Th is means that the concept of social statistics 
describes the statistical frequency distribution in 
the co-occurrence between target and contextual 
stimuli. As such, the social statistics concerns 
explicitly the encoding of the social context of the 
target stimulus rather than the encoding of the 
target stimulus itself (and/or of the co-occurring 
stimulus as second target stimulus). 

 How does the concept of social statistics 
stand in relation to the concept of natural sta-
tistics? In the case of the natural statistics, the 
target stimulus’ statistical frequency distribu-
tion across diff erent discrete points in physical 
time and space is encoded. In social statistics, 
in contrast, it is not so much the co-occurring 
stimulus itself whose statistical frequency distri-
bution is encoded; instead, it is only the statisti-
cal frequency distribution of its co-occurrence 
with the target stimulus that is supposed to be 
encoded. 

 In sum, I  postulate that the concepts of 
“social and natural statistics” can be distin-
guished by distinct stimuli—that is, target and 
contextual stimuli—as well as by the diff erent 
basis of their respective statistical frequency 
distributions; that is, based on either the stim-
uli themselves or on the co-occurrence between 
diff erent stimuli.  

    NEURONAL HYPOTHESIS IE: THE PREDICTION 
ERROR IS DETERMINED BY THE RELATIONSHIP 
BETWEEN NATURAL AND SOCIAL STATISTICS   

 One may now want to ask how the concept of 
social statistics stands in relation to the con-
cept of the prediction error in both empirical 
and conceptual regard. Let us start with the 
empirical implications and develop some more 
specifi c experimentally amenable hypotheses. 
I  would hypothesize that the degree of spatial 
and temporal diff erences between natural and 
social statistics predicts the degree of diff erence 
encoded into reward system’s neural activity via 
diff erence-based coding:  the larger the spatio-
temporal diff erences between natural and social 
statistics, the larger the encoded diff erences and 
the higher the changes in subsequent neural 
activity. Conversely, lower spatiotemporal diff er-
ences between both statistics may lead not only 
to lower diff erences but also to lower or even 
absent changes in subsequent neural activity. 

 Th is hypothesis could be well tested by opera-
tionalizing the statistical frequency distribution 
of both target and occurring stimuli, including 
the development of measures for the spatial and 
temporal diff erences in their co-occurrence. 
I  hypothesize that these measures predict the 
neural eff ects of reward in a social context. 

 Th is implies that the behavioral eff ects and 
thus the degree of reward value assigned to the 
stimulus in question is directly dependent upon 
the degree of diff erence-based coding and the 
correspondence between social and neuronal sta-
tistics: the higher the degree of diff erence-based 
coding, the larger (that is, positive or negative) 
the degrees of reward value that can possibly be 
assigned to the stimulus. Th is entails that the 
degree of value also depends on the correspon-
dence between social and neuronal statistics: the 
less both social and natural statistics match, the 
more positive or negative the value that can pos-
sibly be assigned to the target stimulus. 

 What does our assumption imply for the 
concept of the prediction error? By assuming 
the matching and comparison between natural 
and social statistics, I  presuppose a more spe-
cifi c and complex picture of the prediction error 
and more specifi cally the actual input as one 
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ingredient (besides the predicted input) entering 
the prediction error. Th is shall be briefl y sum-
marized in the following discussion. 

 First, I  propose the prediction error to pre-
suppose diff erence-based coding as already 
discussed in Chapter  7 and further supported 
in the present context of reward. Second, I pos-
tulate that the to-be-valued actual input is not 
encoded by itself at its discrete point in physical 
time and space, but rather in terms of its statis-
tical frequency distribution across diff erent dis-
crete points in physical time and space; that is, its 
natural statistics. Th is needs to be demonstrated 
and supported in future studies on reward. 

 Th ird, and most important, I  suggest that 
what is called “actual input” in the context of the 
prediction error needs to be specifi ed. I here dis-
tinguished between target and contextual stimuli 
and their respective statistics; that is, natural and 
social statistics. What is described as actual input 
in the prediction error may then result already 
by itself from a prior matching and compari-
son process, the one between natural and social 
statistics.  

    NEURONAL HYPOTHESIS IF: FROM “SOCIAL 
STATISTICS” TO “SOCIO-CULTURAL 
STATISTICS”   

 Our investigation of reward revealed that the 
actual input by itself, its behavioral and neural 
eff ects, is more complex than the simple pro-
cessing of an isolated exteroceptive stimulus. 
Th e actual input itself can already be considered 
a complex amalgam of diff erent exteroceptive 
stimuli like target and contextual stimuli whose 
relationship and more specifi cally co-occurrence 
are encoded in terms of their diff erence in a sta-
tistically based way that is, “social statistics.” 

 Future investigation may want to broaden 
the concept of “social statistics” from the con-
text of reward as sketched here to the brain in 
general and its various functions like percep-
tion, attention, and so on. Th is is currently being 
investigated in the fi elds of social and cultural 
neuroscience. 

 “Cultural neuroscience” focuses on the 
impact of culture and cultural diff erences on 
the brain and its neuronal activity (see, e.g., Han 

and Northoff  2008; Han, Northoff  et  al. 2013). 
One may suggest that cultural diff erences can 
ultimately be traced to diff erences in statisti-
cal frequency distributions of the same stimuli 
including both their natural and social statistics. 

 For instance, even if the target stimulus is the 
same in diff erent cultures, their contextual stim-
uli may nevertheless diff er from each, which then 
will also be encoded into neural activity. One 
may then be inclined to speak of “socio-cultural 
statistics” rather than mere “social statistics.”  

    NEURONAL FINDINGS IIA: INTEROCEPTIVE 
STIMULI FROM THE BODY IMPACT REWARD   

 So far, I  have considered the social context 
and how diff erent exteroceptive stimuli are 
encoded into neural activity during reward via 
diff erence-based coding. However, there may be 
more to reward than only exteroceptive stimuli 
from the social context. Th e exteroceptive target 
stimuli are confronted in the brain not only with 
other exteroceptive stimuli from the respective 
social context but also with the stimuli that origi-
nate from the own body, the interoceptive stim-
uli. Th ere may thus be not only extero–extero 
interaction but also what I  describe as intero–
extero interaction taking place in reward. 

 Th ere are many studies on reward and intero-
ception, especially in the context of food, taste, 
hunger, appetite, and obesity (see, for instance, 
Rolls 2011 for an excellent review). Hunger and 
appetite obviously presuppose the involvement 
of the own body state and thus of interoceptive 
stimuli. I do not go into detail, however, about 
this literature, which would be beyond the scope 
of this chapter. Instead, I  only give a brief and 
abbreviated account of the main anatomical 
pathways of the intero–exteroceptive interaction 
during reward. 

 Montague argues in a series of papers that the 
temporal diff erence prediction error (TD-PD, 
which describes the diff erence between the pre-
dicted and actually occurring stimulus value; 
see Fiorillo et  al., 2008 and Schultz 2007a and 
b) model of reward neglects the input from the 
organism itself (i.e., its internal stimuli as mani-
fest in interoceptive stimuli; Montague, 2007a 
and b; Montague and King-Casas, 2007; Rangel, 
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2008). Th is is even more relevant when con-
sidering the fact that the value assigned to the 
external stimulus may very much depend on the 
organism’s internal state and thus on its intero-
ceptive stimuli (Krebs et al., 1978). 

 How can we further illustrate such depen-
dence of reward on the interoceptive state of 
the body? For instance, a particular exterocep-
tive stimuli associated with cold water may be 
rewarding only if it is extremely hot and the 
organism itself is very hot, showing high tem-
perature (see   Fig. 8-2a  ). If, in contrast, the organ-
ism is rather cold, showing low temperature, 
cold water may not be regarded as a rewarding 
stimulus and thus be assigned a rather low value 
(see Montague and King-Casas, 2007 for this 
example).      

 Th is means that the same exteroceptive stim-
ulus, the cold water, may be assigned a diff erent 
value in the context of diff erent bodily states and 
consequently diff erent interoceptive stimuli. 
Hence, there must be some kind of intero–extero 
interaction during the assignment of value and 
thus reward. Th is is indeed empirically sup-
ported by studies showing diff erences of reward 
in the presence of diff erent electrolyte concen-
tration or delivery of food (see for instance Kirk 
et al. 2011; Northoff  and Hayes 2011).  

    NEURONAL FINDINGS IIB: SUBCORTICAL 
REGIONS MEDIATE THE IMPACT OF 
INTEROCEPTIVE STIMULI ON REWARD   

 How is such interaction between intero- and 
exteroceptive stimuli mediated neuronally? 
Intero–extero interaction may be mediated spe-
cifi cally by subcortical regions. Th ese subcortical 
regions include the PAG, the tectum, the col-
liculi, the hypothalamus, and the VTA that all 
show extensive convergence between intero- and 
exteroceptive aff erences (see Part VIII in Volume 
II for a more detailed description of subcortical 
regions). 

 In addition to the subcortical regions, corti-
cal regions like the insula are also central. Th e 
insula has been implicated in the processing of 
interoceptive stimuli from one’s body and sub-
sequent bodily awareness (see Craig 2003, 2004, 
2009a and b; Wiebking et  al. 2010). Th is goes 

well with the insula’s connectivity pattern that is 
characterized by aff erents from both intero- and 
exteroceptive sensory modalities (Augustine 
1996). Interestingly, the insula has also been 
shown to be recruited during especially social 
reward tasks (see Montague 2007; Krueger et al. 
2008 Kirk et  al. 2011; Naqvi et  al. 2007, Naqvi 
and Bechara 2009, 2010). 

 Th e subcortical regions and the insula, 
including the latter’s close connection to the 
supragenual anterior cingulate cortex (SACC; 
see also Craig 2009a and b, 2010), are considered 
core regions of what is described as the “salience 
system” (see Menon 2011 for a recent summary). 
Th e salience system is supposed to be central in 
registering the need of the organism to dedicate 
and reallocate resources on the basis of its own 
states and the relevance, that is, salience, of the 
stimuli for itself given its own present bodily 
state (see   Fig. 8-2b  ). 

 Th e salience system is distinguished from the 
default-mode network (that includes midline 
regions), and the central executive network and 
its predominantly lateral cortical regions (see 
Chapter  4 for details, as well as Menon 2011). 
Interestingly, many of the regions included in 
the salience system, especially insula, amyg-
dala, SACC, and VTA, are also recruited during 
reward, thus suggesting strong overlap (some 
authors also propose identity between both) 
between reward and salience. 

 Taken together, the fi ndings suggest involve-
ment of interoceptive stimuli in reward. Th is is 
evidenced by the well established dependence of 
reward value on the body’s interoceptive, that is, 
vegetative functions. Such assumption is further 
supported by the involvement of the regions of 
the salience system that mediates interoceptive 
and thus vegetative functions.  

    NEURONAL FINDINGS IIC: “VEGETATIVE 
CONTEXT-DEPENDENCE” AND THE “FRAMING 
EFFECT”   

 Th e fi ndings described here underline the rel-
evance of the body for reward. Th e body and its 
interoceptive stimuli may thus be regarded as 
yet another context that needs to be considered. 
More specifi cally, it is the vegetative state of the 
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 Figure 8-2a–c     Vegetative context dependence of reward.  ( a ) Defi ning the “natural reward-harvesting 
statistics” problem. (A) Th e work of Horace Barlow crystallized an approach to vision by asking for the 
kinds of responses one should expect from visually sensitive neurons if they were effi  cient representa-
tions of “natural visual statistics.” Th e natural visual statistics approach has expanded greatly in recent 
years to show that many aspects of the visual world are “matched” in an effi  cient way by visual neural 
responses. Two features are particularly pertinent: fi rst, local spatiotemporal correlations abound—the 
visual statistics from one point in visual space are highly correlated with neighboring points; second, 
scale invariances also abound in natural visual statistics. (B) Th e reward-harvesting problem must have 
its own “natural reward-harvesting statistics.” Th is kind of description of the reward acquisition prob-
lem would need to include at least two novel elements not naturally present in the visual problem and 
not usually included in optimal-foraging theory. Th e fi rst is the need to consider the diff erential costs of  
exploring an environment to obtain the (possible) rewards present there. Th e second is the need to take 
account of the agent’s state-of-motivation for the reward in question. Since rewards can be abstractly 
defi ned, it is now particularly important to generate good models of motivation.
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   ( b ) Matching interoceptive and perceptual representations. Th e internal states of an animal dramati-
cally change the value of objects in its world. A hypothetical “lioness” views a visual scene in three diff er-
ent states: (A) sated and comfortable; (B) hungry; and (C) sated but hot. Th ese are not literal examples 
of how interoceptive states couple to visual perceptual representations, but they highlight the fact that 
there must be natural interoceptive statistics that have yet to be quantifi ed, and the resulting represen-
tations should have an intimate connection to perceptual processing in the service of decision-making. 
Neuroeconomics, to be complete, must take on all these levels.   ( c ) Th ree core neurocognitive networks. 
(A) Th e CEN, SN, and DMN. Th e frontoparietal CEN (shown in black), anchored in the dlPFC and the 
PPC, plays an important role in working memory and attention. Th e SN, shown in white, is important 
for detection and mapping of salient external inputs and internal brain events. Th e SN is anchored in 
the FIC and dorsal dACC and features extensive connectivity with subcortical and limbic structures 
involved in reward and motivation. Th e DMN (shown in grey), anchored in the PCC and medial PFC, 
is important for self-referential mental activity. (B)  Th e CEN and SN are both coactivated during a 
wide range of cognitive tasks but have distinct patterns of intrinsic cortical connectivity in the dorso-
medial prefrontal cortex (DMPFC) dACC, dlPFC, vlPFC and lateral parietal cortex and subcortical 
connectivity in the anterior thalamus (antTHAL), dorsal caudate nucleus (dCN), dorsomedial thalamus 
(dmTHAL), hypothalamus (HT), periaqueductal gray (PAG), putamen (Put), sublenticular extended 
amygdala (SLEA), SuN/VTA and the temporal pole (TP).    Figures 8-2a and b: Reprinted with permission 
of  Trends in Cognitive Sciences,  from Montague PR, King-Casas B. Effi  cient statistics, common curren-
cies and the problem of reward-harvesting.  Trends Cogn Sci . 2007. Dec;11(12):514–519.   (Reprinted with 
permission from Menon V. Large-scale brain networks and psychopathology: a unifying triple network 
model.  Trends Cogn Sci . 2011 Oct;15(10):483–506.)   
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body as signifi ed by its interoceptive stimuli that 
strongly impacts reward. One may consequently 
want to speak of a bodily or “vegetative context 
dependence” as distinguished from the “social 
context dependence” described earlier. 

 Th e concept of vegetative context dependence 
comes close to what Martin Paulus (2007) calls 
“framing eff ects.” Martin Paulus is a German 
born psychiatrist who moved from the oft en 
rainy Germany to the rather sunny California in 
San Diego. His research focuses on the neuronal 
mechanisms of the body and how its healthy and 
abnormal states impact our decision making and 
reward systems. Paulus (2007) proposes that the 
body’s interoceptive stimuli and thus its homeo-
stasis are central in reward and decision making. 
Th e value to the stimulus is not only assigned on 
a purely rational, for example, cognitive, basis 
but also by considering its value for the intero-
ceptive, that is, homeostatic state of the body and 
the organism in general. 

 Paulus speaks of an “interoceptive valuation” 
that describes the following: by providing intero-
ceptive input to regions implicated in reward and 
decision making, the body and its actual vegeta-
tive state have a strong say in valuing the diff er-
ent options and thus to determine the degree of 
reward value that is assigned to the exteroceptive 
target stimulus. 

 Th e value of the diff erent options depends 
then not only on the predictability or probabil-
ity and the reward magnitude of the exterocep-
tive stimulus but also on the actual interoceptive 
state of the body. Th is means that the interocep-
tive state and thus the bodily state can impact the 
degree of reward value and the consecutive set of 
preferences in subsequent decision making. 

 By providing diff erent interoceptive inputs, 
changes in bodily state can shift  the valuing of 
the diff erent options and hence set the prefer-
ences. Th ese may, for instance, be abnormal, as 
Paulus (2007) argues, in addiction where the 
abnormal bodily vegetative state may lead sub-
jects to assignment of abnormal reward values 
and ultimately to abnormal decision making. 

 Paulus uses the concept of “framing eff ects” 
to describe the impact of the bodily vegetative 
state on reward and value assignment (and sub-
sequent decision making). Th is is more or less 

identical to what I  mean by “context depen-
dence” and more specifi cally “vegetative context 
dependence.” Th e question, however, is what 
kind of neuronal mechanisms make possible 
such vegetative context dependence of reward 
and decision making; this shall be the focus in 
the next section.  

    NEURONAL HYPOTHESIS IIA: 
DIFFERENCE-BASED CODING AS “COMMON 
CURRENCY” BETWEEN INTERO- AND 
EXTEROCEPTIVE STIMULI 

   How can we further specify the dependence of 
reward and decision making on the interocep-
tive stimuli of the body and thus what Paulus 
describes as a “framing eff ect”; that is, vegetative 
context-dependence? Let us recapitulate briefl y 
the earlier sections in this chapter. 

 I suggested that the exteroceptive stimuli’s 
natural and social statistics are encoded into 
neural activity. Th ereby, the encoding of their 
statistical frequency distribution, the natu-
ral and social statistics, provided the common 
currency for the two diff erent exteroceptive 
stimuli, that is, target and contextual stimuli, 
to be directly matched and compared with each 
other. Th is, in turn, is possible only when pre-
supposing diff erence-based coding (rather than 
stimulus-based coding) of the diff erent stimuli’s 
diff erent spatial and temporal distributions. 

 What does this imply for intero–extero inter-
action? As in the case of extero–extero inter-
action, we are confronted with two diff erent 
stimuli, interoceptive and exteroceptive stimuli. 
However, unlike in extero–extero interaction, 
the stimuli in intero–extero interaction have 
diff erent origins. While in extero–extero inter-
action they both originate in the environment, 
they show diff erent origins in inter–extero inter-
action; namely, body and environment. Th is 
raises the question of how stimuli from such 
diff erent origins, body and environment, can 
directly interact with each other. For direct inter-
action to be possible, intero- and exteroceptive 
stimuli must share a common currency accord-
ing to which both are processed. In short, they 
need to be processed in a common code as their 
common or shared currency (see also Chapter 7 
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for the question of a common code). If now 
extero- and interoceptive stimuli are encoded 
into neural activity by themselves at their dif-
ferent discrete positions in physical time and 
space, they will not share a common currency. 
Such stimulus-based coding would only allow 
for parallel-segregated coding of intero- and 
exteroceptive stimuli, which makes their direct 
interaction impossible. 

 In contrast, we may rather presuppose 
diff erence-based coding as encoding strategy 
for both intero- and exteroceptive stimuli. In 
this case the common currency, or better, the 
shared or common code, consists of diff erences 
that refl ect the respective stimuli’s statistical 
frequency distributions across their diff erent 
discrete points in physical time and space. Th e 
statistical frequency distributions of both intero- 
and exteroceptive stimuli must consequently be 
encoded into neural activity.  

    NEURONAL HYPOTHESIS IIB: ENCODING 
OF “VEGETATIVE STATISTICS” INTO NEURAL 
ACTIVITY AND ITS INTERACTION WITH 
“NATURAL AND SOCIAL STATISTICS”   

 Analogous to the exteroceptive stimuli’s natural 
and social statistics, one may therefore want to 
speak of what I describe as “vegetative statistics”. 
Th e concept of “vegetative statistics” describes 
the statistically based occurrence of the intero-
ceptive stimuli from their body across the diff er-
ent discrete points in physical time and space. 

 Based on these considerations I  postulate 
that, despite their diff erent origins in body and 
environment, intero- and exteroceptive stimuli 
nevertheless share the same code. Such com-
mon currency or code consists of the encoding 
of spatial and temporal diff erences that refl ects 
the statistical frequency distributions of the dif-
ferent stimuli; i.e., natural, social, and vegetative 
statistics. 

 Such statistically based encoding makes it 
possible for the interoceptive stimuli from the 
body and their vegetative statistics to directly 
interact with the natural and social statistics of 
the exteroceptive stimuli from the environment. 
Hence, the suggested “framing eff ects,” or social 
context dependence, of reward and decision 

making may be based on diff erence-based cod-
ing of intero- and exteroceptive stimuli in terms 
of their statistically based spatial and temporal 
diff erences.  

    NEURONAL HYPOTHESIS IIC: “ACTUAL INPUT” 
AS “COMPLEX AMALGAM” OF DIFFERENT 
STIMULI AND THEIR RESPECTIVE STATISTICS   

 How does the assumption of the interoceptive 
stimuli’s vegetative statistics and its matching 
and comparison with the natural and social 
statistics of the exteroceptive stimuli stand in 
relation to the concept of predictive coding 
and more specifi cally the prediction error? We 
remember from Chapter  4 (and see especially 
Chapter 32 in Volume II) that the insula is one 
of the key regions in mediating interoceptive 
stimuli. 

 Bossaerts (2010) proposes that the insula (see 
also Chapter 32 in Volume II for more details), 
based on its massive interoceptive input, gen-
erates predictions about the interoceptive state 
of the body. Th ere may thus be “interoceptive 
prediction error” so that the involvement of 
the insula in interoceptive processing may be 
well compatible with the concept of predictive 
coding. 

 Th e assumption of a specifi cally “intero-
ceptive prediction error,” however, neglects 
that the insula not only processes interocep-
tive stimuli—in addition to the interocep-
tive input, it also receives major exteroceptive 
input from basically all fi ve sensory modalities 
(see Craig 2002, 2003, 2009a and b; Northoff  
2008). Furthermore, exteroceptive stimuli also 
induce major signal changes in the insula, 
such as, for instance, during the awareness of 
tones, that is, exteroceptive awareness (see Farb 
et al. 2012; Wiebking et al. 2010, 2011; as well 
as Chapter  32 for more details on the insula). 
Hence, we may need to consider both intero- 
and exteroceptive inputs in the insula with their 
diff erence determining subsequent neural and 
behavioral activity (see Chapter  32 for details 
as well as Wiebking et al. (2011) for support in 
this direction). 

 What does this imply for the alleged “intero-
ceptive prediction error” of the insula? It means 



ENCODING INTRINSIC PREDICTIONS174

that the “interoceptive prediction error” may not 
be as purely interoceptive as suggested. Instead, 
the actual input fed into the “interoceptive pre-
diction error” may include both intero- and 
exteroceptive stimuli and thus the intero-extero 
diff erence rather than the interoceptive input 
alone. Th is implies that the concept of the actual 
input cannot be limited exclusively to interocep-
tive stimuli alone but must include exteroceptive 
stimuli too. 

 One may therefore hypothesize that the actual 
input results from the matching and comparison 
between intero- and exteroceptive stimuli and 
their respective statistics, that is, vegetative and 
natural statistics. Th e concept of the “intero-
ceptive prediction error” may thus need to be 
reformulated as “interoceptive (intero-extero) 
prediction error.” 

 How can we now make more concrete 
empirical assumptions? One may hypothesize 
that the degree of value assigned to the extero-
ceptive stimulus may depend on its degree of 
statistically based matching with the interocep-
tive stimuli:  the more intero- and exteroceptive 
stimuli overlap in their respective spatiotem-
poral statistical frequency distributions, that is, 
their natural and vegetative statistics, the lower 
the degree of value (positive or negative) that 
can possibly be assigned to the exteroceptive 
stimulus in question. Conversely, the larger the 
discrepancies between natural and vegetative 
statistics, the higher the degree of value that can 
possibly be assigned to the exteroceptive stimu-
lus in question. 

 Th is means that the actual input itself is more 
complex and elaborated than it is oft en (tacitly) 
presupposed in predictive coding where it is 
considered (more or less) as given and simple. 
I here supposed that the actual input results from 
a complex process, the statistically based match-
ing between diff erent statistics; that is, vegeta-
tive, natural, and social statistics. 

 Th is makes it clear that the actual input itself 
already represents a complex amalgam of diff er-
ent stimuli and their respective statistics. Th at, 
however, is a tentative hypothesis at this point, 
which warrants more detailed empirical and 
conceptual characterization in the future (see 
  Fig. 8-3  ).       

    NEUROMETAPHORICAL EXCURSION: HOW 
GODIVA TRUFFLES CAN SURPRISE YOU IN THE 
DESERT AND IN BRUSSELS?   

 Let me illustrate the central relevance of the 
actual input by the following example. Imagine 
that you are extremely hungry and crave a 
chocolate, which refl ects the vegetative statis-
tics of your body’s interoceptive stimuli. You 
are, however, in the middle of a desert; thus, 
you consequently do not expect your craving for 
a chocolate to be fulfi lled because of the social 
context, that is, the desert, you are in. 

 Hence, if you do not get any chocolate while 
being in the desert, you are not really disap-
pointed because you did not expect it anyway. 
Th is is so because social and natural statistics 
match well, which in turn may also aff ect (and 
hopefully down-modulate) your craving for 
chocolate and thus your interoceptive stimuli’s 
vegetative statistics. 

 However, even the desert may not be with-
out surprises. Suddenly, you see a person com-
ing along who off ers you your favorite chocolate, 
Godiva truffl  es, for free. Th is is a positive surprise 
since you did not expect or anticipate such a treat 
aft er having been in the desert for the last 3 weeks 
and having not encountered anyone. Th ere is 
thus a major discrepancy between the exterocep-
tive target stimulus and its natural statistics, the 
co-occurring stimulus’ social statistics, and your 
body’s interoceptive stimuli’s vegetative statistics. 

 Th is discrepancy between the three diff erent 
statistics will transform into the assignment of a 
high value to the exteroceptive target stimulus, 
the Godiva chocolate, as made possible by high 
degrees of neural activity changes in your reward 
system. Hence, even though the desert is usually 
devoid of rewards like chocolate, this can never-
theless tell us a lot about the brain’s underlying 
neuronal mechanisms. 

 Now imagine the same scenario to take place 
not in the desert but in the chocolate shop in 
Brussels, Belgium, the home of Godiva truffl  es. 
Aft er your fi ve-week adventure tour in the des-
ert (without any truffl  e surprises), you travel 
to Brussels to get your beloved your beloved 
Godiva truffl  es. You expect the chocolate shop 
to have them. 
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Assignment of value: Natural statistics
of exteroceptive target stimulus

Social context: Social statistics of
co-occurring exteroceptive stimulus

Body: Vegetative statistics
of interoceptive stimuli

Actual input: Matching
and comparison
between natural,
vegetative,and social
statistics

Neural activity in reward system,
i.e., Ventral tegmental area (VTA,
lower/small voxel) and ventral 
striatum (VS, upper, bigger voxel)  

   Figure 8-3     Constitution of the actual input on the basis of diff erent stimuli.  Th e fi gure demonstrates 
the generation of the actual input on the basis of diff erent stimuli entering neural processing in the 
reward system; the latter’s core regions, that is, ventral striatum (VS) and ventral tegmental area (VTA), 
are indicated by the brain in the middle. ( Upper left  ) Th ere is the exteroceptive stimulus, the target 
stimulus, to which value and thus reward shall be assigned. Th e exteroceptive target stimulus is encoded 
in the neural (and behavioral) activity on the basis of its statistical frequency distribution, its natural 
statistics. Th is is indicated by the diff erent vertical bars at diff erent discrete positions in physical time 
and space. ( Lower left  ) Th is is complemented by the encoding of the statistical frequency distribution 
of the body’s interoceptive stimuli and thus its vegetative statistics. ( Upper right ) In addition to the 
exteroceptive target stimulus, one may also need to consider the social context and thus its co-occurring 
exteroceptive stimuli. Th ey are also encoded according to the statistical frequency distribution of their 
co-occurrence with the exteroceptive target stimulus as described by the concept of social statistics. 
( Lower right ) Th e actual input into the reward system, as presupposed in predictive coding, is supposed 
to result from the interaction and thus the matching and comparison between the three statistics, natu-
ral, social, and vegetative. One may thus speak of “natural-socio-vegetative statistics” to characterize 
the actual input that therefore needs to be considered as complex amalgam of diff erent stimuli and their 
respective statistics.   

 Now another surprise, yet a negative one: the 
chocolate shop has every kind of chocolate but 
Godiva truffl  es. You are seriously disappointed. 
Your body and its interoceptive stimuli were crav-
ing and thus predicting Godiva truffl  es. Instead, 
all your body gets is a high prediction error with 
high activity changes in the interoceptive-related 
brain regions. 

 Th is makes it clear that all three stimuli, 
exteroceptive, social, and interoceptive, and their 
respective statistics, natural, social, and veg-
etative, closely interact. And it this interaction 

which determines the actual input as one central 
ingredient of the prediction error.  

    NEUROCONCEPTUAL REMARK IA: VALUATION 
AS “COMMON CURRENCY” OF BEHAVIOR AND 
NEURONAL ACTIVITY   

 I demonstrated that exteroceptive target stimuli, 
exteroceptive stimuli from the social context, 
and interoceptive stimuli from the own body, 
are involved in constituting the actual input; 
while, as will become clear in the next chapter, 
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neuronal stimuli and their respective neuronal 
statistics are implicated in generating the pre-
dicted input. Most important, all these stimuli 
can by themselves be assigned value and thus be 
experienced as rewarding by the respective sub-
ject. In other terms, extero- and interoceptive as 
well as neuronal stimuli can be rewarding, as it 
will be explicated in further detail later. 

 How is it possible that diff erent stimuli of dif-
ferent origins can all be assigned value and thus 
be rewarding? Some authors associate neural 
activity in the NACC, the VMPFC, and the VTA 
with a so-called valuation system (Montague 
et al. 2002, 2006). Such “valuation system” does 
not only code the stimuli’s immediate relevance, 
the reward value, but also their long-term value 
for the organism, their importance and relevance 
for the organism itself. 

 What exactly does the proclaimed “valua-
tion system” do? Value or salience provides a 
common format or “common currency” for the 
diff erent exteroceptive stimuli that allows them 
to be “converted to a common valuation scale,” 
mirroring thereby their importance or relevance 
for the organism. Montague and Berns (2002, 
280)  suggest that value as the “common cur-
rency” is mediated by the valuation system and 
thus the orbitofrontal-striatal circuit:
  We strongly suspect the existence of a more 
generalized valuation system. We propose that 
the OFS circuit (i.e., orbitofrontal-striatal) 
computes an ongoing valuation of potential 
payoff s (including rewards), lo[s] ses, and their 
proxies (predictors) across a broad domain of 
stimuli. Th is is a diff erent proposal from the 
prediction-error signal discussed above for mid-
brain dopamine neurons ( . . . ) and proposed 
for many other brain regions ( . . . ). Th e predic-
tion error signal guides the system to learn the 
time and amount of future rewards, and may, 
as reviewed above, direct some forms of simple 
decision-making. Our specifi c proposal for one 
function of the OFS is that it computes a valu-
ation of rewards, punishments, and their pre-
dictors. By providing a common valuation scale 
for diverse stimuli, this system emits a signal 
useful for comparing and contrasting the value 
of future events that have not yet happened—a 
signal required for decision-making algorithms 

that assign attention, plan actions, and compare 
disparate stimuli. (Montague and Berns 2002, 
275–276)    

    NEUROCONCEPTUAL REMARK IB: 
VALUE-DRIVEN BEHAVIOR AND 
DIFFERENCE-BASED CODING   

 How does such determination of value as “com-
mon currency” stand in relation to my account? 
Th e concept of value in Montague and Barns 
is restricted to exteroceptive stimuli. I  demon-
strated that other stimuli are implicated, too, 
social, neuronal, and interoceptive. Are they val-
ued, too? Do interoceptive stimuli have a specifi c 
value for us? Th is is suggested by Paulus, who 
speaks of interoceptive valuation (see earlier). 
And even the brain’s intrinsic activity and thus 
its neuronal stimuli may generate value, that is, 
neuronal value, as we will see in the next chapter; 
this is, for instance, well apparent in dreams and 
the reward value of their various contents (see 
Chapter 26 in Volume II for details). 

 If interoceptive, social, and neuronal stimuli 
are assigned value, for example, relevance and 
importance for the organism, they may undergo 
the same processes that take place in the value 
assignment of exteroceptive stimuli. And they 
may then be processed in the very same system, 
the valuation system, as Montague and Barns 
suggest it for the diff erent exteroceptive stimuli. 
Behaviorally, this entails that not only extero-
ceptive stimuli may be rewarding for us but also 
interoceptive stimuli from the body and even 
neuronal stimuli from the brain itself (refl ect-
ing its intrinsic or resting-state activity). 

 Is there any phenomenological and behav-
ioral evidence for that? Yes, there is. Interoceptive 
stimuli from the body can also be assigned a spe-
cifi c reward value as well, as visible in athletes 
or in patients with hypochondria who have an 
increased focus on their own bodies. Based on 
these observations, one would postulate that 
interoceptive stimuli may also be assigned value 
and thus undergo reward processing in the very 
same way, for example, in the same regions (the 
valuation system) and with the same processes 
(the interaction with the respective other stim-
uli) as the exteroceptive stimuli do. 
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 Th is is also the case with the brain’s neuronal 
stimuli, which may also be assigned a certain 
value and thus reward (see   Fig. 8-4  ). Th is can, for 
instance, be observed in dreaming (while being 
asleep and thus in a resting state) or in mind wan-
dering, where certain internal thoughts and per-
ceptions can turn out to be more rewarding than 
the external contents (see Chapters 25 and 25 for 
details on both mind wandering and dreaming).       

    NEUROCONCEPTUAL REMARK IC: 
DIFFERENCE-BASED CODING AND VALUE AS 
“COMMON CURRENCIES” OF NEURAL ACTIVITY 
AND BEHAVIOR   

 What does this imply for the concept of value? 
Th e concept of value may then be understood 
in a wider sense as concerning and being appli-
cable not only to exteroceptive stimuli but also to 
interoceptive and even neuronal ones. Hence, the 
concept of value may be the “common currency” 
between these diff erent stimuli in behavioral 

regard, that is, the “behavioral common currency,” 
Such a wider concept of value may come close to 
the concept of value as a “candidate underlying 
principle” of brain function in general. 

 We should be careful, however. Value may 
indeed be a “candidate underlying principle” in 
the context of behavior. Why? Th e concept of 
value is a behavioral concept that describes our 
behavior and may therefore match well with the 
context of behavior. Hence, value may be a “can-
didate underlying principle” for our behavior 
that may consequently be described as “value 
driven and value based.” 

 In contrast, value cannot be regarded a “can-
didate underlying principle” in the context of the 
brain and its neuronal function. Why? Because 
that would require a purely neuronal concept to 
match the neuronal context of the brain rather 
than a behavioral concept like value. 

 Based on my assumptions in this and the 
other chapters, I  would regard the neuronal 
mechanisms underlying the generation of value 

 

Valuation System: VTA, VS, 
VMPFC

Difference-based Coding:
Matching and comparison
between the different statistics

Exteroceptive
stimuli

Interoceptive
stimuli

Neuronal
stimuli

Assignment of Value

Reward of
environmental
events/objects 

Reward of the
own body’s
vegetative
processes

Reward of the
resting state’s 
mental states
(dreaming,
mind-
wandering)

Natural and
social statistics

Vegetative
statistics 

Neuronal
statistics

   Figure  8-4     Valuation system and diff erence-based coding.  Th e fi gure demonstrates the input ( left  ) 
and output ( right ) of the proposed valuation system ( middle ) as mediated by regions like the ventral 
striatum (VS), the ventromedial prefrontal cortex (VMPFC), and the ventral tegmental area (VTA). Th e 
input into the valuation system consists of the brain’s neuronal stimuli, the body’s interoceptive stimuli, 
and the environment’s exteroceptive stimuli ( left  ). Th ese, more precisely their respective natural, social, 
vegetative, and neuronal statistics, are processed in the valuation system. Here all the diff erent statistics 
are matched and compared with each other, resulting in changes in the neural activity of the valuation 
system. Th is, in turn, leads to the assignment of value to the stimuli ( middle ). Such value assignment is 
then manifest ( right ) in the reward of the environment’s objects/events, the reward of the own body’s 
vegetative processes, and the reward of the mental in the resting state as, for instance, during dreaming 
and mind-wandering.   
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to be a “candidate underlying principle” of our 
brain’s neuronal function. Th e encoding of dif-
ferent stimuli in terms of their spatial and tempo-
ral diff erences; that is, their statistical frequency 
distributions across diff erent discrete points in 
physical time and space, may be the common 
currency that makes their direct interaction with 
the consecutive generation of value possible. 

 One could consequently postulate the encod-
ing of neural activity in terms of spatial and 
temporal diff erences and thus diff erence-based 
coding to be the “candidate underlying prin-
ciple” of our brain and its neuronal function. In 
the same way, our behavior is value-based and 
-driven, our brain and its neuronal functions 
may be diff erence-based and -driven. 

 To put it in a nutshell, our behavior is 
value-driven by default. Analogously, the brain 
by default cannot avoid encoding intero- and 
exteroceptive stimuli into neural activity in 
terms of spatial and temporal diff erences. I now 
postulate that both the encoding of neural activ-
ity in terms of diff erence-based coding and the 
value-driven nature of behavior are intimately 
linked to each other by default. Th at, however, 
needs to be shown on separate grounds. Th is is 
the purpose in the next chapter.  

    Open Questions   

 What about consciousness? We said at the end of 
the previous chapter that predictive coding does 
not imply anything about phenomenal states; 
that is, consciousness. Given the complexity of 
the actual input as described, one may be inclined 
to revise that stance. Since consciousness is also 
includes contextual and bodily information, one 
may want to argue that the actual input and its 
complexity very much entail consciousness. 
 Th is, however, confuses the actual input and its 
functional and neuronal states with a phenom-
enal state, or consciousness. Th e functionally and 
neuronally defi ned actual input does not imply 
anything about a phenomenal state. 
 Moreover, one should not confuse cause and con-
sequence. Th e actual input and its processing are 
oft en considered the causes of consciousness as 
it is tacitly presupposed in the neural correlates 
of consciousness (see Introduction I in Volume II 
for details). Consciousness is then considered 
to be the consequence of the actual input as its 
underlying cause. 

 One may also see things in a reverse way, though. 
Consciousness as phenomenal state may then be 
considered to precede the actual input and its sub-
sequent perceptual, motor, and cognitive states, 
which all occur on the basis of and thus within the 
fi eld of consciousness. Consciousness and its asso-
ciated neuro-phenomenal mechanisms may then 
provide the ground for the subsequent neural pro-
cessing of sensory, motor, cognitive, and aff ective 
functions, which then occur on the basis of the 
former. In this case the neuro-phenomenal func-
tions underlying consciousness must be assumed 
to precede the neuro-sensory, neuro-motor, 
neuro-cognitive, and neuro-aff ective functions 
(see second Introduction in Volume II as well as 
Chapters 17 and 24 for more extensive discussion 
of this point). 
 Th e second question pertains to the interaction 
between social, vegetative, and natural statistics. 
I here demonstrated empirical support in favor 
of the interaction between natural and social sta-
tistics, as exemplifi ed by examples of the social 
context dependence of reward. And I supported 
the assumption of the interaction between 
natural and vegetative statistics with examples 
from the bodily vegetative context dependence 
of reward. Th is leaves open a third interaction, 
namely the one between social statistics and veg-
etative statistics, and how that, in turn, aff ects 
the assignment of value to an exteroceptive (tar-
get) stimulus. 
 More specifi cally, the question is how the social 
context interacts with the vegetative state of the 
body and how that, in turn, impacts the assign-
ment of value to specifi c exteroceptive stimuli. 
To test that experimentally, one would need to 
develop a complex 2x2x2 interaction design; that 
means including two variations of the social con-
text and its co-occurring exteroceptive stimuli, 
two variations of the target stimuli that are to 
be valued, and two variations of the bodily state, 
that is, its interoceptive stimuli. 
 A third question points out a neglect. We focused 
mainly on the actual input in this chapter, show-
ing that it is rather complex and not as simple as 
tacitly presupposed in the concept of predictive 
coding. Th is left  open how the predicted input 
itself is generated, a question that was already 
briefl y touched on in Chapter 7. Hence, aft er the 
detour to the actual input in this chapter, we may 
now want to return to this question and focus on 
the predicted input itself in more detail in the 
next chapter where we will continue to further 
elaborate the example of reward.             
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    Summary   

 I discussed the concept of predictive coding in 
Chapter 7 and exemplifi ed it by predominantly 
sensorimotor functions. Chapter 8 focused on 
how the actual input is based on the match-
ing and comparison between diff erent stimuli 
and their respective statistics; that is, natural, 
social, and vegetative statistics. How now is 
the predicted input itself generated? Th is is the 
focus in the present chapter. I  fi rst investigate 
the relationship between reward-related activ-
ity and resting-state activity; recent studies 
demonstrated considerable overlap between 
both in especially anterior cortical midline 
regions like the ventromedial prefrontal cortex 
(VMPFC) and the perigenual anterior cingu-
late cortex (PACC). Th erefore I  hypothesized 
that the predicted input can be generated on 
the basis of changes in the resting-state activity; 
that is, rest–rest interaction. How are the spa-
tial and temporal changes in the resting-state 
activity encoded into neural activity? I  pro-
pose that the spatial and temporal diff erences 
and thus the statistical frequency distribution 
of the changes in the resting-state activity are 
encoded by themselves into the resting-state 
activity. I therefore speak of what I describe as 
“neuronal statistics” that signifi es the encod-
ing of the spatial and temporal changes in the 
resting-state activity itself into neural activity. 
How does the resting state’s neuronal statis-
tics generate the predicted input? Usually, the 
generation of the predicted input is associated 
with the application of a cue that triggers the 
generation of the former. Th is means that the 
cue-triggered “as-if exteroceptive stimulus” 

and its “as-if natural statistics,” as I describe it, 
interact with the resting state’s neuronal sta-
tistics. Behaviorally, such interaction may be 
manifest in what Kent Berridge described as 
“wanting,” the longing or craving for a particu-
lar object or event and its associated value. Such 
wanting must be distinguished from what Jaak 
Panksepp signifi es as “seeking,” the disposition 
of the organism to search (i.e., seek) for objects 
in the environment that could possibly be asso-
ciated with value. Th e behavioral distinction 
between “seeking” and “wanting” suggests a 
corresponding underlying neuronal distinction 
during the generation of the predicted input. 
I  suggest that corresponding neuronal stages, 
a completely spontaneous one and a subse-
quent cue-related one, need to be distinguished 
during the encoding of spatial and temporal 
changes in the resting-state activity. Taking 
both stages spontaneous and cue-related will 
allow for generating a predicted input. Taken 
together, this shows that the generation of the 
predicted input cannot be regarded simply as 
given and simple but rather as resulting from 
diff erent and rather complex neuronal mecha-
nisms that already operate in the resting state 
itself. Th e chapter concludes with the question 
for the kind of necessary neuronal conditions, 
that is, neural predispositions, that enable and 
thus make possible the transformation of neu-
ronal into behavioral states.    

    Key Concepts and Topics Covered   

 Resting-state activity, reward-related activity, 
neural overlap, anterior midline regions, as-if 

           CHAPTER 9 
 Predictive Coding and the Brain’s 
Neuronal Statistics        
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natural statistics, neuronal statistics, predictive 
coding, predicted input, seeking, wanting, spa-
tiotemporal structure      

      EMPIRICAL BACKGROUND: PREDICTED INPUT 
AND THE BRAIN’S RESTING-STATE ACTIVITY   

 Th e theory of predictive coding claims three 
core elements:  the actual input, the predicted 
input, and the prediction error (resulting from 
the comparison and matching between the 
former two). Chapter  7 focused on the pre-
diction error, assuming that it presupposes 
diff erence-based coding. Th is was mainly illus-
trated by sensory functions and the mirror 
neurons. Th ereby, I  hypothesized that for the 
matching and comparison between actual input 
and predicted input to be possible, that is, the 
prediction error, both inputs need to share a 
common code. 

 I suggested that such a common code consists 
in the encoding of statistically based spatial and 
temporal diff erences; that is diff erence-based 
coding, into neural activity during the genera-
tion of both predicted input and actual input. 
By encoding their respective underlying neural 
activity in terms of spatial and temporal diff er-
ences, both predicted and actual inputs share the 
same code and can therefore directly be matched 
and compared with each other. 

 Th e assumption of predictive coding pre-
supposing diff erence-based coding was further 
specifi ed in Chapter 8. Th ere I discussed how the 
actual input is generated. It turned out that dif-
ferent kinds of stimuli and their respective sta-
tistical frequency distributions constitute what 
is described as actual input in predictive coding. 
Th is means that the actual input cannot be pre-
supposed as simple and taken for granted in the 
theory of predictive coding as so oft en (rather 
tacitly) seems to be the case. 

 Let us be more specifi c with regard to the 
actual input. Th e actual input included the 
exteroceptive target stimulus’ natural statistics, 
the co-occurring exteroceptive stimuli in the 
respective social context and their respective 
social statistics, and the vegetative statistics of 
the interoceptive stimuli from the body. Th e 
matching and comparison between all three 

statistics, natural, social, and vegetative, was sup-
posed to constitute the actual input as described 
in predictive coding. Accordingly, the actual 
input must be considered a complex amalgam of 
diff erent stimuli and their respective statistics—
natural, social, and vegetative. 

 Where does this leave us? We showed that 
predictive coding presupposes diff erences-based 
coding (Chapter 7) and that the actual input is a 
complex amalgam of diff erent stimuli and their 
respective statistics—natural, social, and vegeta-
tive (Chapter 8). Th is however leaves open one 
core ingredient of predictive coding; namely, the 
predicted input itself. How is the predicted input 
generated? 

 As indicated in Chapter  7, the predicted 
input must be generated prior to the occur-
rence of the actual input and the subsequent 
prediction error. Th is takes us neuronally back 
to the brain’s resting-state activity as it char-
acterizes the brain prior to the occurrence of 
stimulus-induced activity, which stems from 
the various stimuli associated with the actual 
input. We discussed the resting-state activity in 
full detail in Chapters 4 through 6 and charac-
terized it by a statistically based spatiotemporal 
structure. How now do the resting state’s statis-
tically based spatiotemporal structure and its 
continuous changes lead to the generation of the 
predicted input? Th is is the focus in the present 
chapter.  

    NEURONAL FINDINGS IA: HIERARCHICAL 
ORGANIZATION AND PREDICTION ERRORS   

 How do the advocates of predictive coding imag-
ine the predicted input to be generated? Karl 
Friston (2010) as the main advocate of predic-
tive coding proposes a hierarchical architecture 
with bottom-up processing of the actual sen-
sory input in, for instance, sensory cortex and 
top-down processing of cognitive functions in, 
for instance, prefrontal cortex to be central for 
generating the predicted sensory input. In addi-
tion to the lower-most and uppermost regions 
like the sensory and the prefrontal cortex, there 
are many other regions sandwiched in between. 
How are now all these diff erent levels related to 
each other? 
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 Friston argues that the diff erent levels and 
their respective regions serve as a higher region 
for the respective next lower region while, at the 
same time, they serve as a lower region for the 
next higher region. When serving as a higher 
region for the next lower region, their neural 
activity signifi es predictions for the next actual 
input and signal of the next lower region. Th is 
prediction, that is, the predicted input for the 
next lower region, serves also as actual input 
when considering the same region as lower 
region for the next higher region, which then 
generates the predicted input for the former. 
Accordingly, depending on its relationship to 
either the next-lower or -higher region, the 
region’s neural activity serves either as actual 
input (for the next-higher region) or as predicted 
input (for the next-lower region). 

 Since the same region’s neural activity serves 
as both predicted input (for the next-lower one) 
and actual input (for the next-higher one), con-
tinuous matching and comparison processes 
going on between lower and higher regions’ 
neural activities. Due to the fact that it provides 
the predicted input, the region’s neural activity 
is matched and compared with the neural activ-
ity level of the next-lower region’s activity. At the 
same time, that same region’s neural activity and 
its actual input are also matched and compared 
with that of the one in the next higher region. 

 Th ese continuous matching and comparison 
processes extend throughout the whole brain and 
enable the continuous generation of prediction 
errors at each level as resulting from the compari-
son between the respective actual and predicted 
inputs. Does the neural activity in the diff erent 
regions of the brain indeed signify such a con-
tinuous generation of prediction errors? Aft er all, 
this model is a theoretical model that, if empiri-
cally plausible, presupposes a corresponding 
hierarchical organization in the brain with the 
clear distinction between diff erent layers accord-
ing to their level in the hierarchy.(see   Fig. 9-1a  ).       

    NEURONAL FINDINGS IB: HIERARCHICAL 
ORGANIZATION AND THE BRAIN   

 Carhart-Harris and Friston (2010) and Friston 
(2010) postulate a hierarchical organization 

in the anatomical structures of the brain. Th ey 
suggest that the thalamic nuclei, the unimodal 
sensory regions, and the other subcortical lim-
bic and paralimbic regions are the lowest level 
in the anatomical hierarchy of the brain. Th e 
next-higher levels are the salience and dorsal 
attention systems, while the highest level can be 
found in the default-mode network (DMN). 

 Let us briefl y explain the diff erent levels and 
their respective networks or systems (see also 
Chapter 4 for more details of the diff erent net-
works). Th e salience system includes the dorsal 
anterior cingulate cortex, the fronto-insula corti-
ces, the amygdala, and the ventral midbrain (see 
also Menon 2011). Th e dorsal attention system 
includes the dorsolateral prefrontal cortex, the 
frontal eye fi elds, the dorsal medial prefrontal 
cortex, the intraparietal sulcus, and the superior 
parietal lobule (see Carhart-Harris and Friston 
2010, 6, for details and references). Finally, the 
third and top level is to be found in what is called 
the default-mode network (DMN) that includes 
cortical midline regions like the ventromedial 
prefrontal cortex (VMPFC), the dorsomedial 
prefrontal cortex (DMPFC), and the posterior 
cingulate cortex (PCC) as well as the lateral pari-
etal cortex and the hippocampus (see Part II for 
details of the DMN). 

 How are now these diff erent levels related to 
each other in their neural activity? Th ese three 
levels, the DMN at the top, the attention sys-
tems in the intermediate level, and the sensory/
limbic/paralimbic regions at the lowest, form 
an anatomical and functional hierarchy. Each 
level has its own energy, that is, free energy, with 
which it is trying to suppress the free energy of 
its respective subordinate (through minimizing 
the prediction error) at the next-lower level. 

 Spontaneous activity, such as frequency fl uc-
tuations in the DMN, suppresses and contains 
spontaneous activity in the regions of the atten-
tion systems via top-down modulation. Th e 
same kind of top-down modulation can then be 
observed between the attention system and the 
next lower level in the hierarchy. 

 Th is means that the spontaneous activity 
in the attention networks controls and inhibits 
neural activity changes induced by exogenous 
sensory input in thalamic and sensory cortical 
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   Figure 9-1a and b     Diff erent forms of anatomical organization and neural coding.  Th e fi gure describes 
two diff erent forms of anatomical organization, hierarchical ( a ) and nested ( b ), and the respectively 
associated coding strategy. ( a ): In the hierarchical organization, the diff erent levels are clearly separated 
from each other as indicated by the diff erent shapes that do not overlap. Th ey interact with each other 
from lower to upper levels signifying bottom-up modulation with the actual input, while the upper 
levels interact with the lower ones via top-down modulation and the predicted input. Hence, the hier-
archical organization is closely tied and linked to predictive coding. ( b ): In the nested organization, in 
contrast, the diff erent levels are not clearly separated from each other since they are embedded, with 
the lower one embedded and integrated into the next higher one, and so forth. Th is is indicated by 
the shapes from the lower levels reoccurring inside the next higher one. Th at necessitates the intrinsic 
activity of the higher level to be encoded in relation to the resting-state or stimulus-induced activity of 
the lower one. Such organization entails diff erence-based coding rather than stimulus-based coding as 
(tacitly) presupposed in predicted input and actual input as in predictive coding.   
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regions (see Carhart-Harris and Friston 2010, 
11–12, for details, as well as Wacongne et  al. 
2011 for a recent empirical study supporting 
such hierarchical processing yielding predicted 
inputs and prediction errors between diff erent 
anatomical levels).   1    

 Th e proponents of predictive coding propose 
a hierarchical structure with the generation of 
predicted and actual inputs at diff erent levels of 
the hierarchy. Th is leads to the generation of pre-
diction error as the interaction between higher 
and lower levels. Such hierarchical structure 
corresponds well to the anatomo-structural and 
functional organization of the brain where dif-
ferent levels, i.e., diff erent neural networks and 
systems, interact with each other via bottom-up 
modulation and top-down modulation.  

    NEURONAL FINDINGS IC: “SEGREGATED 
HIERARCHY” VERSUS “NESTED HIERARCHY”   

 One may now doubt whether such clear-cut 
hierarchical organization with the segrega-
tion between its diff erent levels is empirically 
plausible and thus applies as such to the brain. 
Th is may be especially questionable given the 
multiple structural and functional connections 
between the diff erent levels and systems. 

 Rather than such clear-cut segregation 
between the diff erent levels, one may suggest 
that each level resurfaces and is redeployed 
within the next higher one, resembling the dif-
ferently sized Russian dolls being nested within 
each other. Th is amounts to what Todd Feinberg 
describes as “nested hierarchy” (  Fig.  9-1b  ; see 
Feinberg 2009, 2011,; Northoff  et al. 2011). 

 One may thus distinguish between diff erent 
forms of hierarchy. Th ere is the “segregated hier-
archy” as advanced by Friston. Here the diff erent 
levels, lower and higher ones, can be clearly seg-
regated from each other and are related to each 
other via bottom-up and top-down modulation. 

 Such a “segregated hierarchy” must be distin-
guished from the “nested hierarchy” where each 
lower level resurfaces in the next higher one, and 
so forth. In this case there is no longer clear-cut 
segregation between the diff erent levels, because 
one cannot distinguish anymore in the higher 
level what is due to the contribution of the higher 

level itself and what is rather related to the lower 
level’s resurfacing in the higher level. 

 How is such a “nested hierarchy” related to 
the brain and its anatomo-structural organiza-
tion? Feinberg proposes that the brain and its 
anatomical structure can indeed be character-
ized by such a nested hierarchy rather than a 
segregated hierarchy. For that, though, we have 
to abandon the traditional distinction between 
lower subcortical and higher cortical regions. 
Instead of segregating subcortical and corti-
cal regions, we have to consider them as inte-
grated subcortical-cortical systems that act as 
functional unities. Th is is where the threefold 
anatomo-structural organization as discussed in 
Chapter 4 in full detail comes in. 

 Let us briefl y recall the brain’s threefold 
anatomo-structural organization. Th e Dutch 
anatomist Niewenhuys distinguishes between 
three diff erent subcortical-cortical rings:  an 
inner ring with subcortical and cortical regions 
around and adjacent to the ventricles, an outer 
ring at the outer surface of both subcortical and 
cortical territories, and a middle ring sandwiched 
between inner and middle rings (see Chapter 4 
for details). Most important, subcortical and cor-
tical regions within each ring act as functional 
unity in an integrated subcortical-cortical way. 

 Such integrated action makes the segrega-
tion between subcortical and cortical regions 
as suggested by the hierarchical organiza-
tion impossible. For instance, as based on the 
predominant interoceptive input, the inner 
subcortical-cortical ring mediates the interocep-
tive state of the body while the outer ring, due to 
its predominant exteroceptive input, processes 
an exteroceptive state of the environment. Th e 
middle ring does not receive direct input from 
outside the brain, which led me to characterize 
it by the predominant input from the brain itself, 
the neuronal stimuli (see Chapter 4 for details). 

 How does such a “nested hierarchy” stand 
in relation to the “segregated hierarchy”? Th e 
main distinction in the “nested hierarchy” is 
no longer the vertical and thus hierarchical dis-
tinction between lower subcortical and higher 
cortical regions as in the “segregated hierarchy.” 
Instead, the main distinguishing feature here is 
the anatomical proximity to the ventricles that 
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allows for the distinction between inner, middle, 
and outer rings. In addition, the predominant 
stimulus input, intero- or exteroceptive or neu-
ronal (and other neuro-anatomical features; see 
Chapter 4) also allows us to further distinguish 
the diff erent rings from each other.  

    NEURONAL HYPOTHESIS IA: “NESTED 
HIERARCHY” AND PREDICTIVE CODING   

 What does such a “nested hierarchy” imply for 
the generation of the predicted input? Unlike in 
the “segregated hierarchy”, there are no clearly 
segregated vertically based levels of hierarchy 
anymore in the “nested hierarchy.” Th is, however, 
makes the clear-cut association of predicted and 
actual inputs with lower and higher level regions 
impossible as implied by the model of predic-
tive coding:  the assumption that the interplay 
between the vertically defi ned lower and higher 
levels of neural activity accounts for the genera-
tion of the prediction error can then no longer 
be maintained. 

 Th is account of the “nested hierarchy” needs 
to be specifi ed, though. Metaphorically speak-
ing, one can say that “one can no longer dis-
tinguish ‘what serves for what as what’ ” Let us 
briefl y shed some light on the three “what’s,” 
starting with the fi rst “what.” 

 One cannot distinguish anymore diff erent 
vertically defi ned regions from each other within 
the rings themselves. Determining and segregat-
ing lower and higher regions from each other 
remains impossible, so that one can no longer 
single out what region serves as starting point 
for generating predicted or actual inputs. Th is 
concerns the fi rst “what” that undermines one 
central presupposition of the predictive coding 
model, the clear-cut vertically based hierarchi-
cal distinction into lower and higher regions as 
either sender or receiver of the respective other 
regions’ neural activity. 

 How about the second “what”? Due to the 
integration of subcortical and cortical regions’ 
neural activities during their encoding of spatial 
and temporal neural diff erences across diff erent 
regions (within and across the diff erent rings) 
(presupposing diff erence-based coding rather 
than stimulus-based coding), one can no longer 

determine the exact contribution of each region. 
Th e association of either a predicted input or 
an actual input with a particular region and its 
neural activity consequently becomes impos-
sible. Th is concerns the second “what” that 
undermines another central presupposition of 
the predictive coding model, the association of a 
specifi c contribution with the neural activity of a 
particular region. 

 Finally, we need to tackle the third “what.” 
Where are we so far? Th e fi rst two “what’s” 
showed two main points: (i)  the regions are no 
longer anatomically segregated in a vertically 
based way and (ii) their neural activity is inte-
grated and encoded in the gestalt of spatial and 
temporal diff erences. Th is makes it also impos-
sible to single out where the neural activity of 
a particular region goes, and which subsequent 
region’s activity it impacts. 

 One can then no longer distinguish between 
top-down modulation and bottom-up modula-
tion (see also Northoff  2002, where I distinguish 
between horizontal and vertical modulation) 
and, most important, associate the former with 
the predicted input and the latter with the actual 
input. Th is concerns the third “what,” which 
undermines the assumption in the predictive 
coding model that the receiver, i.e., the receiv-
ing address, of a region’s neural activity can be 
clearly determined and associated with receiving 
either the predicted input or the actual input. 

 Th e model of the “nested hierarchy” under-
mines some of the central assumptions of the 
predictive coding model for the generation of the 
predicted input. While I am fully aware that this 
needs to be discussed in more detail, we neverthe-
less have to move on and see how we could bet-
ter explain the generation of the predicted input. 
In order to get some idea, we may want to briefl y 
shed some light on the kind of conditions or cri-
teria an explanatory model would need to fulfi ll.  

    NEURONAL HYPOTHESIS IB: PREDICTED INPUT 
AND RESTING-STATE ACTIVITY   

 What kind of neuronal processes or mechanisms 
must occur in order to make possible the gen-
eration of the predicted input? Let me formu-
late some of the neural conditions or criteria an 
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explanatory model for the generation of the pre-
dicted input must fulfi ll. 

 First, the predicted input must share the 
coding strategy with the actual input in order 
for them to interact. Since the actual input 
presupposes diff erence-based coding, the gen-
eration of the predicted input also requires 
diff erence-based coding. Hence, the predicted 
input must refl ect and be based upon the encod-
ing of spatial and temporal diff erences; i.e., 
diff erence-based coding. 

 Second, the diff erence upon which the pre-
dicted input is supposed to be based must be a 
statistically based diff erence. We saw in the case of 
the actual input that it is based upon the match-
ing of diff erent statistically based diff erences; 
that is, natural, social, and vegetative statistics. 
Analogously, one would propose that the pre-
dicted input is based on the matching and com-
parison between diff erent statistical diff erences 
whose origin, though, remains unclear for now. 

 Th ird, the predicted input must be gener-
ated prior to and thus temporally precede the 
encounter with the actual input. Th is means that 
neuronally it must precede the generation of 
stimulus-induced activity as associated with the 
actual input and its matching with the predicted 
input. Th at implies, however, that the predicted 
input must be generated during the period when 
the brain is at rest being characterized by its 
intrinsic activity, that is, its resting-state activity. 
One would consequently suggest that the brain’s 
resting-state activity is central in generating the 
predicted input. 

 If the brain’s intrinsic activity is indeed rel-
evant in generating the predicted input in, for 
example, the case of reward, one may hypoth-
esize neural overlap between the regions 
recruited during reward and those showing 
high resting-state activity. More specifi cally, one 
would expect that the resting-state activity to be 
closely related to specifi cally the predicted input 
in reward tasks, i.e., the predicted or expected 
reward value, and also, at least in part, the degree 
of the prediction error, the actual reward, and its 
associated stimulus-induced activity (especially 
in those instances where the prediction error is 
low so that the impact of the predicted input is 
rather high). 

 Taken together, the criteria make it clear that 
we need to go back to the resting-state activity 
itself in order to explain the generation of the 
predicted input in neuronal terms. Th e distinc-
tion between predicted input and actual input 
may then correspond to the distinction between 
resting state and stimulus-induced activity rather 
than to the one between higher and lower regions 
as suggested in the predictive coding model. 

 We therefore turn now back to the brain’s 
resting-state activity, its intrinsic activity, as was 
already discussed in detail in Chapters 4 through 
6.  However, the focus is now no longer on the 
resting-state activity itself and its spatiotemporal 
structure (see Chapters 4–6) but rather on how it 
can possibly generate the predicted input.  

    NEURONAL FINDINGS IIA: NEURAL OVERLAP 
BETWEEN RESTING-STATE ACTIVITY AND 
REWARD-RELATED ACTIVITY IN  CORTICAL  
REGIONS   

 Th ere has been much research in neuroscience 
about both reward and resting state, while inves-
tigations of their relationship in humans are less 
common. Given that other functions like percep-
tion and decision making have been shown to be 
modulated by the level of the resting-state activ-
ity (see Parts I  and IV for details), it would be 
rather strange if this were not the case in reward. 

 Th is is especially suggested by the fact that 
regions like the VMPFC and the ventral stria-
tum (VS) that are core regions of the reward cir-
cuitry do also show high levels of resting-state 
activity (see Chapter  7). While there has been 
plenty of literature in both fi elds of resting state 
and reward, their direct linkage and interaction 
remains to be investigated on the regional level of 
neural activity using, for instance, brain imaging. 

 Taking a fi rst step in this direction, Niall 
Duncan from our group therefore conducted a 
meta-analysis of recent human imaging stud-
ies on reward and resting state (see Duncan 
et  al. 2013). Th ere was a strong overlap in 
the regional neural activity patterns between 
resting-state activity and reward-related activity. 
Such neural overlap was visible in the anterior 
midline regions, especially the VMPFC and the 
adjacent PACC. 
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 Another neural overlap was manifest in the 
posterior midline regions, the PCC. Th is holds 
for both active and passive reward tasks, which 
were distinguished from each other according 
to either receiving (i.e., passive) or acquiring 
(i.e., active) a reward in the tasks applied by the 
respective studies (see   Fig. 9-2  ).      

 Th is is even more interesting given the fact 
that many studies on reward and predictive cod-
ing demonstrated that the predicted input can 
be associated with neural activity in especially 
the VMPFC (see Schultz 2006, 2007a and b; 
Montague et al. 2002, 2006; O’Doherty et al. 2006; 
van Duuren et al. 2008). Taken together with our 
fi ndings of an overlap between resting-state and 
reward-related activity, this suggests that the 
brain’s intrinsic activity, its resting-state activity, 
may possibly be centrally involved in generating 
the predicted input (see for more details in the 
next section).  

    NEURONAL FINDINGS IIB: NEURAL OVERLAP 
BETWEEN RESTING-STATE ACTIVITY AND 
REWARD-RELATED ACTIVITY IN  SUBCORTICAL  
REGIONS   

 How about the subcortical regions? Regions like 
the central tegmental area (VTA) and the ventral 
striatum (VS) are supposed to be central in reward. 
When comparing the reward-related conditions 
versus their respective control conditions, that is, 
non-reward conditions, we clearly observed the 
VTA and the VS. However, once we compared the 
reward-related conditions against the resting-state 
studies, this involvement of the subcortical regions 
was no longer visible. In contrast, when comparing 
the non-reward condition with the resting state, 
subcortical regions like the VTA and VS revealed 
higher signal changes in the rest condition. 

 Th e absence of subcortical regions in the 
comparison between rest and reward may have 
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   Figure 9-2     Neural overlap between resting-state activity and reward-related activity.  Th e fi gure dem-
onstrates the results from a meta-analysis of human imaging studies of reward and resting state (see 
Duncan et al. 2013). Th ereby, reward studies are distinguished according to whether subjects passively 
received a reward (passive;  right side ) or had to actively engage in order to receive it (active;  left  side ). 
Th e black and grey voxels in the pictures signify the neural overlap between resting-state activity and 
reward-related activity. In both cases (passive, active) there is considerable overlap in the anterior corti-
cal midline structures like the ventromedial prefrontal cortex (VMPFC) and the perigenual anterior 
cingulate cortex (PACC). Th e overlap in the posterior midline region of the posterior cingulate cortex 
(PCC) is especially strong in the active reward tasks ( left  ) while being rather weak and small in the pas-
sive conditions ( right ).   
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diff erent reasons. One of the reasons may be that 
reward-related activity does not much deviate from 
the respectively preceding resting-state activity 
level. Only the non-reward conditions may induce 
changes in the activity level when compared to the 
preceding resting state. Th is is indeed supported 
by recent studies of ours in which we plotted the 
raw data and observed decreased signal changes 
only during the non-reward control condition 
while not much activity change was observed dur-
ing the reward condition itself (see deGreck et al. 
2008). If so, one would hypothesize that the intrin-
sic activity, the resting-state activity, in the subcor-
tical regions may already be involved in some kind 
of value assignment, that is, reward-related activ-
ity, during the resting state itself (see the end of this 
chapter for details on that). 

 Alternatively, the reason for the lack of the neu-
ral overlap between rest and reward in subcortical 
regions may be found in methodological con-
founds. Subcortical regions are much more diffi  -
cult to visualize in functional magnetic resonance 
imaging (fMRI) since they show low degrees of 
signal changes when compared to cortical regions. 
Hence, we cannot exclude a cortical bias in the 
data on both reward and rest at the expense of the 
subcortical regions. Moreover, the resting state 
studies in fMRI focus usually on cortical regions 
and their functional connectivity exclusively while 
oft en neglecting subcortical regions (except the 
thalamus). Hence, the lack of subcortical over-
lap between rest and reward may also stem from 
insuffi  cient data from resting-state studies. 

 In sum, the empirical evidence available 
on humans hints at neural overlap between 
resting-state activity and reward-related activ-
ity in especially the anterior cortical midline 
structures like the VMPFC and the PACC. Th is 
is especially remarkable given the fact that stud-
ies on reward in both animals and humans asso-
ciated neural activity in these regions with the 
generation of the predicted input.  

    NEURONAL FINDINGS IIC: PREDICTION OF 
REWARD-RELATED ACTIVITY BY RESTING-STATE 
ACTIVITY   

 We so far have described the results of a 
meta-analysis that showed neural overlap 

between reward and resting-state activity, espe-
cially in anterior midline regions. How about 
a more direct support? For that, Niall Duncan 
from our group conducted a combined resting 
state and reward study in fMRI (Duncan et  al. 
2013). Th e resting state condition included a 
six-minute period of eyes closed without any 
stimulation or task. Th is allowed us to measure 
the spontaneous variability of the resting-state 
activity as accounted for by standard deviation 
(SD), the amplitude of the low frequency fl uctua-
tions (ALFF), and entropy (EP). 

 In addition to the resting-state condition, he 
also applied a standard reward paradigm, the 
Monetary Incentive Delay task (MID) where 
subjects have to bet for money by deciding 
between a right or left  mouse click. Th ey are 
shown a cue where they have to anticipate in a 
purely mental way the possible reward and their 
decision or, in a control condition, no reward at 
all. Aft er the anticipation period that lasted 4-6s, 
subjects were instructed to click the mouse to 
indicate their decision, which is followed by the 
display of the reward (or the non-reward) they 
receive—the feedback period. Th e design also 
included control conditions where subjects had 
to merely anticipate without any reward and did 
not receive anything in the feedback period. 

 What were the results? As expected and 
as shown in other studies, the anticipation- 
of-reward period (when compared to anticipa-
tion of no reward) yielded signifi cant signal 
changes in the typical reward regions like the 
ventral striatum, the caudate, the putamen, the 
VTA/SN, and the thalamus. In addition, signal 
changes were observed in cortical regions like 
the precuneus, the dorsal anterior cingulate 
cortex, and the premotor cortex. Th is diff ered 
from the feedback period (when compared to 
feedback without any reward) where subjects 
showed activity changes in anterior and poste-
rior cortical midline regions like the VMPFC, 
the DMPFC, and the posterior cingulate cortex 
(PCC), and precuneus. 

 How now are the activity changes during 
the anticipation and feedback of reward related 
to the resting-state activity as measured during 
eyes closed? For that we correlated resting-state 
and stimulus-induced/task-related activities 
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with each other. Let us start with the anticipa-
tion period. 

 Th e degree of SD and ALFF in the resting 
state in the visual cortex, the precuneus, and 
the thalamus negatively predicted the degree 
of stimulus-induced activity during the antici-
pation period in the same regions:  the higher 
the degrees of SD and ALFF in the resting 
state in these regions, the lower the degree of 
stimulus-induced activity during the anticipa-
tion period. Th is rest-stimulus correlation pat-
tern was specifi c for the anticipation period, 
since we did not observe the same pattern with 
the signal changes from the feedback period. 
Moreover, the rest-stimulus correlation was spe-
cifi c for those anticipation periods where sub-
jects had to anticipate reward whereas it was not 
observed where they had anticipate no reward. 
How about the feedback period? We here 
observed that the resting state measures of SD, 
ALFF, and EP in VMPFC, PCC, and precuneus 
predicted the feedback-related signal changes in 
the same regions in a positive way. Th e stronger 
the SD, the ALFF, and EP in the resting state, 
the stronger signal changes during the feedback 
period were induced in these regions. And again, 
as in the case of the anticipation period, these 
rest-stimulus correlations were specifi c for the 
feedback period; the correlation of the resting 
state measures with the anticipation-related sig-
nal changes did not yield any signifi cant relation 
in these regions. 

 Our fi ndings clearly support direct relation-
ship between the variability of resting-state 
activity and the degree of stimulus-induced or 
task-related activity during reward. More spe-
cifi cally, our results show that the variability (as 
measured with SD and EP) of the resting-state 
activity’s fl uctuations in the low frequency range 
(as measured with the ALFF) predicts the degree 
of subsequent stimulus-induced activity specifi -
cally during reward conditions (as distinguished 
from non-reward as it was controlled in our 
experimental design). 

 In sum, our fi ndings highlight the impor-
tance of the variability of the resting-state activ-
ity (as measured with SD, ALFF, and EP), which 
refl ects its continuous changes and thus rest–rest 
interaction (see below for further explanation). 

Th e degree of the resting-state activity’s spon-
taneous changes is apparently central in deter-
mining the degree to which a reward-related 
stimulus or task can induce stimulus-induced or 
task-related activity. Most interesting, the rest-
ing state variability in diff erent regions seems 
to be related to diff erent aspects of reward like 
anticipation or feedback. Th is strongly suggests 
that the resting-state activity in diff erent regions 
seems to contain diff erent information about the 
distinct aspects of reward.  

    NEURONAL HYPOTHESIS IIA: RESTING-STATE 
ACTIVITY AS REST–REST INTERACTION   

 Th e data indicate neural overlap and prediction 
between resting-state activity and reward-related 
activity especially in the anterior midline regions 
like the VMPFC and the PACC. What does this 
mean for the generation for the predicted input, 
which may be generated during the brain’s rest-
ing state and thus by its intrinsic activity? 

 As detailed in Part II of this volume, there 
is already plenty of interaction going on in the 
resting state. Th ere is interaction between the 
diff erent regions of the brain as manifest in 
functional connectivity (see Chapter 4). In addi-
tion, there is plenty of interaction in the resting 
state across diff erent discrete points in physical 
time as manifest in the fl uctuations of the rest-
ing state’s activity in diff erent frequency ranges 
(see Chapter  5). Th is is well manifested in the 
measures of the variability of the resting state as 
applied in the study on rest-reward by Duncan 
et  al. (2013), the standard deviation (SD), the 
amplitude of low frequency fl uctuations (ALFF), 
and the entropy (EP). 

 Taken together, various interactions with 
continuous changes in the spatial and temporal 
activity patterns occur already in the resting state 
itself. Th is is what can be subsumed under the 
concept of rest–rest interaction that describes the 
continuous changes in the resting state’s spatio-
temporal activity patterns, which operationally 
are manifested in measures of the resting-state 
activity’s variability. 

 How can we describe such rest–rest interac-
tion in further detail? Let us learn from the inter-
action between diff erent stimuli, as discussed 
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in Chapter  8 (see also Chapter  10). Th ere we 
described interaction between diff erent extero-
ceptive stimuli, that is, extero–extero interaction, 
and the interaction between intero- and extero-
ceptive stimuli, that is, intero–extero interac-
tion. Despite the diff erent origins of the diff erent 
stimuli, both intero–extero and extero–extero 
interactions were made possible by a common 
coding strategy in the encoding of the diff erent 
stimuli into neural activity. Th is common coding 
strategy consisted of coding the statistical fre-
quency distribution of the diff erent stimuli; that 
is, their natural, social, and vegetative statistics. 
Th is in turn allowed for their direct matching 
and comparison and thus for their interaction. 

 How does that now apply to the resting state 
and its rest–rest interaction? Here (taken ideally) 
too we are dealing with diff erent stimuli, diff er-
ent neuronal stimuli that are generated and orig-
inate in the brain itself (see Chapter 4 for details). 
Th ese neuronal stimuli are generated in diff erent 
regions and thus at diff erent discrete points in 
physical space and time. Rest–rest interaction 
can consecutively be regarded as an interaction 
between diff erent neuronal stimuli and their 
respectively associated diff erent discrete points 
in physical time and space.  

    NEURONAL HYPOTHESIS IIB: ENCODING OF 
THE “NEURONAL STATISTICS” OF REST–REST 
INTERACTION INTO THE RESTING STATE’S 
NEURAL ACTIVITY   

 I postulate the actual resting-state activity level, 
i.e., its level at one particular discrete point in 
time and space, to result from rest–rest inter-
action and more precisely from the interac-
tion between diff erent neuronal stimuli. How 
must the diff erent neuronal stimuli be encoded 
in order to generate the resting-state activity 
level? As in the case of intero- and exteroceptive 
stimuli, I hypothesize that the diff erent neuronal 
stimuli and their subsequent rest–rest interac-
tion are encoded in a statistically based way and 
thus on the basis of their statistical frequency 
distribution. Th e encoding of diff erent statistical 
frequency distribution should then lead to dif-
ferent and continuously changing resting-state 
activity levels; this is indeed the case as manifest 

in the various measures of resting state variabil-
ity (SD, EP, ALFF) as described earlier. 

 What exactly does the encoding of statistical 
frequency distribution mean? Th is means that 
the spatial and temporal diff erences between 
the diff erent discrete points in physical time 
and space at which the various neuronal stimuli 
occur are encoded into neural activity, that is, the 
resting-state activity. Th e resulting level of neu-
ral activity in the resting state is thus diff erence 
based rather than stimulus based. Rather than on 
single neuronal stimuli at their diff erent discrete 
point in physical time and space, the resting-state 
activity is based on the encoding of the neuronal 
stimuli’s statistical frequency distribution across 
their diff erent discrete points in time and space. 

 Analogous to natural, vegetative, and social 
statistics, one may therefore speak of the encod-
ing of the neuronal stimuli’s “neuronal statistics” 
into the resting state’s neuronal activity (see also 
Chapter 6 for the introduction of the concept of 
“neuronal statistics”). Th e concept of neuronal 
statistics describes the resting state’s encoding of 
neural activity changes; it describes the encod-
ing of the spatial and temporal diff erences of its 
neuronal stimuli across their diff erent discrete 
points in time and space. In short, I characterize 
the resting-state activity by the encoding of its 
own “neuronal statistics.”  

    NEURONAL HYPOTHESIS IIC: THE 
RESTING-STATE ACTIVITY’S NEURONAL 
STATISTICS CONTAIN INFORMATION ABOUT THE 
PREDICTED INPUT   

 How is the resting state’s encoding of its own 
neuronal statistics related to the generation of 
the predicted input? 

 I postulated that the predicted input was 
generated during the resting state and thus by 
rest–rest interaction. If now rest–rest interac-
tion can be traced back to the encoding of the 
neuronal stimuli’s neuronal statistics, one may 
suggest that the resting state’s neuronal statistics 
is central in generating the predicted input. In a 
nutshell, I suggest that the generation of the pre-
dicted input is directly related to the encoding of 
the resting state’s neuronal statistics into its own 
neural activity. 
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 Let’s be more concrete. Th e resting state was 
characterized by functional connectivity and 
fl uctuations in diff erent frequency ranges (see 
Part II). One may now suggest that the predicted 
input is generated by specifi c (though yet unclear) 
changes in the resting-state activity triggered dur-
ing rest–rest interaction. Th is means that the pre-
dicted input and its underlying neuronal activity 
in the resting state should be directly related to 
and thus predicted by the resting-state activity’s 
neuronal statistics. Th is is strongly supported by 
our rest-reward fi ndings as described earlier. 

 What we measured as resting state variabil-
ity with SD, EP, and ALFF refl ects nothing but 
the resting-state activity’s neuronal statistics, the 
distribution of its activity across diff erent dis-
crete points in physical time (and space). We now 
observed that the resting-state activity’s variability 
(that is, SD and ALFF) predicted the degree of neu-
ral activity change during the anticipation period. 
Th is means that the resting-state activity’s neuro-
nal statistics predict the reward-related activity. 

 What does this tell us about the generation 
of the predicted input? Th e anticipation period 
refl ects the generation of a predicted input (that 
is, the anticipation of reward as input). Since the 
neural activity during the anticipation was pre-
dicted by the resting state’s variability, the neu-
ronal statistics of the resting state’s activity must 
already contain some information about the pre-
dicted input which was modeled as anticipation 
period in our paradigm.  

    NEURONAL HYPOTHESIS IID: THE CUE 
TRIGGERS (RATHER THAN CAUSES) 
SPATIOTEMPORAL ACTIVITY PATTERNS AS THE 
PREDICTED INPUT IN THE RESTING-STATE 
ACTIVITY 

    How does that stand in relation to the assump-
tions in the predictive model? Advocates of pre-
dictive coding propose that the presence of a cue 
triggers the generation of the predicted input 
(see later for details with regard to cue- and 
non-cued-related activity). 

 Let us apply that to the present context of the 
resting state: the cue must somehow interact with 
the resting-state activity and its neuronal statis-
tics. More precisely, the cue must modulate the 

resting-state activity’s functional connectivity 
and its frequency fl uctuations in the same way 
as the predicted stimulus did the last time that 
the brain’s resting-state activity encountered it as 
actual input (see, for instance, the experimental 
settings by Schultz 2006, 2007a and b; Montague 
et al. 2002, 2006; van Duuren et al. 2008). 

 What now happens, exactly, during the expo-
sure of the cue that is supposed to trigger the 
generation of the predicted input? Being exposed 
to a cue that indicates a specifi c input will even-
tually occur changes the resting state and its neu-
ronal statistics: the resting-state activity’s spatial 
and temporal pattern take on the same constel-
lation as was elicited when the stimulus that is 
supposed to be predicted actually occurred and 
was processed as actual input. 

 I postulate that the cue only triggers, but does 
not cause, the occurrence of specifi c spatiotem-
poral activity patterns in the resting-state activ-
ity itself. Th ese spatiotemporal activity patterns 
are supposed to be more or less similar to those 
that occurred during the last encounter with the 
actual input that is now predicted. Th e resting 
state itself and its actual spatial and temporal 
activity pattern may then make it more or less 
likely that the respective spatiotemporal activity 
patterns as related to the predicted input can be 
triggered again by the cue. 

 Th is implies that the resting-state activity itself, 
prior to the cue, should already contain some infor-
mation about the predicted input. If so one, would 
expect the resting-state activity itself, prior to and 
independently of any cue, to predict the degree 
of neural activity during the subsequent presence 
of the cue and its predicted input. Th is is exactly 
what our fi ndings demonstrate: they show that the 
resting-state activity variability (as measured com-
pletely independently of the reward paradigm) 
predicted the degree of neural activity during the 
cue-related anticipation period (see earlier).  

    NEURONAL HYPOTHESIS IIE: PREDICTED INPUT 
RESULTS FROM THE MATCHING BETWEEN 
“NEURONAL STATISTICS” AND “AS-IF NATURAL 
STATISTICS”   

 How can we describe the situation in further 
conceptual and empirical detail? We are de facto 
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still in the resting state and thus within the realm 
of its neuronal statistics. However, due to the 
cue as trigger, the resting-state activity takes on 
a spatiotemporal activity pattern that signifi es 
specifi c exteroceptive (or interoceptive) stimuli, 
the actual input. One may thus want to say that 
brain’s processes exteroceptive stimuli in “as-if 
way”:  the concept of “as if ” refers to a neural 
activity pattern in the brain that, despite the 
absence of the exteroceptive stimuli is more or 
less similar to the activity pattern that is elicited 
during the presence of the respective stimulus. 

 Th e resting-state activity may then be char-
acterized by the neural processing of “as-if 
exteroceptive stimuli.” Th e concept of an “as-if 
exteroceptive stimulus” describes a state wherein 
the exteroceptive stimulus has not yet occurred 
but is already processed (in a virtual or fi ctive 
and thus as-if way) by the brain’s resting-state 
activity and its spatiotemporal activity patterns 
(see also Northoff  2011 for the “as-if ” concept). 

 What is then encoded into the resting state’s 
activity? It is no longer exclusively the neuronal 
statistics of the resting-state activity itself that are 
encoded. Instead, it is the presumed statistics of 
the exteroceptive stimulus whose prediction is 
triggered by the cue. Analogous to the concept 
of the “as-if-exteroceptive stimulus”, one may 
therefore want to characterize its statistical fre-
quency distribution as “as-if natural statistics.” 

 Th e concept of “as-if natural statistics” 
describes the statistical frequency distribution of 
the possible occurrence of an exteroceptive stimu-
lus that has not yet occurred. Th e term “as-if natu-
ral statistics” thus refers to the probability estimate 
of that stimulus’ occurrence in the future as based 
on its statistically based occurrence in the past. 

 What does this imply for the generation of 
the predicted input? I suggest that the predicted 
input results from the interaction between the 
resting-state activity’s neuronal statistics and the 
“as-if exteroceptive statistics” of the cue and its 
triggering of “as-if exteroceptive stimuli.” Th e 
predicted input results then from the matching 
and comparison between two diff erent statisti-
cally frequency distributions, the neuronal sta-
tistics of the resting-state activity itself and the 
“as-if natural statistics” of the “as-if exteroceptive 
stimulus” (see   Fig. 9-3a  ).      

 Th e assumption of such “as-if ” natural sta-
tistic’s in the generation of the predicted input 
is well in line with the simulation model of Rao 
and Ballard 1999 (see Chapter  7 for details). 
Th ey demonstrated that the predicted input by 
itself must refl ect the previous statistical fre-
quency distribution of the input that is to be 
predicted. Our own results also support the 
matching hypothesis, though only in an indirect 
way via the correlation between resting-state and 
stimulus-induced activity. 

 More direct empirical support comes 
from recent animal studies (see, for instance, 
Fukushima et al. 2012; Berkes et al. 2011). A study 
by Berkes et  al. (2011) investigated visual cor-
tex (V1) activity in developing animals (awake 
ferrets), and recorded stimulus-induced and 
spontaneous activities. Th ey observed similar-
ity between spontaneous and stimulus-induced 
activity pattern that were specifi c to responses 
evoked by natural scenes and increased with age. 

 Another study, in monkeys, using chronic 
microelectrocorticography (Fukushima et  al. 
2012)  observed the spontaneous activity in 
auditory cortex to exhibit the same spatial 
co-variation as during the auditory stimulation 
and its tonotopic maps in auditory cortex. Th is, 
as I  will claim in Chapter  11, is only possible 
when one presupposes a specifi c interaction of 
the stimulus with the resting-state activity entail-
ing what I will call “stimulus–rest interaction.” 

 Taken together, these data strongly suggest 
that the resting-state activity encodes the natu-
ral statistics of the stimuli into its own neuronal 
activity, its own neuronal statistics. Any sponta-
neous changes in the resting state’s neuronal sta-
tistics may then evoke the original stimulus and 
its natural statistics and thus what I describe as 
“as-if natural statistics.”  

    NEURONAL HYPOTHESIS IIF: 
DIFFERENCE-BASED CODING ALLOWS FOR 
THE GENERATION OF THE “AS-IF NATURAL 
STATISTICS” AND THE PREDICTED INPUT   

 How does the resting-state activity’s generation 
of such “as-if natural statistics” stand in rela-
tion to diff erence-based coding? As discussed 
in detail in Parts I and II, such a matching and 
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   Figure  9.3     Generation of the predicted input.  ( a ) Matching and comparison between as if natural 
statistics and neuronal statistics. ( b ) Diff erence-based coding and sparse coding of neural activity 
underlying the generation of the predicted input. Th e fi gure shows the neuronal mechanisms underly-
ing the generation of the predicted input. How as-if natural statistics of the as-if exteroceptive stim-
uli is matched with the brain’s intrinsic activity’s neuronal statistics ( a ), and how that is mediated by 
diff erence-based coding and sparse coding ( b ).   ( a ): Th e fi gure shows on the left  the spatiotemporal fre-
quency distribution of the as-if exteroceptive stimuli (as triggered by the cue) across time and space; 
this is described as “as-if natural statistics.” Th e as-if exteroceptive stimuli’s as-if natural statistics are 
matched and compared with the statistical frequency distribution of the brain’s intrinsic activity across 
time and space; i.e., its neuronal statistics, as indicated in the right part of the fi gure. Hence, there is 
matching and comparison between two diff erent statistics, as-if natural and neuronal statistics. ( b ): Th e 
fi gure shows that the comparison and matching between the as-if exteroceptive stimuli’s as-if natural 
statistics and the brain’s neuronal statistics (upper part) is possible because they presuppose the same 
coding strategy. Th e common code consists in coding statistically based spatial and temporal diff erences 
refl ecting both kinds of stimuli’s statistical frequency distributions across time and space (middle part). 
Th e diff erence as common code makes possible their mutual matching and the consequent sparsening 
of neural activity; this leads to the activation and recruitment of a lower number of neurons (when 
compared to the number of stimuli and the number of total number of available neurons) (lower part) 
across time (lifetime sparseness) and space (population sparseness).   



PREDICTIVE CODING AND THE BRAIN’S NEURONAL STATISTICS 193

comparison process between diff erent statistics 
is possible only on the basis of diff erence-based 
coding as common underlying code. Diff erent 
statistical diff erences are thus matched and com-
pared during the encounter between the resting 
state’s neuronal statistics and the “as-if extero-
ceptive stimulus” and its “as-if natural statistics.” 

 As explicated in Chapters 1 through 3 and 6, 
such matching and comparison between diff er-
ent statistically based diff erences goes along with 
the temporal and spatial sparsening resulting in 
sparse coding. Th e generation of the predicted 
input may thus be related to the temporal and 
spatial sparsening of the neural activity in the 
resting-state activity as triggered by the cue; that 
is, the “as-if exteroceptive stimulus” and its “as-if 
natural statistics” (see   Fig. 9-3b  ). 

 Based on the results described earlier, one 
may now postulate that such matching and com-
parison between the neuronal statistics and the 
as-if natural statistics may occur especially in 
anterior midline structures like the VMPFC and 
PACC. Th is is well in accordance with our results 
(Duncan et  al. 2013)  where the resting-state 
activity’s variability in midline regions like the 
VMPFC (and PCC and precuneus) predicted 
the degree of stimulus-induced activity during 
the feedback period of reward (see earlier). 

 Why are the midline regions especially relevant 
for the matching between the diff erent statistics? 
One may assume the following: (1) these regions 
have been shown to strongly overlap between 
resting-state activity and reward-related activ-
ity (see earlier); (2)  their neural activity during 
reward has specifi cally been associated with the 
predicted input; and (3)  neural activity in these 
regions has also been associated with the pre-
dicted input in functions other than reward, such 
as, sensory (visual) functions (see Chapter 7).  

    NEURONAL FINDINGS IIIA: SEEKING AS 
THE BEHAVIORAL MANIFESTATION OF 
UNCONDITIONED RESTING-STATE ACTIVITY   

 So far, I have considered only the neuronal activ-
ity during the resting state and the anticipation 
or prediction of reward, while leaving open 
its corresponding behavioral manifestation. 
Th ereby we may need to distinguish two distinct 

behavioral manifestations, the one during the 
resting state itself and the one during its interac-
tion with the cue. 

 We need to fi rst search for the behavioral cor-
relate of the continuous changes in the resting 
state itself and its neuronal statistics. Th is may 
consist of what is described by Jaak Panksepp as 
“seeking.”   2    Second, the behavioral correlate of 
the matching between the resting state’s neuro-
nal statistics on the one hand, and the as-if natu-
ral statistics” of the ‘as if exteroceptive stimulus” 
on the other oeeds to be discussed. Th is may be 
associated with what Kent Berridge subsumes 
under the concept of “wanting.” In this section, 
I want to discuss the concept of seeking in fur-
ther detail, and in the next section I  will shed 
some light on “wanting.” 

 Let us start with seeking. We considered the 
social and bodily context of reward as discussed 
in Chapter 8. Th ere is, however, more to reward 
than social environment and body. What does 
this “more to reward” consist of on a behavioral 
level? Th ere seems to be a particular disposition 
to go out and search for rewards and assign value 
to stimuli. Th is is a purely spontaneous tendency 
of the organism that remains independent of 
any particular stimuli or cues. However, that 
tendency or disposition may strongly impact 
whether we can get a cue or a possibly rewarding 
stimuli into our focus at all. Th e value assigned to 
a particular stimulus may thus not only depend 
on social and bodily contexts but also on a dis-
position to search for possible rewards. Th is is 
what neuroscientist Jaak Panksepp (1998, 2011a 
and b) calls the ”seeking disposition” (see later 
for detailed explanation). 

 Before seeking the neuronal mechanisms 
underlying seeking, let us fi rst seek the person 
of Jaak Panksepp a little. He was originally born 
in the Baltic states, but, due to political turmoil, 
came to the United States as a young child. Th ere 
he dedicated his life and his research to subcorti-
cal regions and their central role in processing 
aff ect and emotions, which, by founding and 
pioneering aff ective neuroscience, has had most 
profound implications for our understanding of 
the brain in general (see Chapter 31 in Volume II 
for the discussion of emotions and aff ect in the 
context of consciousness). 
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 Now we are ready to seek the neuronal mech-
anisms underlying “seeking” itself. Coarsely and 
preliminarily defi ned, the concept of seeking 
refers to the spontaneous behavior of animals 
(and humans) in the absence of any specifi c 
stimulus or cue. Being exposed to at best only 
unspecifi c stimuli, Panksepp argues that ani-
mals (and humans, too) display a tendency in 
their behavior to search for (or seek) potentially 
rewarding stimuli in the environment. 

 Following Panksepp, seeking is a spontane-
ous unconditioned (and thus unlearned) and 
therefore intrinsically ingrained behavior. Th ere 
is no conditioning at all involved in seeking, 
which distinguishes it from other related con-
cepts like anticipation and wanting (see later in 
the next section). Since it is not triggered by any 
kind of acquisition or learning processes, seek-
ing must be considered an intrinsic feature that 
as such comes as part of the organism’s biological 
equipment.  

    NEURONAL FINDINGS IIIB: SEEKING 
AND PREDICTIVE CODING   

 How can we put the concept of seeking into 
the context of predictive coding? Let us briefl y 
rewind. Empirical investigations in both animals 
and humans associate neural activity in reward 
circuitry, and specifi cally dopamine, with the 
prediction error and hence with reward (see 
Montague et  al. 2002, 2006; Schultz 2006). Th e 
prediction error is supposed to be determined 
exclusively by the actual input and its relation to 
the predicted input. 

 Panksepp (1998; Alcaro et  al. 2007; Alcaro 
and Panksepp 2011), however, argues that this 
is only half of the story. Th e other half consists 
of the motivation and the organism’s internal 
drives as part of its intrinsic biological equip-
ment. Th ese intrinsic drives are supposed to fi rst 
and foremost make it possible for the organism 
to get excited by, become engaged in, and to con-
sequently approach stimuli that could be poten-
tially rewarding. 

 How can we describe the seeking disposition 
in more concrete empirical terms? Consider, 
for instance, subjects with a rather low seek-
ing disposition and subsequent low degrees 

of searching for novelty in their environment; 
that is, novelty-seeking. Th is is the case in sub-
jects with depression who oft en suff er from 
abnormally low seeking disposition, as is well 
manifested in low novelty-seeking scores (see 
Panksepp 1998; Alcaro et  al. 2010; and see 
Chapter 27 for more details on depression). 

 Th e low seeking disposition makes it rather 
diffi  cult for the depressed patients to assign value 
to stimuli and to consecutively experience them 
as rewarding and pleasurable. Due to their low 
seeking disposition with low novelty-seeking 
scores, depressed patients remain unable to even 
approach and engage in potentially rewarding 
stimuli, let alone to experience them as reward-
ing and pleasurable. 

 Th e decrease in seeking results in their inabil-
ity to experience pleasure, which is described 
by the term “anhedonia” as one of the hallmark 
symptoms of depression (see Northoff  et al. 2011 
for details). Th e example of depression thus tells 
us that seeking, though occurring in the absence 
of any particular stimuli or tasks, has major 
eff ects and reverberations on the subsequent 
behavior, including especially the aff ective func-
tions. Seeking thus seems to concern the behav-
ioral predispositions of possible reward; this 
distinguishes it from predictive coding, which is 
about actual rather than merely possible rewards. 

 Unlike in conditioned and thus learned 
behavior (like wanting or anticipation) that is 
triggered by some kind of extrinsic stimulus, the 
purely unconditioned seeking refl ects a contri-
bution or input that the organism itself and its 
brain provide prior to the exposure to any partic-
ular stimulus or cue. Hence, Panksepp searched 
for the necessary but not suffi  cient neural and 
behavioral conditions; that is, the neural predis-
positions (as distinguished from the neural cor-
relate; see Introduction I in Volume II for details 
on that diff erence) of reward. 

 Th is diff ers from predictive coding that con-
cerns the actual rather than possible reward; 
namely, its necessary (predicted) input, and suf-
fi cient (prediction error) conditions of reward. 
Accordingly, the main diff erence between seek-
ing and predictive coding consists in the dif-
ference between possible and actual reward 
and consecutively between behavioral/neural 
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predisposition and behavioral/neural correlates 
of reward. 

 I have focused so far on describing seeking 
only in behavioral terms. How about its under-
lying neuronal mechanisms? Based on numer-
ous empirical data in animals, Panksepp (1998) 
proposed a so-called seeking system in subcorti-
cal brain regions, more specifi cally in mesolim-
bic dopaminergic brain regions, including the 
VTA, the VS/NACC, and others like the lateral 
hypothalamus. 

 Following Panksepp, dopamine is responsible 
for the organism’s internal drive to seek curiosi-
ties and novelties, to engage in pleasurable activ-
ities, and to get excited by them, and hence to 
approach, engage, and ultimately receive reward. 
According to him, the mesolimbic dopamine sys-
tem makes possible the seeking disposition and 
thus the organism’s intrinsic tendency to search 
and seek possible rewards in the environment.  

    NEURONAL FINDINGS IIIC: “WANTING” 
AND CUES 

   What Panksepp calls “seeking” must be com-
pared with concepts described by other research-
ers. I  therefore want to (only briefl y) venture 
into this rather complex discussion. Jeff rey Gray 
(1995), for instance, speaks of a “behavioral acti-
vation system” that is associated also with more 
or less similar subcortical (and cortical) regions 
as the seeking system. Th ere seems to be a strong 
similarity between Panksepp’s seeking system 
and Gray’s behavioral activation system in both 
behavioral and neuronal terms. 

 Another related concept is the one of “want-
ing” as introduced by Kent Berridge (2000, 2003, 
2004, 2007, 2012). “Wanting” with quotation 
marks refers to subconscious implicit motiva-
tion, while wanting without quotation marks 
describes conscious desire. In the following dis-
cussion, I focus on the former meaning of “want-
ing”; that is, the implicit, unconscious meaning. 
“Wanting” in this sense describes the (uncon-
scious) longing or urging for a particular object, 
more specifi cally for its motivational value, the 
“object-associated motivational value.” Based 
on such a defi nition, “wanting” describes the 
organism’s behavioral and psychological state as 

related to the object’s motivational value before 
receiving the actual reward itself as associated 
with the object. Following Berridge, the sub-
sequent presentation of the actual object itself, 
including its associated value, induces what he 
describes as “liking.” Let us dwell more on the 
“wanting” in the following discussion. 

 “Wanting” a particular object and more spe-
cifi cally its associated motivational value presup-
poses that some value must already be present, 
though only mentally; that is, in mental repre-
sentation. However, the object that is associated 
with that value is not yet physically present. How 
is such mental representation of the object and 
its value generated? Usually this is made possible 
by some kind of cue indicating that the object, 
including its associated value, is most likely to 
physically appear soon. Th e cue is supposed to 
trigger the mental representation of that object, 
more specifi cally its associated motivational 
value. Th e need for the presence of a cue in 
“wanting” implies some kind of prior condition-
ing and learning; this is so because without such 
a cue, the organism would not be able to generate 
the mental representation of a specifi c possible 
object and its associated value. Th is is diff erent 
from seeking. In contrast to “wanting,” seeking 
does not presuppose prior conditioning at all. 
Instead, as pointed out earlier, seeking remains 
completely unconditioned, requiring neither a 
stimulus nor any kind of cue.  

    NEURONAL FINDINGS IIID: “SEEKING” 
AND “WANTING”   

 How can we further specify the diff erence 
between “wanting” and seeking? Seeking 
describes the organisms’ intrinsic disposi-
tion for possible conditioning rather than the 
actual conditioning itself, as “wanting” does. 
Hence, the crucial diff erence seems to lie here 
between actual and possible conditioning and 
consecutively between intrinsic and extrinsic 
generation:  “wanting” presupposes prior actual 
conditioning by an extrinsic cue and is therefore 
ultimately extrinsically generated. In contrast, 
seeking describes an intrinsic predisposition that 
makes possible subsequent actual conditioning 
by an extrinsic cue, while by itself remaining 
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independent of both extrinsic cue and prior 
learning/conditioning. Th is implies that seek-
ing must occur prior to “wanting,” with the latter 
therefore presupposing the former. 

 Let me formulate the diff erence between 
seeking and “wanting” again, specifi cally with 
regard to value and the cue. “Wanting” goes 
along with the mental representation of a par-
ticular object-associated motivational value; 
this is triggered by a cue that indicates the high 
probability of the subsequent occurrence of the 
object and its respective motivational value. In 
contrast to “wanting,” seeking is not triggered by 
a particular cue indicating the potential presence 
of a particular object and its associated value. 
Instead, seeking occurs prior to the occurrence 
of any specifi c cue and any kind of value. As 
such, seeking only refl ects the organisms’ dispo-
sition or tendency to search (and thus seek) for 
cues and values and thus for objects in general 

in the environment that could possibly be asso-
ciated with value (see   Fig.  9-4  ). Hence, unlike 
“wanting,” seeking is neither associated with a 
particular cue nor a specifi c value (as associated 
with an object).      

 Since “wanting” describes the psychological 
and behavioral state associated with a specifi c 
cue and its associated value, the question for it 
being conscious or unconscious arises. Berridge 
(2004) argues that “wanting” as the longing or 
craving for a specifi c possible reward remains 
unconscious and thus implicit. As such, the 
implicit “wanting” may be distinguished from 
what is described as anticipation, where the 
implicit longing is rendered explicit (and thus 
represented) on the cognitive level. How does 
seeking stand in relation to unconsciousness and 
consciousness? Since it is prior to even “want-
ing”, one may be inclined to say that it remains 
unconscious as well. However, one may object 
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   Figure 9-4     Neuronal mechanisms underlying seeking,  “ wanting,” and value.  Th e fi gure illustrates the 
diff erent processes across time (x-axis) underlying seeking, wanting/anticipation, and value (x-axis) and 
their underlying degree of neural activity (y-axis). Th ere is intrinsic activity or resting-state activity 
that behaviorally corresponds to seeking as non-cued behavioral manifestation of spontaneous activity 
fl uctuations in the resting state (most left  on x-axis). Th e resting state itself may then be modulated by a 
cue that triggers interaction with the resting state, which results in the generation of a predicted input 
and associated “wanting” (second from left  on x-axis). Th is may go along with a considerable increase 
in neural activity during the resting state (as seen in relation to the y-axis). Now the brain encounters 
a specifi c stimulus, an actual input, that is compared and matched with the predicted input, thereby 
yielding the prediction error; this presupposes rest–stimulus interaction (see third from left  on x-axis). 
Th at, in turn, yields activity changes in the resting-state activity level, which result in what is described 
as stimulus-induced activity (most right on x-axis). Behaviorally, such stimulus-induced activity may 
then be associated with the assignment of value to the stimulus.   
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that even the unconscious, at least in the sense of 
the cognitive unconscious (see Volume II, intro-
duction II) is still tied to the (implicit) mental 
representation of specifi c objects. Th is, however, 
is not the case in seeking that, as described ear-
lier, neither presupposes any specifi c value (as 
associated with an object) nor any kind of cue. 

 If so, seeking, being value- and cue-free, can-
not be considered unconscious and implicit in 
the same sense as Berridge characterizes his con-
cept of “wanting” as unconscious: seeking does 
not presuppose yet any objects or a particular 
value in either a physical or mental way. Th is 
is diff erent in ‘wanting’ where an object and its 
related value are presupposed in an implicit and 
purely mental way. Accordingly, seeking seems 
to consequently presuppose a more basic form 
of the unconscious, one that may reach more 
deeply into the kind of unconscious Sigmund 
Freud and other psychoanalysts described when 
they use the concept of the “dynamic uncon-
scious (see Northoff  2011; Panksepp 1998).  

    NEURONAL HYPOTHESIS IIIA: NEURONAL 
MECHANISMS OF ”SEEKING” AND “WANTING”   

 So far, I  have discussed only behavioral ingre-
dients of reward, seeking and “wanting,” while 
leaving out the underlying neuronal processes. 
Both seeking and “wanting” are supposed to 
be generated by neural activity in the reward 
system, including the VTA, the VS, and the 
VMPFC. Such a regional characterization leaves 
open, however, the exact mechanisms of where 
such neural activity comes from. As is clear in 
both cases, the neural activity cannot come from 
the actual input, the actual stimulus, since that 
would be to neglect their occurrence prior to the 
onset of the rewarding stimulus. 

 Where does the neural activity associated 
with seeking and “wanting” come from? Th e 
advocate of “wanting” may want to argue that it 
is induced by the cue that triggers the activation 
of the object-associated motivational value and 
thus the associated “wanting.” Such triggering 
does depend, of course, on both the cue itself, 
the strength of the associated value, and the 
internal state of the organism whether it is, for 
instance, hungry or not. 

 However, as the seeking proponent argues, 
even the cue and its eff ects presuppose some prior 
neural activity; otherwise the cue could not mod-
ulate anything and produce the kind of neural 
activity changes that are associated with “want-
ing.” In short, “wanting” may presuppose seeking 
not only behaviorally, but also neuronally. 

 Th e search for the neural mechanisms under-
lying seeking and “wanting” converges with my 
quest for the neuronal mechanisms underlying 
the generation of the predicted input. Based on 
the fi rst hypothesis in this chapter, I  propose 
the following. I hypothesize that what Panksepp 
describes as seeking may be mediated by the 
continuous changes in the resting-state activity 
and its neuronal statistics; while “wanting” may 
be related to the interaction between the rest-
ing state’s neuronal statistics and the cue-related 
“as-if exteroceptive stimulus” and its “as-if natu-
ral statistics” (see earlier for details).  

    NEURONAL HYPOTHESIS IIIB: RESTING 
STATE AND BEHAVIOR 

   We so far discussed the neuronal mechanisms 
that underlie seeking and wanting. Th is however 
left  open one central question. How is it possible 
that the cue-triggered matching and comparison 
between the resting state’s neuronal statistics 
and the as-if exteroceptive stimulus and its as-if 
natural statistics, can yield some kind of behav-
ioral manifestation; that is, “wanting”? And how 
it is possible that the mere resting-state activity 
and its neuronal statistics generate a behavioral 
manifestation; namely, “seeking”? 

 Th ese questions touch upon a deeper and 
more basic issue. Th e question here is why and 
how neuronal states are associated with behav-
ioral states at all. Considered in a purely logical 
world (that is, as detached from the natural and 
thus actual world), one could imagine plenty 
of ongoing neural activity that is not associ-
ated with any kind of behavior. Neuronal activ-
ity and behavioral manifestation would then be 
decoupled or dissociated from each other. Th ere 
seems to be indeed some empirical support for 
such dissociation between neuronal activity 
and behavioral manifestation:  patients in veg-
etative state show stimulus- and task-related 
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activity which however, unlike in healthy sub-
jects, does not translate into behavioral activity 
(see Chapter 28 and 29 in Volume II for details). 

 What predisposes our brain to associate its 
own neuronal states with behavioral states? 
I  postulate that the encoding of both neuronal 
statistics and the “as-if natural statistics” in terms 
of spatial and temporal diff erences may be cen-
tral here. Only by encoding spatial and temporal 
diff erences into neural activity can the latter be 
associated with behavioral activity like seeking 
and wanting. I thus argue that diff erence-based 
coding is not only neuronally but also behavior-
ally relevant. Let us explicate this point further. 

 How is it possible for the neuronal activity 
to become associated with behavioral states like 
seeking and wanting? Behavior is spatiotempo-
rally structured, meaning that it occurs across 
diff erent discrete points in physical time and 
space. Let us now recall the characterization of 
the brain’s intrinsic activity as discussed in Part 
II. Th ere I  suggested that the brain’s intrinsic 
activity constitutes a spatiotemporal structure 
that is statistically based and spans across diff er-
ent discrete points in physical time and space. 

 One may now hypothesize that the spatio-
temporal structure of the behavior is very much 
predisposed and thus made possible, that is, as a 
necessary (though not suffi  cient) condition, by 
the spatiotemporal structure of the brain’s intrin-
sic activity. Let us be more specifi c: Any changes 
in the brain’s resting-state activity may go along 
with changes in its statistically based spatiotem-
poral structure. 

 Th ese changes in the resting state’s spatiotem-
poral structure may signify changes in its spatio-
temporal constellation or confi guration. And if 
large enough, the changes in the resting state’s 
spatiotemporal structures may lead to changes in 
the spatiotemporal confi guration and position of 
the organism as a whole, and thus to its behavior.  

    NEURONAL HYPOTHESIS IIIC: SPATIOTEMPORAL 
CONFIGURATION OF BEHAVIOR DEPENDENCE 
AND THE SPATIOTEMPORAL STRUCTURE OF THE 
RESTING STATE 

    Such a change in the resting state’s spatiotempo-
ral structure may, for instance, be triggered by 

stimuli like exteroceptive stimuli presupposing 
rest–stimulus interaction (see Part IV for details). 
However, even a cue triggering the interaction 
between the resting state’s neuronal statistics 
and the as-if exteroceptive stimulus and its as-if 
natural statistics may yield large enough changes 
in the resting state itself and its spatiotemporal 
structure to yield “wanting” as its behavioral 
manifestation. I consequently postulate that the 
presence of the cue is by itself not suffi  cient to 
induce the generation of the predicted input and 
the associated “wanting.” Instead, the degree of 
change in the activity level of the resting state as 
triggered by the cue must be regarded the suf-
fi cient neural condition of “wanting.” 

 Th e stronger the as-if natural statistics of the 
as-if exteroceptive stimulus is able the change 
and impact the resting state’s neuronal statistics, 
the more likely the presentation of the cue will 
be associated with the generation of a behavioral 
state; namely, “wanting.” Future studies may 
therefore want to probe diff erent cues and more 
specifi cally investigate the impact of their asso-
ciated “as-if natural statistics” on the neuronal 
statistics of the resting state. 

 One may also need to consider the level of 
the resting state itself. More specifi cally, diff er-
ent levels of resting-state activity by themselves 
may predispose the resting state and its associ-
ated neuronal statistics to diff erent degrees of 
possible change by the cue:  the more volatile 
and labile the resting state’s neuronal statistics, 
the more it is prone to possible changes by the 
“as-if natural statistics” associated with the cue, 
and the more likely a behavioral state, such as 
“wanting”, will be associated. If, in contrast, the 
resting state’s neuronal statistics is more stable 
and less fl exible, the less likely the as-if natural 
statistics will have a possible impact. And the 
less likely a behavioral state like “wanting” will 
be generated. 

 How about seeking? Th e stronger the changes 
in the resting state’s spatiotemporal structure 
and its neuronal statistics, the stronger the spa-
tiotemporal changes, and the more likely the 
spatiotemporal changes on the neural level will 
transform into changes in the spatiotemporal 
confi guration of the organism as manifest in its 
behavior (like seeking). 
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 In short, larger changes in the resting-state 
activity’s spatiotemporal structure should go 
along with larger degrees of seeking.  

    NEUROCONCEPTUAL REMARK IA: 
NEURO-BEHAVIORAL ISOMORPHISM   

 We should, however, be fully aware that these 
are rather tentative neuro-behavioral hypotheses 
that need to be specifi ed empirically and experi-
mentally in the future. Th ese tentative hypotheses 
imply some degree of correspondence between 
the changes in the resting state’s spatiotemporal 
structure and the spatiotemporal structure of the 
associated behavior. Whether such a correspon-
dence between both the resting state’s change in 
neural activity and the behavior’s spatiotemporal 
structures amounts to one-to-one correspon-
dence must remain open at this point. 

 What do I means by “the spatiotemporal struc-
ture of behavior”? Operationally, one would sug-
gest that the spatial and temporal coordinates and 
their changes across the diff erent discrete points 
in physical space and time can account for the spa-
tiotemporal structure of the behavior. Th is means 
that the spatiotemporal structure of the behavior 
concerns ultimately the statistical frequency dis-
tribution of the organisms’ spatial and temporal 
coordinates in relation to the environment. 

 Th at amounts conceptually to what one may 
want to describe as “behavioral statistics” that 
refers to the statistical frequency distribution of 
the organisms’ spatial and temporal positions 
and its changes in relation to the environment. In 
short, the spatiotemporal structure of behavior 
can be determined by the “behavioral statistics.” 

 How, now, is such behavioral statistic related 
to the resting state’s neuronal statistics? I  pro-
pose that there is a certain correspondence in a 
yet unclear way between the neuronal statistics 
of the brain’s resting-state activity and the organ-
ism’s behavioral statistics. Th e better both neu-
ronal and behavioral statistics match, the more 
likely it is that the neuronal state will be associ-
ated with a behavioral state. Due to such corre-
spondence, one may conceptually be inclined to 
call this “neuro-behavioral isomorphism.” 

 We have to be careful, though, concern-
ing both, what is isomorphic and about the 

isomorphism itself. In general, the concept of 
Isomorphism implies that two distinct phenom-
ena more or less correspond to each other in a 
one-to-one basis. What exactly are those two 
phenomena in our case of neuro-behavioral 
isomorphism? Th e isomorphism here is nei-
ther between cue/stimulus and behavior, nor 
between resting state and behavior. Instead, 
the neuro-behavioral isomorphism is assumed 
to consist in the correspondence between the 
resting state’s statistically based spatiotempo-
ral structure and the spatiotemporal structure 
of the behavior; i.e., its spatiotemporal coordi-
nates. Accordingly, I postulate an isomorphism 
between neuronal and behavioral statistics and 
their respectively associated spatiotemporal 
structures (rather than between the resting state 
itself and the behavior itself).  

    NEUROCONCEPTUAL REMARK IB: NARROW 
VERSUS WIDE NEURO-BEHAVIORAL 
ISOMORPHISM   

 We also have to be careful in defi ning the con-
cept of isomorphism itself. Roughly, one can 
understand it in a strict or narrow way, with 
one-to-one correspondence between both neu-
ronal and behavioral statistics. Th at would basi-
cally mean that the resting-state activity itself is 
both a necessary and a suffi  cient condition of 
behavior, while the stimulus itself, the cue, has 
essentially no major impact. 

 Such a strict defi nition of isomorphism, how-
ever, is empirically implausible given that the cue 
does have a signifi cant impact on behavior. Th e 
resting-state activity seems to be only a neces-
sary but not a suffi  cient condition of behavior, 
with the stimulus, the cue, providing the suf-
fi cient condition. Instead of one-to-one corre-
spondence, neuronal and behavioral statistics 
would then correspond in a one-to-many or 
many-to-one way. Conceptually, this implies a 
loose or wide rather than strict or narrow form 
of neuro-behavioral isomorphism. 

 How can we tackle the assumption of such 
wider or loose neuro-behavioral isomorphism 
in more experimental terms? One could, for 
instance, construct a quantifi able spatiotem-
poral matrix or grid from the spatiotemporal 
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coordinates and confi guration of both the 
changes in the resting-state activity and the asso-
ciated behavior. 

 If the assumption of a wider or low form 
of neuro-behavioral isomorphism holds, one 
would hypothesize that the resting state’s spa-
tiotemporal structure and its neuronal statistics 
predict the spatiotemporal coordinates of the 
associated behavior and thus its “behavioral sta-
tistics.” One could construct statistically based 
spatiotemporal trajectory maps for both behav-
ior and the resting-state activity and see how 
both are related to each other. 

 In addition to its behavioral relevance, the 
resting state’s neuronal statistics may also be phe-
nomenally relevant; that is, for consciousness. 
As we will see in Volume II, the resting-state 
activity’s spatiotemporal organization may pre-
dispose the association of the purely neuronal 
stimulus-induced activity with consciousness 
and its phenomenal features. 

 Most important, I will claim that the spatio-
temporal structure of the resting-state activity 
resurfaces in the spatiotemporal structure of the 
phenomenal features that signify consciousness. 
Th ere may therefore be a certain wide or loose 
isomorphism between the resting state’s neuro-
nal statistics and the “phenomenal statistics” of 
consciousness (if one wants to say so), a wide or 
loose neuro-phenomenal isomorphism.  

    Open Questions   

 Th e fi rst question concerns the mechanisms and 
processes underlying the generation of the pre-
dicted input. I indicated neural overlap between 
high resting-state activity and predicted input 
generation in VMPFC and PACC, anterior 
midline regions. Th is left  open the question of 
whether subcortical regions are also associated 
with generating predicted inputs. 
 As mentioned in Chapter 7, even a region as early 
involved as the primary visual cortex (and pos-
sibly subcortical regions) seems to generate some 
kind of predicted input during visual percep-
tion. If so, one would suggest the same to apply 
in the case of reward, where early resting-state 
processing in the subcortical regions may gener-
ate some kind of predicted input. As said earlier, 
the exclusive association of the predicted input 
with cortical regions in human imaging studies 

does not rule out the involvement of the subcor-
tical regions that are rather diffi  cult to visualize 
in fMRI. 
 In addition to subcortical regions, one may also 
want to investigate the neuronal mechanisms 
underlying the interaction between resting state 
and predicted input as well as the subsequent 
interaction between predicted and actual inputs. 
One may propose nonlinear mechanisms here as 
they are suggested by studies on rest–stimulus 
interaction in other functional domains such as 
perception (see Chapters 9–12, and 28–29 in Part 
IV for details). Th e neuronal mechanisms under-
lying rest–stimulus interaction will be discussed 
in more detail in Part IV. 
 Finally, one may ask what our assumption about 
the generation of the predicted input tells us 
about the brain in general. Based on the con-
tinuous changes in its resting-state activity and 
its spatiotemporal structure, the brain seems 
to continuously, almost by default in an almost 
unavoidable and necessary way, generate predic-
tions or anticipations of what could possibly hap-
pen next (see Llinas and Roy 2009; Llinas et al. 
1998; Linas and Ribary 2001; Deco et  al. 2009, 
2010, 2011). One may consequently say that the 
brain generates a “hypothesis” about its environ-
ment:  “In more general terms, one might ask if 
such intrinsic cortical states represent the brain’s 
‘current hypothesis’ about the state of the exter-
nal world” (Ringach 2003, 913). 
 Th erefore, Gustavo Deco et al. (2009), a Spanish 
neural network expert and his colleagues, com-
pare the brain’s resting state to a tennis player 
awaiting his opponent’s serve:  the tennis player 
makes small moves and steps along the lines in 
order to bring himself into the best possible posi-
tion to return the serve he expects. Analogously, 
the brain continuously changes its resting-state 
activity and its associated spatiotemporal struc-
ture in small increments in order to prepare itself 
for possible changes in the spatiotemporal con-
fi guration of the environment. Behaviorally, such 
continuous changes result in seeking, while even 
stronger changes in the resting state and its asso-
ciated spatiotemporal structure can be triggered 
by specifi c cues that then may lead to “wanting.”    

    NOTES   

     1.    Interestingly, Carhart-Harris and Friston (2010) 
associate this hierarchical model with Freud’s 
psychodynamic concepts of id and ego as well 
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as with primary and secondary processes. Th ey 
argue that the top-down control of the highest 
level, the DMN, over the subsequent lower lev-
els corresponds to the ego, binds energy, and is 
associated with secondary processes, while the 
lowest level of the hierarchy is related to the id, 
free energy, and primary processes. Both inter-
act with each other in that DMN suppresses 
the limbic regions in very much the same way 

the ego and its secondary processes contain the 
id and its primary processes by binding their 
free energy (Carhart-Harris and Friston 2010, 
3, 7, 11, 11–12). Th is, however, is not the topic 
of this book; it is dealt with in my recent book 
 Neuropsychoanalysis in Practice  (Northoff  2011).   

    2.    Although Panksepp used all capital letters in his 
terminology (“SEEKING”), we will use lower-
case letters herein.              
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      GENERAL BACKGROUND   

 Th e starting point of this volume was how the 
brain encodes extrinsic stimuli from the envi-
ronment, discussed in Part I. Th is revealed that 
the stimuli’s statistical frequency distribution 
across diff erent discrete points in physical time 
and space—that is, their natural statistics—is 
encoded into the neural activity of the neurons 
and the regions, rather than the stimuli them-
selves at their particular points in physical time 
and space. Since this allows for coding many 
stimuli into one particular neural activity, such 
a coding strategy is referred to as  sparse coding.  

 Sparse coding describes the spatial and tem-
poral sparsening of neural activity and, I claim, 
is only possible on the basis of encoding spatial 
and temporal diff erences between diff erent stim-
uli at their diff erent discrete points in physical 
time and space. Such diff erence-based coding is 
to be distinguished from stimulus-based coding 
that describes the encoding of the extrinsic stim-
uli themselves at their diff erent discrete points in 
physical time and space a. In short, sparse cod-
ing presupposes diff erence-based coding rather 
than stimulus-based coding. 

 We then moved on from the environment 
and its extrinsic stimuli to the brain itself and 
its intrinsic activity. Th e brain’s intrinsic activ-
ity and its spatial and temporal structure were 
the subjects of Part II. Th e constitution of such 
statistically based spatiotemporal structure is 
possible only when the brain’s encodes its own 

intrinsic activity in terms of spatial and temporal 
diff erences and in a sparse way thus presuppos-
ing diff erence-based coding and sparse coding. 
Accordingly, the brain applies the same coding 
principles to its own intrinsic activity as to the 
extrinsic stimuli. 

 How are such diff erence-based coding and 
sparse coding realized? Based on single-cell 
and population data as well as on regional evi-
dence, I  postulate that neural inhibition and 
GABA play a major role in the encoding of the 
intrinsic activity’s spatial and temporal diff er-
ences that refl ect the statistical frequency dis-
tribution of its own activity across diff erent 
discrete points in physical time and space. Th is, 
in turn, makes it possible for the intrinsic activ-
ity to constitute a spatiotemporal structure that 
is statistically based rather than refl ecting the 
biophysical-computational features of the neu-
rons/regions themselves. 

 What does brain’s intrinsic activity and its 
spatiotemporal structure imply in functional 
terms? Th e continuous changes in the neural 
activity and the spatiotemporal structure of the 
brain’s intrinsic activity may be manifested in 
what we describe as predictions or anticipations 
of possible actual inputs, the predicted input. 
Th is is the assumption of predictive coding as 
discussed in Part III. 

 Predictive coding claims the neural activ-
ity results from the matching and comparison 
between predicted and actual inputs, thereby 
yielding what is described as prediction error. 

         PART IV 
Encoding Extrinsic Activity   
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Th e prediction error is based on the diff erence 
between predicted and actual input, whose 
degree is supposed to determine the degree of 
stimulus-induced activity associated with the 
actual input. Th is means that the prediction 
error and its associated stimulus-induced activ-
ity are diff erence-based signals, which, as such, 
presuppose diff erence-based coding. 

 We have so far described various mechanisms 
the brain itself applies to the neural processing 
of both extrinsic stimuli and its intrinsic activ-
ity. Th is concerns especially the coding strat-
egy and the intrinsic activity: the brain encodes 
changes into its neural activity in terms of spa-
tial and temporal diff erences, amounting to 
diff erence-based coding (and sparse coding) as 
distinguished from stimulus-based coding (and 
local/dense coding) (Part I). And the brain gen-
erates and organizes its own intrinsic activity in 
terms of a virtual statistically based spatiotempo-
ral structure (Part II) that continuously changes 
and generates predictive coding (Part III). 

 Since both encoding strategy and intrinsic 
activity have their origins in the brain itself and, 
most importantly, defi ne its particular way of neu-
ral processing, they may be described as intrinsic 
features of the brain that defi ne the brain (see 
Introduction in Volume II for further details on 
the distinction between intrinsic and extrinsic fea-
tures of the brain). Th ese intrinsic features of the 
brain were the main focus in Parts I through III. 

 Th e brain’s intrinsic features must be distin-
guished from its extrinsic features, which have 
their origin outside the brain and do therefore 
not defi ne the brain’s particular way of encoding 
its neural activity and its neural processing. Such 
extrinsic features of the brain concern (for exam-
ple) its stimulus-induced activity (or task-related 
activity) as related to extrinsic stimuli (and tasks) 
from outside the brain that originate in either 
body or environment. Th ese extrinsic features of 
the brain and thus its extrinsic stimulus-induced 
activity will be the focus in the fi nal part of this 
volume, Part IV.  

    GENERAL OVERVIEW   

 How do the brain’s intrinsic features, the encod-
ing of the stimuli’s natural statistics and the 

brain’s intrinsic activity (including its predic-
tive coding), impact the extrinsic features of the 
brain, its stimulus-induced activity as associated 
with particular stimuli or tasks? Th is is the focus 
of Part IV. 

 Th e central question here is the following: How 
does the brain itself provide the transition from its 
own intrinsic activity, the resting-state activity, to 
its extrinsic activity, the stimulus-induced activ-
ity as elicited by extrinsic stimuli from outside the 
brain? To address this question, I will investigate 
how diff erent extrinsic stimuli interact with each 
other in the brain and what we can learn from that 
for the interaction between the extrinsic stimuli 
and the brain’s intrinsic activity. 

 Chapter  10’s focus is on the interaction of 
diff erent extrinsic stimuli in the neural activity 
of the brain, i.e., stimulus–stimulus interaction. 
For that purpose, I  take cross-modal interac-
tion as the paradigm. Th is reveals functional 
principles like spatial and temporal coincidence, 
inverse eff ectiveness, and nonlinearity that guide 
stimulus–stimulus interaction and its subse-
quent stimulus-induced activity in cross-modal 
interaction. Th ese functional principles presup-
pose diff erence-based coding of cross-modal 
interaction, which otherwise, in the case of 
stimulus-based coding, would remain impossible. 
Finally, various objections to diff erence-based 
coding during stimulus–stimulus interaction and 
stimulus-induced activity as well as diff erent pos-
sible coding strategies are discussed here. 

 Chapter 11 focuses on the application of these 
functional principles to the interaction of the 
extrinsic stimulus with the brain’s intrinsic activ-
ity; that is, rest–stimulus interaction. Based on 
recent fi ndings, I show how the preceding rest-
ing state impacts subsequent stimulus-induced 
activity so that there is direct interaction between 
resting-state and stimulus-induced activity. Such 
direct interaction between intrinsic and extrin-
sic activity is supposed to be possible only on 
the basis of encoding of spatial and temporal 
diff erences into the resulting stimulus-induced 
activity. 

 Th is presupposes diff erence-based coding 
rather than stimulus-based coding of the brain’s 
extrinsic activity, its stimulus-induced activity, in 
the same way as it applies to the brain’s intrinsic 
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activity. Due to the application of the same coding 
strategy (diff erence-based coding), there is a neu-
ronal continuum between the brain’s intrinsic and 
extrinsic activity and thus between resting state 
and stimulus-induced activity (see Appendix 1 
for further details of this “continuity hypothesis”). 

 Chapter  12 focuses on the coding of 
stimulus-induced activity and more specifi cally 
on neural inhibition and sparse coding of rest–
stimulus interaction. How is diff erence-based 
coding implemented during the rest–stimulus 
interaction? Th is leads us back to neural inhibi-
tion as mediated by GABA as discussed in previ-
ous parts (see Chapters 3 and 6). 

 Recent fi ndings demonstrate that GABA 
seems to mediate the transition from resting-state 
to stimulus-induced activity with the latter’s 
degree being directly dependent upon the 
degree of former, that is, GABAergic-mediated 
neural inhibition. Th is, in turn, makes the 
encoding of spatial and temporal diff erences, 
i.e., diff erence-based coding, into the result-
ing stimulus-induced activity unavoidable and 
thus necessary. Th at results consequently in 
the spatial and temporal sparsening of the spa-
tiotemporal activity pattern as observed during 
stimulus-induced activity, thus refl ecting sparse 
coding on a regional level of neural activity.    
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    Summary   

 Th e brain receives continuous exteroceptive input 
from the environment. Th ereby various stimuli 
with diff erent features occur at the same time. 
Th is raises the question for the kind of neuronal 
mechanisms that underlie the interaction between 
the diff erent exteroceptive stimuli, that is, stimu-
lus–stimulus interaction, in the brain’s neural 
activity during stimulus-induced activity. I  here 
take cross-modal interaction to be a paradigmatic 
example of such stimulus–stimulus interaction. 
Based on recent empirical data, this reveals four 
principles:  spatial and temporal coincidence, 
inverse eff ectiveness, and nonlinearity. Th e imple-
mentation of these four principles in guiding 
neural activity during cross-modal interaction is 
presumed to be possible only by the encoding of 
spatial and temporal diff erences into neural activity. 
Th is presupposes diff erence-based coding, because 
such cross-modal interaction would remain 
impossible in the case of stimulus-based coding. 
Such diff erence-based coding can be exemplifi ed, 
for example, in the temporal dimension where it 
allows for the alignment of the ongoing oscillatory 
phase to the temporal onsets of the stimuli across 
time; this is described as “phase resetting.” Finally, 
based on recent data, I discuss possible objections 
to diff erence-based coding in both the spatial and 
temporal dimensions of stimulus-induced activity. 
Th is reveals not only the high degree of empirical 
plausibility of diff erence-based coding, but also its 
encoding of both spatial and temporal dimensions 
in an integrated way. Diff erence-based coding can 
consequently be characterized as a statistically 
based spatiotemporal encoding strategy that codes 
and determines the brain’s extrinsic activity, its 
stimulus-induced activity.    

    Key Concepts and Topics Covered   

 Cross-modal interaction, spatial and temporal 
coincidence, nonlinearity, inverse eff ectiveness, 
phase resetting, higher order cognitive top-down 
modulation, parallel coding strategies, unifying 
coding strategy, diff erence-based coding, spatio-
temporal coding strategy    

    NEUROEMPIRICAL BACKGROUND: ENCODING 
AND RESTING-STATE ACTIVITY PRECEDE 
STIMULUS-INDUCED ACTIVITY   

 In Part I, we investigated how the brain 
encodes extrinsic stimuli from the environ-
ment by focusing on sparse coding as a vari-
ant of diff erence-based coding. Th e same 
principles of neural coding— sparse coding and 
diff erence-based coding—were then shown to 
also hold in the case of the brain’s intrinsic activ-
ity, its resting state (see Part II). Th at, in turn, 
made it possible for the brain to predict inputs 
and thus to anticipate signals as it has been dis-
cussed in the context of predictive coding (see 
Part III). 

 What happens if such a brain, which is 
equipped with diff erent-based coding of its 
resting-state activity and prediction of inputs, 
actually encounters a real-life stimulus from 
the outside the brain, the environment (or the 
body, which is completely neglected in our 
account here; see Chapter 32 in Volume II)? In 
other words, we are now ready to “fi nally” turn 
our attention to stimulus-induced activity (or 
task-related activity, which conceptually will be 

   CHAPTER 10 
 Stimulus–Stimulus Interaction and Neural Coding        
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subsumed in the following discussion under the 
term “stimulus-induced activity”). 

 Why “fi nally”? I say here deliberately “fi nally” 
because usually stimulus-induced activity is con-
sidered the starting point for any neuroscientifi c 
investigation and its exploration of the neural 
basis of sensory, motor, cognitive, aff ective, and 
social functions. As already discussed in the 
introduction in this volume (see also Appendix 1 
in Volume II), I  consider the sensory, motor, 
aff ective, cognitive, and social functions of the 
brain and their respective extrinsic activity, 
stimulus-induced (or task-related) activity, to be 
dependent on the brain’s intrinsic activity and its 
particular coding strategy. 

 Th is made it necessary to fi rst discuss the 
brain’s intrinsic activity in detail; namely, its 
encoding strategy and its intrinsic activity. Th ese 
intrinsic features may then set the stage for the 
brain’s processing of the subsequent extrin-
sic stimuli from the environment (and body), 
including the associated sensory, motor, aff ective, 
cognitive, and social functions. Since I discussed 
the brain’s intrinsic features in detail in Parts 
I  through III, I  can now “fi nally” revert to the 
brain’s extrinsic functions, its stimulus-induced 
activity as related to sensory, motor, aff ective, 
cognitive, and social functions.  

    NEUROMETAPHORICAL EXCURSION I: PRELUDE 
AND FUGUE   

 Let us compare the situation to a prelude and 
fugue. In a musical piece, the prelude sets the 
stage for the subsequent fugue. Th e same now 
holds in the case of the brain’s intrinsic and 
extrinsic features. Th e brain’s intrinsic features, 
its encoding strategy and its intrinsic activity, set 
the stage for any subsequent neural processing of 
extrinsic stimuli from outside the brain. 

 What do I  mean by “setting the stage”? 
I  mean that the brain’s encoding strategy and 
intrinsic activity determine the kind and degree 
of stimulus-induced activity that extrinsic stim-
uli (or tasks) can possibly trigger in the brain. In 
the same way as a particular prelude excludes (or 
better) predisposes particular keys and harmo-
nies in the subsequent fugue, the brain’s encod-
ing strategy and intrinsic activity prevent or 

facilitate certain ways in the subsequent neural 
processing of extrinsic stimuli and their associ-
ated stimulus-induced activity. 

 Accordingly, the brain’s intrinsic features, 
its coding strategy and intrinsic activity, can 
be considered the prelude for the subsequent 
fugue, the brain’s extrinsic features as related to 
stimulus-induced activity. Aft er having extensively 
worked on the prelude itself, I am now “fi nally” 
ready for the fugue and thus to discuss the brain’s 
extrinsic features; namely, stimulus-induced 
activity. Th is will be the focus in this chapter.  

    NEURONAL FINDINGS IA: CROSS-MODAL 
INTERACTION   

 Aft er my prelude, I  come back to empirical 
matters:  more specifi cally, to stimulus-induced 
activity. Even stimulus-induced activity is not as 
simple as we oft en think. What we as neurosci-
entists observe as stimulus-induced activity does 
not usually refl ect simply the neural activity elic-
ited by a single stimulus in a one-to-one way. 
Instead, what we describe as stimulus-induced 
activity results usually from the interaction 
between diff erent stimuli and their respective 
features. Th is means that stimulus-induced 
activity implies the interaction between diff erent 
stimuli and features, that is, stimulus–stimulus 
interaction. 

 In the following I  want to investigate the 
mechanisms and processes underlying stimulus–
stimulus interaction in both spatial and temporal 
detail. For that, I  take cross-modal interaction, 
the interaction between stimuli from diff erent 
sensory modalities as the paradigmatic example 
of stimulus–stimulus interaction. 

 What is cross-modal interaction? Interaction 
between exteroceptive stimuli from diff erent 
sensory modality (auditory, visual, olfactory, 
somatosensory, gustatory) are subsumed under 
the umbrella term “cross-modal interaction.” 
Th e traditional view is that the diff erent sensory 
cortex themselves are unimodal, meaning they 
only process stimuli from one particular modal-
ity. For instance, the auditory modality only 
processes auditory stimuli, the visual modal-
ity visual stimuli, and the same applies to the 
remaining sensory modalities. 
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 Interaction and integration between stimuli 
from diff erent sensory modalities are tradition-
ally associated with higher-order regions in 
either subcortical (like the superior colliculi) or 
mainly cortical (intraparietal cortex, the premo-
tor cortex, the lateral prefrontal cortex, and the 
superior temporal sulcus) regions. Since these 
higher-order regions allow for the integration 
between the stimuli from the diff erent sensory 
modalities, one may describe the traditional 
view as “higher-order view.” 

 Th e traditional higher-order view of cross- 
modal interaction is challenged, however, by 
recent results that show cross-modal interaction 
already in auditory and visual cortex itself. For 
instance, using electroencephalography (EEG), 
Murray et al. (2005) observed that electrophysi-
ological potentials, auditory-evoked potentials, 
in auditory cortex evoked by an auditory tone 
were enhanced by a simultaneous somatosen-
sory stimulus. 

 Moreover, this enhancement occurred rather 
early, 50ms aft er stimulus onset, which makes 
it rather likely that it is related to neural activ-
ity in the auditory cortex rather than elsewhere 
like in prefrontal cortex, in which case it would 
occur later, like aft er 100–200ms. Th ese fi ndings 
suggest that auditory-somatosensory interac-
tion must have taken place in the auditory cortex 
itself. However, while EEG studies provide excel-
lent temporal resolution, their spatial resolution 
remains weak, meaning that exact localization of 
cross-modal interactions in the auditory cortex 
cannot be inferred from the EEG data alone. Th is 
means that we need to consider both spatial and 
temporal dimensions in cross-modal interaction 
and thus results from both EEG and fMRI. 

 I will focus in this section mainly on the work 
by C.  Kayser and N.  Logothetis, who describe 
diff erent principles of cross-modal interaction 
(see Kayser and Logothetis 2007; see also sub-
sequent studies confi rming and refi ning those 
principles: Kayser et al. 2010; Lurilli et al. 2012 
with a commentary by Kayser and Remedios 
2012; Kayser 2010 commenting on Lemus et al. 
2010; Panzeri et  al. 2010). Later sections will 
discuss the cross-modal interaction studies by 
Schroeder and Lakatos (2009). I am well aware 
that this leaves out many others’ work, but given 

our focus on the main principles, we need to 
concentrate on a few paradigms. 

 In addition to the many other authors’ fi nd-
ings on cross-modal interaction, we also leave 
out the observations in the context of synaesthe-
sia, where two (or more) sensory modalities are 
experienced in conjunction. As said earlier, the 
main idea here is to elucidate general functional 
principles of stimulus–stimulus interaction, 
which then later, in Chapter 11, shall be applied 
to rest–stimulus interaction.  

    NEURONAL FINDINGS IB: “PRINCIPLE 
OF NONLINEARITY”   

 In his earlier work, Kayser et al. (2005) conducted 
functional magnetic imaging (fMRI) studies in 
measuring auditory cortical activity in monkeys 
while applying both tactile and auditory stimuli. 
Th e auditory cortex showed activity during audi-
tory stimuli alone and a weaker response when 
tactile stimuli were applied in isolation. 

 Most important, responses in auditory cor-
tex (primary and predominantly secondary 
auditory cortex, the so-called “auditory belt”) 
were enhanced when both stimuli, auditory and 
tactile, were presented simultaneously. Such 
enhancement concerned both spatial extension, 
that is, the activated cortical volume, as well as 
the strength (i.e., signal percent change) of the 
activation in auditory cortex. 

 How can we describe such cross-modal 
enhancement in more detail? First, the enhance-
ment of auditory cortical activity, that is, strength 
and extension, was stronger than the mere addi-
tion or sum of both auditory and tactile activi-
ties alone as measured independent of each 
other. Th e enhanced activity can consequently 
not result from mere superposition, that is, lin-
ear addition or summation, of both activities but 
rather from their specifi c interaction. 

 Such interaction must consequently be char-
acterized as nonadditive and nonlinear. Th is is 
what Kayser et al. (2005) (as well as Kayser and 
Logothetis 2007) describe as “the principle of non-
linearity.” Th e principle of nonlinearity describes 
that the resulting stimulus-induced activity 
during two (or more) stimuli cannot be traced 
back to the merely linear addition or summation 
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of each stimulus’ stimulus-induced activity by 
itself. Instead, there must be some interaction 
between the diff erent stimuli that makes it pos-
sible for the resulting stimulus-induced activity 
to be either higher or lower than the mere linear 
summation or addition of the diff erent stimuli’s 
stimulus-induced activities (see   Fig. 10-1a  ).      

 How is such nonlinearity in cross-modal 
interaction realized and implemented? Th is 
leads me to the second principle, the “principle 
of spatial co incidence.”  

    NEURONAL FINDINGS IC: “PRINCIPLE 
OF SPATIAL COINCIDENCE”   

 One important measure is the spatial dimension, 
meaning the spatial extension of the activated 
cortical volumes. Th e cortical volumes recruited 
during combined auditory-tactile stimulation 
were far greater than the mere sum or addition 
of the cortical volumes obtained during auditory 
and tactile stimulation alone. Th e extension of 
cortical volumes during cross-modal interac-
tion was particularly strong in the regions of the 
auditory belt, the secondary or association audi-
tory cortex, whereas it was rather weak in pri-
mary auditory cortex. 

 Th e observation of such cross-modal 
enhancement is in accordance with observations 
that the secondary auditory cortex does indeed 
receive aff erents from somatosensory cortex as 
related to the processing of tactile stimuli. Th e 
somatosensory aff erents in auditory cortex make 
then possible the larger spatial extension of the 
neural activity during simultaneous presentation 
of tactile and auditory stimuli, thus accounting 
for what Kayser et al. (2005; see also Kayser and 
Logothetis 2007)  refer to as the “principle of 
spatial coincidence” (see also Kayser et al. 2010; 
Lurilli et al. 2012 with a commentary by Kayser 
and Remedios 2012; Kayser 2010 commenting 
on Lemus et  al. 2010).How can we defi ne the 
“principle of spatial coincidence”? Th e “principle 
of spatial coincidence” describes that the interac-
tion between the interacting stimuli nonlinearly 
enhances the degree of spatial extension in the 
resulting stimulus-induced activity beyond their 
mere linear spatial addition or summation. Th is 
leads me to the following assumption: the more 

two stimuli overlap, or coincide, in their spa-
tial extension, the more the stimulus-induced 
activity resulting from their interaction will 
be spatially extended in a nonlinear way (see 
  Fig. 10-1b  ). 

      NEURONAL FINDINGS ID: “PRINCIPLE 
OF TEMPORAL COINCIDENCE”   

 Th e same study also tested how the temporal 
relationship between auditory and tactile stimuli 
aff ects the cross-modal enhancement in auditory 
cortex. Th ey applied both auditory and tactile 
stimuli in either a synchronous or asynchronous 
way. Both forms of application led to enhance-
ment of activity in the auditory cortex when 
compared to auditory and tactile stimuli alone. 

 However, the cross-modal enhancement in 
auditory cortex was signifi cantly stronger dur-
ing the synchronous application when compared 
to the asynchronous one. Th is means that tem-
porally coincident auditory and tactile stimuli 
show stronger cross-modal interaction when 
compared to temporally noncoincident ones. 

 Most generally, these results show that the 
temporal relationship between diff erent stimuli 
is crucial for their interaction and thus for their 
mutual enhancement. Th e authors here speak 
of the “principle of temporal coincidence.” Th e 
“principle of temporal coincidence” describes 
that the temporal overlap between the interact-
ing stimuli nonlinearly enhances the strength of 
the resulting stimulus-induced activity beyond 
their mere linear addition or summation (see 
  Fig. 10-1c  ). 

 Th is leads to the following assumption:  the 
more two stimuli overlap, that is, coincide, 
temporally, the stronger the stimulus-induced 
activity resulting from their interaction (see also 
Kayser et al. 2010; Lurilli et al. 2012 with a com-
mentary by Kayser and Remedios 2012; Kayser 
2010 commenting on Lemus et al. 2010). 

      NEURONAL FINDINGS IE: “PRINCIPLE 
OF INVERSE EFFECTIVENESS”   

 Finally, the authors also tested how the strength 
of auditory stimuli may aff ect their degree of 
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  Figure 10-1a, b, c, and d     Neuronal principles of stimulus–stimulus interaction.  Th e fi gure shows 
a graphic illustration of the diff erent principles ( a–d ) of how diff erent stimuli interact with each other. 
Th e stimuli are shown on the very left  in forms of bars; the circles in the middle stand for the regions in 
the brain. Finally, the bars on the very right indicate the degree of neural activity elicited by the stimulus 
aft er it interacted with the region’s activity related to the respective other stimulus. Grey and black lines 
indicate the contributions of the respective stimulus to the degree of neural activity. Th e remaining part 
(dotted lines) indicates the part of neural activity that cannot be traced back directly to either stimulus 
by itself; instead it can result only from the interaction between the stimuli as indicated by the crossing 
arrows (second from the right).   ( a ): Th is fi gure describes the principle of nonlinearity. Th e interaction 
consists of merely adding (or subtracting) the other’ stimulus’ contribution to the other region’s neural 
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activity, resulting in nonlinear interaction ( upper part ). Or the region’s activity is either higher or lower 
than the mere addition (or subtraction) of the neural activity related to both stimuli, implying nonlinear 
interaction ( lower part ).  ( b ): Th e fi gure describes the principle of spatial coincidence. If the two stimuli 
overlap in space, their respective region’s neural activity may also overlap, leading to an increase in their 
neural activity as indicated by the red part ( lower part ). However, such an increase cannot be observed in 
the absence of spatial coincidence between the two spatial stimuli ( upper part ).  ( c ): Th e fi gure describes 
the principle of temporal coincidence. If the two stimuli overlap in time, their respective region’s neural 
activity may also overlap temporally, leading to an increase in their neural activity as indicated by the red 
part ( lower part ). However, such an increase cannot be observed in the absence of temporal coincidence 
between the two spatial stimuli ( upper part ).  ( d ): Th e fi gure describes the principle of inverse eff ectiveness. 
If one of the stimuli is strong and the other is weak (inverse strength), both regions’ neural activity may be 
stronger than being related to the stimulus alone as indicated by the red part ( lower part ). However, such 
an increase in neural activity remains absent if there is no inverse eff ectiveness ( upper part ). 
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cross-modal interaction with tactile stimuli. 
Th ey presented weaker and stronger auditory 
stimuli with the one being 10 db louder than 
the other one. As expected, the weaker stimuli 
induced less activity in the auditory cortex than 
the stronger ones when presented alone. 

 Th is pattern, however, reversed during 
cross-modal interaction. In conjunction with the 
tactile stimulus, the weaker auditory stimulus elic-
ited stronger cross-modal interaction eff ects, that 
is, a larger cortical volume and a higher strength, 
than the stronger one. Th is means that a weaker 
stimulus elicits stronger cross-modal interaction 
than a stronger one, thus obeying the “principle of 
inverse eff ectiveness.” as Kayser et al. (2005) call it. 

 Th e “principle of inverse eff ectiveness” 
describes that the interaction between diff erent 
stimuli depends on the integrated constellation 
of their strength rather than on the mere sum-
mation or addition of their respective strengths 
alone. Th e degree of interaction between diff erent 
stimuli is strongest when one stimulus’ strength 
is weak, while the other stimulus is rather strong. 
If, in contrast, both interacting stimuli are strong, 
their interaction may become rather weak. 
Hence, the constellation between the two stimuli 
has to be inverse, that is, weak and strong, for the 
interaction to be strong (see   Fig. 10-1d  ). 

  One may postulate four principles guiding 
and underlying the interaction between diff erent 
stimuli, or stimulus–stimulus interaction, during 
cross-modal interaction (see Kayser and Logothetis 
2007, 122–123). Th e four principles are nonlinear-
ity, spatial coincidence, temporal coincidence, and 
inverse eff ectiveness. We now want to know how 
compatible they are with diff erence-based coding; 
this is the focus in the next sections.  

    NEURONAL HYPOTHESIS IA: NONLINEAR 
CROSS-MODAL INTERACTION AND 
DIFFERENCE-BASED CODING   

 How are these principles of cross-modal inter-
action related to diff erence-based coding? 
I  hypothesize that all four principles are pos-
sible only on the basis of encoding spatial 
and temporal diff erences into the resulting 
stimulus-induced activity during cross-modal 
interaction. Accordingly, I propose cross-modal 

interaction to presuppose diff erence-based cod-
ing rather than stimulus-based coding. 

 Let me be more specifi c. Cross-modal inter-
action does not refer to merely additive and 
thus linear eff ects in the interaction between 
diff erent sensory stimuli. Instead, the eff ects are 
supra-additive and nonlinear and can therefore 
not be explained by the mere addition of the 
activations elicited by each stimulus alone. Th is 
means that what is encoded into the neural activ-
ity underlying cross-modal interaction cannot 
result from the mere addition of the neural activ-
ities associated with each of the stimuli alone. 

 Such addition or summation would, for 
instance, be possible if the stimuli were encoded 
into neural activity separately and independent 
of each other as it is implied by stimulus-based 
coding. Stimulus-based coding in this sense 
seems to be presupposed in the traditional view 
of cross-modal interaction. Here the sensory 
regions are suggested to encode the respective 
unimodal stimuli themselves in isolation and 
independence of the other sensory stimuli, thus 
presupposing stimulus-based coding in sensory 
cortex. Th at, however, is not compatible with the 
data that suggest nonlinear interaction rather 
than mere addition or summation. 

 What, however, must be encoded into the 
neural activity of the sensory cortex to make pos-
sible the nonlinear interaction as it is observed 
during cross-modal interaction? I  hypothesize 
that such supra-additive nonlinear eff ects are 
possible only if the spatial and temporal diff er-
ences, rather than the mere addition between the 
two stimuli, are encoded into neural activity. 

 Rather than the sum of the activities of each 
stimulus alone, the spatial and temporal diff er-
ence between both determines and predicts the 
subsequent degree of stimulus-induced activ-
ity. Th e stimulus-induced activity thus pre-
supposes diff erence-based coding rather than 
stimulus-based coding.  

    NEURONAL HYPOTHESIS IB: ENCODING 
OF TEMPORAL DIFFERENCES DURING 
CROSS-MODAL INTERACTION   

 Let us specify such diff erence-based coding in 
spatial and temporal regard:  the less the two 
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stimuli overlap in their respective temporal posi-
tion (i.e., at their respective discrete point in 
physical time), the weaker their possible interac-
tion eff ects. Th is means that the temporal diff er-
ence between the two stimuli must be encoded; 
otherwise the degree of their interaction could 
not be dependent on the stimuli’s degree of tem-
poral diff erence (see Brasselet et al. 2012; Kayser 
et al. 2010 for fi rst empirical support). 

 How would two temporally diff ering stimuli 
be encoded in the case of stimulus-based coding? 
In the contrasting case of stimulus-based coding, 
such dependence of the interaction eff ects on the 
degree of the stimulus’ degree of temporal diff er-
ence would be impossible. Th is is so because the 
temporal position of each stimulus would then 
be encoded independently and isolated of each 
other. Whether the two stimuli overlap tempo-
rally or not, would not matter at all anymore. 
Th e degree of their temporal diff erence would 
no longer impact the degree of the subsequent 
stimulus-induced activity (see later discussion of 
objections to my hypothesis of diff erence-based 
coding). 

 Th is is clearly diff erent in the case of 
diff erence-based coding. Unlike in stimulus-based 
coding, the degree of the stimuli’s temporal diff er-
ence matters very much for their possible degree 
of interaction:  the smaller their temporal diff er-
ence, the more likely their interaction will pro-
ceed in a nonlinear way, and the higher the degree 
of the subsequent stimulus-induced activity. 

 If, in contrast, their temporal diff erence is 
rather large, the more both stimuli will interact 
in a linear rather than nonlinear way and the 
lower the subsequent stimulus-induced activity. 
Accordingly, the degree of temporal diff erence 
is central in determining the degree of nonlin-
earity during cross-modal interaction, includ-
ing the respectively associated stimulus-induced 
activity.  

    NEURONAL HYPOTHESIS IC: ENCODING OF 
SPATIAL DIFFERENCES DURING CROSS-MODAL 
INTERACTION   

 How about diff erence-based coding in the spa-
tial domain? I  propose that, as in the temporal 
domain, diff erences are also encoded in the spatial 

domain. Th e above-described results showed the 
“principal of spatial coincidence.” Very much like 
in the temporal domain, the degree of spatial dif-
ference between diff erent stimuli may determine 
the degree of possible nonlinearity during their 
interaction and consequently the degree of their 
stimulus-induced activity. 

 Th is again contrasts with the case of stimulus- 
based coding. In the contrasting case of 
stimulus-based coding the degree of spatial dif-
ferences between the respective stimuli and their 
respectively underlying neurons would not mat-
ter at all: either they overlap spatially and allow 
for cross-modal interaction, or they do not over-
lap spatially at all, implying the complete absence 
of any cross-modal interaction eff ects. 

 Th is, however, is not compatible with the 
empirical data. I consequently hypothesize that 
neural activity must be encoded in terms of spa-
tial diff erences, that is, diff erence-based coding, 
in order for the principle of spatial coincidence 
to be possible and thus to hold true.  

    NEURONAL HYPOTHESIS ID: INVERSE 
EFFECTIVENESS PRESUPPOSES 
DIFFERENCE-BASED CODING   

 We so far have shown that three principles of 
nonlinearity and spatial and temporal coin-
cidence are not only quite compatible with 
diff erence-based coding but that, in the oppo-
site case of stimulus-based coding, they would 
remain impossible. How about the fourth prin-
ciple, the principle of inverse eff ectiveness? 

 I suppose that, like the other three principles, 
the principle of inverse eff ectiveness also presup-
poses diff erence- rather than stimulus-based cod-
ing. If stimulus-based coding holds, one would 
expect the mere summation of the two stimuli’s 
strength to elicit stronger stimulus-induced 
activity during stimulus–stimulus interaction. In 
that case, two strong stimuli should induce the 
strongest neural activity. Th is, however, was not 
the case, as the data show. 

 Instead, the constellation of a strong with a 
weak stimulus showed the strongest interaction 
eff ects. Th is is possible only if the diff erence in 
strength between the two stimuli is encoded into 
neural activity rather than the strength of each 
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stimulus alone independent of the respective 
other (as in stimulus-based coding). In short, the 
principle of inverse eff ectiveness is possible only 
if presupposing diff erence-based coding rather 
than stimulus-based coding. 

 Taken together, I  hypothesize that the four 
principles of cross-modal interaction are not 
only compatible with diff erence-based coding 
but, even stronger, that they must presuppose it 
in order to be possible. Th is holds for the princi-
ples of spatial and temporal coincidence that pre-
suppose diff erence-based coding in spatial and 
temporal domains and the associated principle 
of nonlinearity. And it holds for the principle of 
inverse eff ectiveness that must presuppose non-
linear interaction as it is possible only on the basis 
of diff erence-based coding as distinguished from 
stimulus-based coding (see later for objections to 
my hypothesis of diff erence-based coding).  

    NEURONAL HYPOTHESIS IE: NONLINEARITY 
AND CONSCIOUSNESS   

 Why do I emphasize so much the linkage of both 
spatial and temporal coincidence and inverse 
eff ectiveness with nonlinear changes in neural 
activity? I showed that increases in spatial and/
or temporal coincidence are relevant in that they 
go along with higher degrees of both nonlin-
earity and subsequent stimulus-induced activ-
ity. Th is pertains to the neuronal relevance of 
nonlinearity. 

 In addition to its mere neuronal relevance, 
the nonlinearity may also be relevant for con-
sciousness and thus phenomenally relevant. 
I  suppose that the degree of nonlinearity pre-
dicts not only the degree of the purely neuronal 
stimulus-induced activity but also the degree 
to which the latter can be associated with con-
sciousness and its phenomenal features. 

 In order to fully understand this, we need 
to go back to the brain’s intrinsic activity and 
its interaction with extrinsic stimuli. Th e more 
the extrinsic stimuli coincide temporally and 
spatially with the spatiotemporal structure of 
the brain’s intrinsic activity, the more likely it is 
that both extrinsic stimuli and intrinsic activ-
ity will interact in a nonlinear way. And the 
higher the degree of their interaction, the more 

likely it is that the resulting purely neuronal 
stimulus-induced activity will be associated with 
consciousness. Th e neuronal details of such non-
linear rest–stimulus interaction will be discussed 
in the next chapter, Chapter 11, while the exact 
neuro-phenomenal mechanisms will be explored 
in Chapters 28 and 29 in Volume II.  

    NEUROMETAPHORICAL EXCURSION IIA: 
SIDEWALK AND STIMULI   

 Aft er having discussed stimulus-induced activity 
by the example of cross-modal interaction and 
its coding strategy, I am now ready to investigate 
the impact of the resting state on subsequent 
stimulus-induced activity. Th is will be the focus in 
Chapter 11. First, though, let me briefl y illustrate 
the four principles of cross-model interaction in 
particular and stimulus–stimulus interaction in 
general by the following metaphorical comparison. 

 Imagine that two persons are walking down a 
street. If the street is large, containing four lanes, 
there may be sidewalks on both sides. If the two 
persons walk on the diff erent sides and their 
respective sidewalks, there is almost no chance 
for them to meet and interact. 

 Now imagine they walk on the same side on 
the same sidewalk; however, the sidewalks are 
big and the number of people walking is large. 
Th e two persons walking on the opposing ends 
of the same sidewalk have almost no chance to 
meet and interact with each other within the 
crowds pushing through the sidewalk. 

 Let’s now imagine that the very same side-
walk is almost empty and thus devoid of people, 
while both persons are still walking on the side-
walk’s opposite ends. Even though neither per-
son has changed her spatiotemporal coordinates, 
the chance of them meeting is now much higher 
than before. 

 Why? Because now their respective spatio-
temporal position can more easily be directly 
related to the one of the respective other than 
before, where their relationship could at best be 
indirect that is through the other people. Th is 
means that the actual spatiotemporal position 
of one person is encoded into the relationship 
and thus relative spatial and temporal diff erence 
from the ones of the respective other(s). 
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 I do not need to say that this is exactly what 
happens in the brain during cross-modal inter-
action. Th e more directly both persons can be 
connected and linked to each other in spatial 
and temporal regard, the more likely they will 
meet, thus presupposing the “principles of spa-
tial and temporal coincidence.”  

    NEUROMETAPHORICAL EXCURSION IIB: STAGE 
AND BRAIN   

 Now stretch your imagination one more time. 
Th e two persons fi nally recognize each other 
and start interacting. One is in a rather gloomy 
mood, whereas the other one’s mood is some-
how indiff erent. Th e one in the indiff erent mood 
state remembers a funny occurrence during her 
last encounter, which she now tells to the other 
person. Suddenly, the gloomy mood of the other 
person changes drastically, a smile lighting up 
his face. 

 Th is, in turn, makes the person who told the 
episode happy, too. Hence, both persons’ moods 
are changed suddenly and more or less drasti-
cally (from gloomy or indiff erent to joyful); this 
corresponds to what in the case of the brain is 
described as the “principle of inverse eff ective-
ness” and “principle of nonlinearity.” 

 Is our brain like a sidewalk? Probably not. 
Th e brain can be better compared with a theater 
stage than with a sidewalk. Th e actors and danc-
ers interact on the stage of the theater; this cor-
responds to the way the stimuli interact with the 
brain and its intrinsic activity. Th e spatiotem-
poral confi guration of the theater’s stage deter-
mines the kind of moves that can possibly be 
made by the actors and the dancers. If the stage 
is not completely horizontal but tilted slightly 
vertically, certain moves by the dancers will be 
impossible. 

 Th e same is true in the case of the brain. If 
the brain’s intrinsic activity and its spatiotempo-
ral structure are confi gured in a certain way, this 
may allow the stimuli to exert its action along 
the lines of, for instance, the aforementioned 
four principles. In order to understand why and 
how the brain applies the four principles to its 
stimulus-induced activity, we must therefore go 
back to the brain itself and its intrinsic activity, 

the resting-state activity, and how that impacts 
its neural processing of extrinsic stimuli. Th is 
shall be the focus in the next chapter. First, 
though, we need go into more detail about the 
exact neuronal mechanisms underlying stimu-
lus–stimulus interaction.  

    NEURONAL FINDINGS IIA: CROSS-MODAL 
INTERACTION AND PHASE RESETTING   

 Let me now go into more detail about the neu-
ronal mechanisms underlying stimulus–stimu-
lus interaction in cross-modal interaction by 
going back to the cellular and population level 
of neural activity. Besides the excellent studies 
by C. Kaysers as described earlier, C. Schroeder 
and P.  Lakatos are other authors investigating 
cross-modal interaction on a cellular level (see 
also Chapters 20 and 21 in Volume II for more 
details of their work and studies). 

  C. Schroeder and P.  Lakatos (2009) (see 
also Schroeder et  al. 2008 as well as Kayser 
2009)  investigated cell recordings during 
cross-modal sensory interaction in auditory cor-
tex of monkeys. An auditory stimulus induces a 
feedforward response that starts in layer 4 of the 
auditory cortex and subsequently elicits strong 
action potentials, increases in oscillatory power, 
and stronger phase coherence across various 
frequencies (gamma, beta, alpha, delta, theta). 
Th e auditory stimulus may thus be regarded as 
a “driving input” for auditory cortical activity 
(see also Schroeder and Lakatos 2009; Lakatos 
et al. 2009). 

 In contrast, a somatosensory stimulus has 
little impact on both local action potentials and 
oscillatory power and thus the lower cortical lay-
ers (layers 3 and 5)  in auditory cortex. In con-
trast, the somatosensory stimulus does induce 
changes in auditory cortical supragranular lay-
ers (layer 1 and 2). More specifi cally, unlike the 
auditory stimulus, the somatosensory stimulus 
exerts a strong impact on the phase coherence 
between the diff erent frequency bands (gamma, 
alpha, delta, theta); such resetting of their phases 
results in what is described as “phase synchroni-
zation.” (see later for details). 

 Based on these observations, Schroeder 
and Lakatos propose that the somatosensory 
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stimulus corresponds to what they describe as 
“modulatory input” for the auditory cortex (see 
also Schroeder and Lakatos 2009; Lakatos et al. 
2009). Unlike the driving input, the modula-
tory input does not modulate the strength of the 
resulting neural activity but only its timing by 
resetting its phases, that is, phase synchroniza-
tion. Phase resetting means that the stimuli and 
their onsets (that is, stimulus onset) are tem-
porally always located in the same relation to 
the ongoing oscillatory phase, that is, at their 
same time points, across the diff erent trials (see 
  Fig. 10-2a-c  ) (see also Chapters 14, 15, and 20 for 
more details).      

 Schroeder and Lakatos suggest that such 
phase resetting characterizes cross-modal 
interaction. By resetting the phase of the ongo-
ing neural activity in the uni-modal sensory 
cortex, the cross-modal stimulus may pave the 
way (or alternatively, open the door) for the 
uni-modal stimulus to elicit stronger neural 
activity changes; that is, in power or amplitude. 
Hence, rather than driving the neural activity in 
the uni-modal sensory cortex as the uni-modal 
stimulus itself, the cross-modal stimulus modu-
lates the neural activity.  

    NEURONAL FINDINGS IIB: PHASE RESETTING 
AND OSCILLATORY ACTIVITY   

 In a subsequent study, Schroeder and Lakatos 
could show that the modulation of phase coher-
ence, that is, phase resetting, is not only related 
to cross-modal stimulation but also to atten-
tional mechanisms (see Lakatos et al. 2009; see 
also Kayser 2009 for a commentary). Th ey now 
recorded in monkey primary visual cortex dur-
ing attention/nonattention to either visual or 
auditory stimuli and investigated power/ampli-
tude and phases in the respectively resulting 
stimulus-induced activity. Let’s start with the 
visual stimuli and their eff ects on visual cortex. 
Attended visual stimuli induced an increase in 
both the power, that is, amplitude, of the exci-
tation/activation and the phase resetting of 
oscillations (mainly in the theta and gamma fre-
quency)., Th is pattern diff ered in nonattended 
visual stimuli. Nonattended visual stimuli (atten-
tion is on the auditory stimuli) also induced 

an evoked response, but, unlike the attended 
stimuli, they did not aff ect the phase of ongoing 
oscillations. 

 How about the auditory stimuli and their 
eff ects on the visual cortex? Auditory stimuli 
that were attended did induce phase resetting 
in visual cortex (mainly in the theta and gamma 
frequency), while the amplitude (power) was 
not aff ected. Th is distinguished them from non-
attended auditory stimuli that neither aff ected 
the power nor the phase of ongoing oscilla-
tory activity. Th e attended auditory stimuli 
thus also exerted an impact in visual cortex by 
resetting its phases, thus refl ecting cross-modal 
interaction. 

 Such phase resetting occurs though only if 
the auditory stimulus is attended, while noth-
ing happens in the case of nonattended stimuli. 
Phase resetting may consequently be regarded 
a mechanisms of cross-modal attentional selec-
tion. Th is implies that the auditory stimulus 
functions as a modulatory input for the visual 
cortex, while the visual stimuli themselves are 
the “driving inputs.” 

 Taken together, these results show that 
cross-modal interaction and the attentional 
selection of stimuli operate temporally via 
phase resetting. Th is means that the phases of 
the ongoing unimodal oscillatory activity are 
aligned to the cross-modal stimulus, the modu-
latory input, which thereby sets the stage for the 
unimodal stimuli, the driving input, to exert 
stronger amplitude, or power, changes.  

    NEURONAL HYPOTHESIS IIA: PHASE RESETTING 
AND ENCODING OF TEMPORAL DIFFERENCES   

 How do the results by Schroeder and Lakatos 
relate to diff erence-based coding? Schroeder 
and Lakatos show that cross-modal integration 
is achieved by resetting the phases in the ongo-
ing oscillatory activity. Th is results in neural 
synchronization of the phases in the diff erent 
frequency bands, which can be independent of 
and occur without accompanying changes in 
the power of the oscillations (see also Sauseng 
and Klimesch 2008; Fell and Axmacher 2011; 
and Canolty and Knight 2010 for recent review 
papers in this regard). 
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   Figure 10-2a, b, c, and d     Neuronal mechanisms of “driving and modulatory inputs.”  ( a ) Box plots 
show pooled onset latencies of the characteristic frequency-tone- (aud) and somatosensory stimulus 
(som)-related CSD response in supragranular (S), granular (G), and infragranular (I)  layers across 
experiments. Th e boxes have lines at the lower quartile, median, and upper quartile values, and the 
notches in boxes graphically show the 95% confi dence interval about the median of each distribution. 
Brackets indicate the signifi cant  post hoc  comparisons calculated using Games-Howell tests ( P  < 0.01). 
( b ) Box plots show pooled ( n  = 38) CSD and MUA amplitudes on the selected channels (S, G, and I) 
averaged for the 15–60 ms time interval for the same conditions as ( a ), plus the bimodal condition. 
Brackets indicate the signifi cant  post hoc  comparisons calculated using Games-Howell tests ( P  < 0.01). 
( c ) (i)  Pooled ( n   =  38) post-stimulus:pre-stimulus single-trial oscillatory amplitude ratio (0 to 250 
ms: −500 to −250 ms) for diff erent frequency intervals (diff erent colors) of the auditory (AU), somato-
sensory (SS), and bimodal supragranular responses. Stars denote where the amplitude ratio is signifi -
cantly diff erent across the pre- and post-stimulus periods (one-sample t tests,  P  < 0.01). 
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(ii) Pooled intertrial coherence (ITC) expressed as a vector quantity (mean resultant length) measured 
at 15 ms post-stimulus (the time of the initial peak response). Note that, in the case of somatosensory 
events, an increase in phase concentration only occurs in the low-delta (1–2.2 Hz), theta (4.8–9.3 Hz), 
and gamma (25–49 Hz) bands, indicated by colored arrows on the right. ( d ) Relative distributions and 
concentrations of calbindin-positive matrix cells (bottom left ) and parvalbumin-positive core cells (bot-
tom right) in a frontal section through the middle of a macaque monkey thalamus. Th e projections of 
the matrix to superfi cial layers of cortex over a wide extent and unconstrained by areal borders is shown 
at the top. Core cells restricted to individual nuclei (e.g., the ventral posterior nucleus) project in a topo-
graphically ordered manner to the middle layers of single functional cortical fi elds.    Abbreviations:  CL, 
central lateral nucleus; CM, center median nucleus; Hl, lateral habenular nuclei; Hm, medial habenular 
nuclei; LD, lateral dorsal nucleus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus; MD, 
mediodorsal nucleus; OT, optic tract; P, color-coded retinal ganglion cells; Pla, anterior pulvinar; PP, 
peripeduncular nucleus; R, reticular nucleus; s, s laminae; SNr, substantia nigra pars reticularis; VMb, 
basal ventral medial nucleus; VPi, ventral posterior inferior nucleus; VPM, ventral posterior medial 
nucleus.    Reprinted with permission of Elsevier from Schroeder CE, Lakatos P. Low-frequency neuronal 
oscillations as instruments of sensory selection.  Trends Neurosci . 2009 Jan;32(1):9–18.   

 How is such phase synchronization indepen-
dent of power changes possible? I  hypothesize 
that it is possible on the basis of diff erence-based 
coding (see later for objections to my hypothesis 
of diff erence-based coding), whereas such inde-
pendent phase synchronization would remain 
impossible in the case of stimulus-based coding. 
Let me be more specifi c. Schroeder and Lakatos 
demonstrate phase synchronization during 
cross-modal interaction. Such phase resetting is 
possible only by encoding the temporal position 
of the actual stimulus in relation, for example, in 
diff erence, to the temporal position of the phase 
in the ongoing oscillatory activity. 

 If this temporal diff erence is small tending 
toward zero, phase resetting is not necessary. 
If, in contrast, the temporal diff erence between 
actual stimulus and oscillatory phase is large, the 
latter’s temporal course, its phase onset, is reset 
and aligned with the temporal position of the 
former, the actual stimulus. One would conse-
quently postulate the following relationship: the 
larger the temporal diff erence between stimulus 
and phase, the larger the degree of (possible and 
necessary) phase resetting. 

 Th is relationship holds, however, only within 
a certain spectrum of temporal diff erences. If the 
degrees of the temporal diff erence are either too 
large or too small, they may exceed the mini-
mally or maximally necessary values that can 
still possibly be processed within the frame-
work provided by the brain’s (species-specifi c) 

biophysical-computational range, as refl ected 
for instance in the phase durations of its diff er-
ent frequency bands (see Chapters 1, 2, 11, and 
21 for details). Hence, one may hypothesize that 
the postulated relationship between the degree 
of temporal diff erence and the degree of phase 
resetting holds within the range of the brain’s 
biophysical-computational spectrum.  

    NEURONAL HYPOTHESIS IIB: STIMULUS- 
VERSUS DIFFERENCE-BASED CODING OF PHASE 
RESETTING   

 How about stimulus-based coding? In such a 
case, the temporal position of the actual stimulus 
would be encoded by itself, independently of its 
relationship to the ongoing phase. Th is, though, 
would make it impossible to reset the phase in 
orientation on the stimulus’ temporal position 
because the former would have no orientation 
on how and to which degree to reset its phase. 

 How about the converse scenario, encoding 
of the phase of the ongoing oscillatory activity 
independent of the stimulus’ temporal position? 
In this case, phase resetting would remain equally 
impossible, since only the stimuli from the oscil-
latory activity would then be encoded into neural 
activity, thus presupposing again stimulus-based 
coding rather than diff erence-based coding. 

 Pointing to yet another scenario, one could 
also imagine that phase resetting could be 
operated via changes in oscillatory power. Th e 
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observed phase resetting would then result 
as secondary consequence of the more pri-
mary stimulus-based activity; that is, encod-
ing of power or strength (see also Sauseng and 
Klimesch 2008; Fell and Axmacher 2011; and 
Canolty and Knight 2010 for recent review 
papers in this regard). 

 Th is would again presuppose stimulus-based 
coding where the oscillatory power is encoded 
independently of the stimulus and its subsequent 
phase resetting. However, such a scenario would 
presuppose that phase resetting and phase syn-
chronization always go hand in hand with power 
changes and would thus no longer remain at least 
partially independent. Th is is not the case, as the 
data from Schroeder and Lakatos clearly show.  

    NEURONAL HYPOTHESIS IIC: ENCODING OF 
CONTENT VERSUS ENCODING OF TEMPORAL 
AND SPATIAL FEATURES   

 Finally, one may put forward yet another objec-
tion. Th e data from Schroeder and Lakatos show 
that phase resetting presupposes the encoding of 
the stimulus’ temporal position in relation to the 
ongoing oscillatory activity. What they do not 
show, however, is that the encoding is exclusively 
based on the stimulus’ temporal features inde-
pendent of its respective auditory content. 

 For that to show, one would need to conduct 
an interaction design where diff erent auditory 
stimuli (with equal spatial and temporal fea-
tures) are presented in the same temporal rela-
tion to the ongoing oscillatory activity in visual 
cortex. If now both induce phase resetting (in 
more or less the same degree), the underlying 
neural activity must indeed be entirely based 
on the encoding of statistically based temporal 
features of the stimuli; that is, their temporal 
positions indicating the statistical frequency 
distribution across time. Th is is exactly what 
I  postulate. I  posit that diff erence-based cod-
ing is allows for the encoding of the statistically 
based spatial and temporal features of the stimuli 
(across their diff erent discrete points in physical 
time and space), independently of the content 
associated with the respective stimulus at its par-
ticular discrete point in physical time and space. 
Th is is to be distinguished from the encoding 

and processing of the respective content itself, 
which would amount to stimulus-based coding 
(see Chapters 18–20 for the constitution of con-
tent on the basis of diff erence-based coding). 

 In sum, I  propose that diff erence-based 
coding operates in both spatial and temporal 
domains during cross-modal interaction in par-
ticular and stimulus–stimulus interaction in gen-
eral. Th is presupposes that any neural activity on 
any level of the brain, from primary sensory cor-
tex to higher-order regions as well as from sub-
cortical to cortical regions, is encoded in terms 
of spatial and temporal diff erences across the dif-
ferent discrete points in physical time and space 
associated with the diff erent stimuli. 

 Such diff erence-based coding must be distin-
guished from stimulus-based coding. Th e stim-
uli would then be encoded on the basis of their 
discrete spatial and temporal points in physical 
time and space independent of their spatial and 
temporal diff erence relative to each other and 
the brain’s ongoing resting-state activity (see 
Chapter 11 for details on the latter).  

    NEURONAL HYPOTHESIS IID: PHASE 
RESETTING AND CONSCIOUSNESS   

 Why is the supposed diff erence-based coding 
of phase resetting relevant? We so far have dis-
cussed the neuronal relevance of phase reset-
ting in that it determines the degree of neural 
activity a particular stimulus can induce. Th is 
concerned stimulus–stimulus interaction and 
stimulus-induced activity. 

 We already saw in Chapter 5 that analogous 
mechanisms of phase resetting also occur during 
the resting-state activity itself, by means of which 
a temporal (or better, spatiotemporal) structure 
is constituted. Th is means that phase resetting is 
relevant not only for stimulus-induced activity 
but also for the resting state and how it consti-
tutes the statistically based spatiotemporal struc-
ture of its neural activity. 

 Most important, we will argue in Volume II 
that phase resetting is highly relevant for con-
sciousness and thus phenomenally relevant. 
I  suppose the following:  the better the ongoing 
intrinsic resting-state activity can shift  and align 
the phase onsets of its low frequency fl uctuations 
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to the onsets of the extrinsic stimuli, the more 
likely it is that the resulting stimulus-induced 
activity will be associated with consciousness. 
Th is means that phase resetting may be not only 
neuronally relevant but also phenomenally rel-
evant (see Chapters 18–20 and 28–29).  

    NEURONAL FINDINGS III: BINDING BETWEEN 
DIFFERENT FEATURES OF THE STIMULUS   

 My assumption of diff erence-based coding 
holding during stimulus-induced activity and 
s naturally evokes some objections, which shall 
be discussed briefl y in the following. Th e fi rst 
objection argues that what I  associate with the 
encoding of spatial and temporal diff erences 
in lower-order sensory regions must rather 
be associated with cognitive mechanisms in 
higher-order regions like the prefrontal cortex 
that from the top-down modulate lower-order 
sensory cortical activity. To demonstrate this 
objection and how it can be countered, I  want 
to discuss an example of an imaging study that 
investigated the binding between diff erent fea-
tures of a stimulus. 

 Seymour et al. (2009, 2010) conducted fMRI 
studies in human subjects by exposing them to 
visual stimuli. Th ere were three distinct types 
of visual stimuli. Th e visual stimuli were deter-
mined by their color alone independent of form 
and motion, or they were determined according 
to their form and motion independent of the 
color. Or, fi nally, the stimuli were determined by 
the conjunction of both color and form/motion. 

 To test whether voxels in the diff erent areas 
of the visual cortex (V1, V2, V3, V4, MT/V5) 
are associated with either color, form/motion, 
or the conjunction of both, Seymour et al. (2009, 
2010) applied a multivariate classifi er analysis to 
their fMRI data. 

 What are their results? Th e multivariate clas-
sifi er analysis allowed them to distinguish the 
voxels specifi cally related to the conjunction 
from the voxels that were either related to form/
motion or color. Th ey observed that particular 
voxels in almost every visual region, including 
V1, were specifi cally related to the conjunction 
of both color and form/motion. Th is pattern 
was prevalent in all visual regions except in V4 

where only color-specifi c voxels were observed 
and in MT/V5 with only motion-specifi c voxels 
(as expected from what is known about these 
regions). 

 In sum, these results demonstrate that the 
linkage between color and form/motion and 
thus their binding by synchronization (see later 
for details) occurs already in V1. Otherwise there 
would not be voxels in V1 specifi cally related to 
the conjunction of color and form/motion. 

 Such binding by synchronization seems to 
occur at every level of visual processing as sug-
gested by the observation of conjunction-specifi c 
voxels in all visual areas (see later for further 
results from that study as well as Chapters  11 
and 12 as well as Chapters 18 and 19 for further 
details on such binding by synchronization).  

    NEUROEMPIRICAL OBJECTION IA: 
“HIGHER-ORDER OBJECTION” AND 
HIGHER-ORDER COGNITIVE REGIONS   

 How do these results stand in relation to 
diff erence-based coding? Th e results by Seymour 
et al. (2009, 2010) provide direct support for the 
assumption that there is binding by synchroni-
zation already on the level of V1 and also on all 
subsequent stages of visual processing and its 
respective visual regions. Th is is suggested by the 
observation of voxels specifi cally related to the 
conjunction of color and form/motion. 

 Such conjunction between color and form/
motion is possible only on the basis of encod-
ing diff erences between form/motion and color 
as manifest in the conjunction voxels. Th ese vox-
els refl ect neuronal activity that can be yielded 
only on the basis of encoding the relative diff er-
ence between color and form/motion thus being 
diff erence-based rather than stimulus based as 
based on either form/motion or color alone. 

 One may now want to argue that such 
diff erence-based coding does not occur in pri-
mary visual cortex, that is, V1, itself but is due to 
the top-down modulation of V1 by higher-order 
regions like the prefrontal cortex. Th is means 
that there is no diff erence-based coding in V1 
itself and that it only looks as if there is. Instead, 
the top-down modulation from, for instance, the 
prefrontal cortex links form/motion and color 
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that are encoded by themselves and thus isolated 
and independently of each other in V1. Hence, 
what I diagnose as diff erence-based coding in V1 
turns out to be stimulus-based coding. 

 However, this higher-order objection, as 
I  call it, backfi res and feedbacks to its propo-
nent in very much the same way it describes the 
relationship between higher-order cognitive and 
lower-order sensory regions. Let’s start with the 
higher-order cognitive regions. How can they 
compute the conjunction between form/motion 
and color? 

 Th e only way to do that is to directly match 
and compare them and thus to encode their rela-
tive (spatial and temporal) diff erence. Th is means 
that the higher-order cognitive regions’ neural 
activity must be based on the encoding of spatial 
and temporal diff erences between diff erent stim-
uli rather than on the stimuli themselves (and 
their discrete points in physical time and space). 

 Accordingly, the conjunction between form/
motion and color in higher-order regions 
themselves presuppose diff erence- rather than 
stimulus-based coding in these regions (see also 
Chapter 3). Th is provides one half of our argu-
ment that diff erence-based coding is necessary 
for making possible conjunction between form/
motion and color.  

    NEUROEMPIRICAL OBJECTION IB: 
“HIGHER-ORDER OBJECTION” AND 
LOWER-ORDER SENSORY REGIONS   

 How about the other half of our argument, the 
primary visual cortex, V1? In the higher-order 
scenario, V1 is supposed to encode its neural 
activity in terms of stimulus-based coding; this 
means that its neural activity is determined by 
form/motion and color alone and indepen-
dent of each other and their relative diff erence. 
How now is it possible that conjunction voxels 
between form/motion and color can be observed 
in V1? Th is is realized by top-down modula-
tion as relayed from prefrontal to primary visual 
cortex. 

 Now two scenarios are possible. First, some 
of the voxels encoding form/motion and color 
alone are modulated by the prefrontal input. 
In that case, neural activity in V1 and thus the 

observed voxels must encode the diff erence 
between its own neural activity related to form/
motion or color alone and the prefrontal input, 
that is, the conjunction. What is encoded in V1, 
then, is the relative diff erence between its own 
stimulus-based activity and the activity relayed 
from the higher-order cognitive regions. Th is 
amounts to diff erence-based coding rather than 
stimulus-based coding already holding in V1. 

 Second, another scenario for the prefron-
tal input to aff ect V1 would be that it modu-
lates those cells/cell assemblies in V1 that did 
not encode either form/motion or color alone. 
Th ere would thus be three diff erent cells/cell 
assemblies in V1 with each encoding a diff er-
ent feature, form/motion, color, or the conjunc-
tion of both. Th is would be compatible with the 
observation of three diff erent types of voxels as 
described earlier. 

 However, even this scenario would still pre-
suppose diff erence-based coding namely of the 
diff erence between the prefrontal input and the 
primary visual cortical activity. Otherwise the 
former could not target only those voxels that did 
not encode either form/motion or color alone. 
Hence, even in this scenario, one would have no 
way other than to propose diff erence-based cod-
ing in V1, which, however, operates side by side 
with stimulus-based coding in a parallel way. 

 Th e “higher-order objection” against diff erence- 
based coding does not hold. Even the assump-
tion of higher-order processing accounting for 
the conjunction voxel cannot help but presup-
pose diff erence-based coding in both higher- 
and lower-order regions. Th e only point the 
“higher-order objection” can made is to plead 
for stimulus-based coding to occur in parallel 
to diff erence-based coding in V1. Th is, how-
ever, is not an argument against the necessity of 
diff erence-based coding, but rather one for some 
kind of parallelism between diff erence- and 
stimulus-based coding.  

    NEUROEMPIRICAL OBJECTION IIA: 
“SEGREGATION OBJECTION”   

 Th e opponents of diff erence-based coding may 
want to bring forth yet another argument. In 
addition to the voxel specifi cally related to the 
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conjunction, voxels only related to either form/
motion or color were also observed in all visual 
regions. Th ese voxels seem to be based on the 
exclusive coding of one particular feature while 
explicitly excluding any conjunction between the 
two features. 

 Th is means that the neural activity underly-
ing these voxels can only be based on the fea-
tures themselves rather than on their diff erences, 
thus entailing feature- or stimulus-based cod-
ing rather than diff erence-based coding. Since 
all three stimuli are encoded in isolation and 
independently in terms of stimulus-based cod-
ing, they would be processed in a segregated 
way. One may consequently suggest segregated 
processing of color, form/motion, and their con-
junction in the diff erent subregions of the visual 
cortex. Th is is what I describe as the “segregation 
objection.” which may be considered an argu-
ment against diff erence-based coding. 

 Is such segregated processing compatible with 
diff erence-based coding? Yes and no. It is com-
patible with diff erence-based coding since it may 
hold at least for the conjunction-specifi c voxels. 
In contrast, segregated processing is not compat-
ible with the assumption of diff erence-based cod-
ing as the main and only coding strategy, since 
the other voxels, the ones specifi cally related to 
either form/motion or color alone, seem to pre-
suppose stimulus- rather than diff erence-based 
coding.  

    NEUROEMPIRICAL OBJECTION 
IIB: FUNCTIONAL INDEPENDENCE 
VERSUS FUNCTIONAL DEPENDENCE   

 Do the form/motion- and color-specifi c voxels 
really presuppose stimulus-based coding? If so, 
one would expect not only functional segrega-
tion but also functional independence between 
all three types of voxels (form/motion, color, and 
conjunction). 

 Why is there functional independence? 
Stimulus-based coding presupposes the encod-
ing of diff erent stimuli in isolation and inde-
pendently of each other so that the one stimulus 
does not interfere with the respective other, and 
vice versa (see   Fig. 10-3a  ).      

 Functional independence implies that the 
three voxels do not correlate at all and thus do 
not stand in any relation to each other. Th is was 
not the case, however, in the results by Seymour 
et al. (2009, 2010). Instead, form/motion-, color-, 
and conjunction-specifi c voxels, were negatively 
related to each other:  for instance, the better 
a voxel coded for color, the worse it coded for 
motion/form. Importantly, this also holds for the 
conjunction-specifi c voxels:  the better a voxel 
in V1, V2, and V3 coded the conjunction, the 
worse it coded color. Hence, there was a negative 
correlation, or even stronger, an anti-correlation 
between the three diff erent voxels. 

 As Seymour et  al. (2010, pp. 1951)  them-
selves remark, this suggests that even those vox-
els that code best for one particular feature still 
contain some information about the respec-
tive other features. How is it possible that one 
voxel coding for one particular feature contains 
some information about the respective other 
features? 

 Despite being functionally segregated, the 
three types of voxels are not functionally inde-
pendent of each other since otherwise there 
would be no correlation at all, whether positive 
or negative. Th e negative correlation thus indi-
cates that there must be some degree of func-
tional dependence among the three types of 
voxels. While the voxels are spatially segregated, 
they still seem to be functionally dependent 
on each other since otherwise they would not 
anti-correlate. 

 How is such functional dependence possible? 
One could, of course, argue again with feedback 
connections and top-down modulation from 
higher regions, as I  claimed earlier. Th at, how-
ever, turned out to be empirically implausible 
since in either case it presupposed some kind 
of diff erence-based coding in both lower- and 
higher-order regions (see earlier). Alternatively, 
one could propose that they are coded within 
V1 itself in terms of diff erence-based coding and 
thus in dependence on each other. 

 Th e resulting voxels are then based on the 
diff erence between the three diff erent features 
rather than on the features themselves. In short, 
one would opt for diff erence-based coding rather 
than (feature- or) stimulus-based coding. 
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   Figure 10-3a and b     Coding of form and motion. Th e fi gure illustrates two diff erent ways, stimulus-based 
(a) and diff erence-based coding (b), of the voxels related to form, motion, and their conjunction . ( a ) In 
the case of stimulus-based coding, all three voxels are coded in neural activity in a segregated and inde-
pendent way, entailing diff erent voxels for all three features, motion, form, and conjunction. ( b ) In the 
case of diff erence-based coding, all three—form, motion, and conjunction—are encoded in a segregated 
but dependent way. Th ey are encoded in diff erent voxels, but the degree of activity in each of the voxels 
depends on the degree of activity in the respective other voxels; this is indicated by the arrows. Th e degree 
of activity or intensity in each other the voxels is consecutively encoded on a continuum between −1 and +1 
(artifi cially assumed as minimal and maximal degrees of possible activity) as indicated by the upper line.   

 Th e “segregation objection” is not compatible 
with the empirical data that show negative func-
tional dependence, i.e., anti-correlation, rather 
than functional independence with no correla-
tion at all among the three voxels. Such func-
tional dependence whether positive or negative 
implies that the one voxel contains some kind of 
information about the respective other voxels. 

 Th is, however, is possible only by encod-
ing relative diff erences between diff erent voxels 
rather than the voxels by themselves in an iso-
lated and independent way. Accordingly, the 
data themselves, the anti-correlation, refute the 
“segregation objection” and make necessary or 
unavoidable the assumption of diff erence-based 
coding rather than stimulus-based coding.  

    NEUROEMPIRICAL OBJECTION IIC: 
SEGREGATION AS A NECESSARY OR 
UNAVOIDABLE OUTCOME   

 Th e assumption of diff erence-based coding 
requires more detailed explanation. In the case 

of conjunction-specifi c voxels, diff erence-based 
coding makes perfect sense because here func-
tional dependence is not accompanied by func-
tional segregation but rather functional overlap. 

 Th e case is more diffi  cult for the form/
motion- and color-specifi c voxels where func-
tional dependence goes along with functional 
segregation. Th eir functional segregation sug-
gests stimulus-based coding while their apparent 
functional dependence is better compatible with 
diff erence-based coding. How is it possible for 
one and the same voxel to be associated with two 
contradictory coding strategies, stimulus- and 
diff erence-based coding? 

 I hypothesize that what looks as stimulus- 
based coding to us in the form/motion and 
color voxel can be traced back to the encoding 
of diff erences, or diff erence-based coding. More 
specifi cally, I suppose that the color- and form/
motion-specifi c voxels represent extremes on the 
continuum between minimally (–1) and maxi-
mally (+1) possible diff erences between form/
motion and color. In these voxels, one particular 
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feature predominates over the respective other 
and this predomination corresponds to a nega-
tive relationship as observed in the empirical 
data: the larger diff erence at the one end (–1), as, 
for instance, the form/motion end, is negatively 
correlated with the larger diff erence at the other 
end (+1), the color end. 

 Both form/motion and color voxels may then 
represent extremes of a continuum of diff erent 
diff erences. In contrast, the conjunction-specifi c 
voxels may rather be “located” in the middle of 
the continuum between both extreme diff erences, 
the color and form/motion voxels. If so, the “con-
junction voxels” should negatively correlate with 
the larger diff erences at both extreme poles of the 
continuum. Th is is exactly what the data show. 

 How is that related to the observed functional 
segregation between the three voxels? Th e degree 
of diff erence may correspond to the degree of 
spatial segregation between the three voxels: the 
larger their diff erence, the more spatially they 
may be separated from each other. Smaller dif-
ferences, in contrast, may go along with lower 
degrees of spatial segregation, which ultimately 
may result in functional overlap, as observed in 
the conjunction voxels. 

 I hence propose that the degree of spatial (and 
thus functional) segregation of the three voxels is 
dependent upon their respective degree of (spa-
tial and temporal) diff erence between the three 
features. And to extend this hypothesis even fur-
ther:  the more spatially and functionally segre-
gated the three voxels are from each other, the 
more negatively they are related to each other, 
which is well compatible with the observed data, 
that is, the anti-correlation (see   Fig. 10-3b  ). 

 Taken together, the “segregation objec-
tion” cannot be used as an argument against 
diff erence-based coding. Instead, spatial and 
functional segregation of the three diff erent types 
of voxels are well compatible with their functional 
dependence and ultimately diff erence-based cod-
ing. One may put it even more strongly. Due to 
the presumed link between the degree of encoded 
diff erences and the degree of spatial segregation, 
one may suggest that diff erence-based coding is 
necessarily or unavoidably accompanied with 
functional segregation between spatially distinct 
voxels as the necessary or unavoidable outcome..  

    NEURONAL FINDINGS IVA: “BINDING BY 
CONVERGENCE” VERSUS “BINDING BY 
SYNCHRONIZATION”   

 Let us move away from the fi ndings by Seymour 
to German neuroscientist Wolf Singer. Singer is 
famous for his detection of the neuronal syn-
chronization in the gamma-frequency range 
in visual cortex; he thereby made major con-
tributions to the binding and synchronization 
of cell assemblies and stimuli’s features. Th is 
also strongly touches upon consciousness, as 
it will be discussed in volume II (see especially 
Chapter 19). Here let us consider what he has to 
say about the neural code. 

 Singer (1999, 49–50, 55)  proposes binding 
of neural activity on the basis of spatial conver-
gence when axonal projections from diff erent 
neurons converge onto one and the same neu-
ron. He calls such strategy “binding by conver-
gence” or “binding by conjunction cells.” In such 
case, the given neuron always signals the same 
conjunction of input signals as being based on 
the (anatomo-structural) spatial convergence of 
the neuron’s underlying axonal projections. 

 Th is entails fi xed labeling (“labeled line 
coding”), which is realized by enhancing the 
discharge rate of the given neuron via the con-
junction of the respective input signals; that 
amounts to neural coding based on the dis-
charge rate, that is, “rate coding” as refl ected 
in (for instance) the fi ring rates of neurons (see 
Introduction for a brief explanation of rate cod-
ing).Such “binding by convergence” on the 
basis of rate coding must be distinguished from 
another binding strategy, binding by synchroni-
zation. In this case, as described earlier, two (or 
more) neuronal inputs are tied together not by 
their spatial and thus axonal convergence but 
rather temporally via their respective tempo-
ral position and coherence. In his review paper 
from 1999, Singer calls such binding by synchro-
nization “dynamic binding” and distinguishes it 
from “binding by convergence.” 

 Since it is based on temporal rather than spa-
tial convergence, “dynamic binding” presupposes 
a diff erent coding strategy, “relational coding” 
or “assembly coding,” as Singer calls it; this is so 
because here diff erent neurons are tied together 
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into a (transitory rather than permanent) rela-
tionship or cell assembly. Such “relational coding” 
and its temporal dimension, i.e., temporal con-
vergence, must be distinguished from the earlier 
mentioned rate coding that is rather dominated 
by the spatial dimension, or spatial convergence.  

    NEURONAL FINDINGS IVB: “PARALLEL CODING 
STRATEGIES”   

 Can such double binding, that is, binding by 
convergence and binding by synchronization, 
and their associated coding strategies, that is, 
rate coding and relational coding, be supported 
by empirical data? Th e diff erence between bind-
ing by convergence and binding by synchroniza-
tion seems to somehow mirror the distinction 
between “driving inputs” and “modulatory 
inputs” as described earlier in the fi ndings by 
Lakatos and Schroeder. Driving inputs may rely 
on spatial and thus axonal convergence and, 
following Singer’s assumptions, impact the dis-
charge rate, thus presupposing rate coding. 

 In contrast, modulatory inputs seem to rely 
rather on temporal convergence and “relational 
coding” or “assembly coding.” Hence, though 
not entirely accordant, the distinction between 
driving and modulatory inputs may more or less 
be compatible with the assumption of parallel 
and complementary binding and coding strate-
gies like “binding by convergence”/rate coding 
and “binding-by-synchronization”/relational 
coding. Such parallelism of binding and cod-
ing strategies can ultimately be traced back to a 
parallelism between the processing of spatial and 
temporal dimensions in neural activity. 

 Can we support the assumption of such 
parallel coding strategies by empirical data? 
Further empirical support for parallel coding 
strategies comes from a recent study on stimu-
lus–stimulus interaction by the group around 
Singer (Biederlack et al. 2006). Th ey investigated 
single-cell activity in cat visual cortex (V1) mul-
tisite recording during visual perception of a 
center grating; the latter’s perceived brightness 
was changed by varying the orientation or rela-
tive spatial phase of a surrounding grating. 

 Discharge rates in response to the center 
were signifi cantly enhanced by increasing the 

orientation contrast between the center and the 
surround: the more diff erent center and surround-
ing, the more the discharge rates in response to the 
visual fi xation on the center increased. In contrast, 
high similarity between center and surrounding 
decreased the discharge rates in response to the 
visual fi xation on the center. 

 Most important, the degree of synchroniza-
tion between diff erent neurons decreased once 
the orientation contrast between center and 
surrounding was introduced; however, unlike 
the rate discharge (the fi ring rate), the degree of 
synchronization did not decrease further with 
increasing degrees in the orientation contrast. 

 Th is was diff erent when the phase relations 
between the gratings of the center and the sur-
rounding were changed. Changes in phase rela-
tions did not induce changes in discharge rates 
(fi ring rates), while they did induce changes in 
the degree of synchronization. Th e more off set 
phase relations (while orientations were kept the 
same), the higher degrees of synchronization 
were observed between the diff erent neurons’ 
neural activities. 

 Th ese data provide support in favor of diff er-
ent parallel and complementary coding strate-
gies. Th e degrees of both discharge rates, or fi ring 
rates, and synchronization are modulated by dif-
ferent features of the stimulus, that is, orientation 
and phase relations. Th is indeed suggests diff er-
ent encoding strategies—that is, rate coding and 
relational coding—for the diff erent features of 
the stimuli in terms of discharge rates, or fi ring 
rates, and synchronization between neurons. 

 Singer suggests two parallel coding strate-
gies to operate during the encoding into neu-
ral activity. Th ere is rate coding, as manifested 
in binding-by-convergence that concerns 
mainly the spatial dimension. Th at must be 
distinguished from relational coding with its 
binding-by-synchronization that takes place 
mainly in the temporal dimension.  

    NEURONAL FINDINGS IVC: NEURAL CODING 
AND PSYCHOLOGICAL CONTENTS   

 How is this predominantly neuronal distinction 
related to the psychological level of stimuli and 
their content? Th e psychological level is more 
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explicitly addressed in a later review paper by 
Singer (2009). Here, the two binding strategies 
of binding by convergence and binding by syn-
chronization resurface in the coding strategies of 
“chunking” and “relating.” 

 Briefl y “chunking” describes how diff erent 
features (or stimuli) are grouped into a chunk, 
which may concern particular and fi xed features 
in a fast, rigid, and more or less  a priori  defi ned 
way. Th is presupposes “binding by convergence” 
and rate coding. “Relating,” on the other hand, 
concerns the binding and linkage among diff er-
ent features (or diff erent stimuli) in dependence 
on their respective context, which is rather slow 
and fl exible and not  a priori  defi ned. Th is pre-
supposes binding-by-synchronization and rela-
tional coding. 

 Especially the latter (“relating”) has been 
closely associated with what is described as 
“binding,” which concerns the contents of our 
psychological states, such as during perception. 
Since “binding” is closely related to conscious-
ness and its phenomenal states, for which it has 
been suggested as a possible neural correlate, 
I will discuss it in further detail in Volume II (see 
Introduction I as well as Chapters 18 and 19).  

    NEURONAL HYPOTHESIS IIIA: ENCODING 
OF SPATIOTEMPORAL DIFFERENCES 
INTO NEURAL ACTIVITY   

 Do these diff erent binding strategies, chunking/
binding by convergence and relating/binding 
by synchronization, really presuppose diff erent 
coding strategies? Put into our framework, one 
may want to argue that relating/binding by syn-
chronization is compatible with diff erence-based 
coding as mirrored in Singer’s characteriza-
tion of “relational coding.” While chunking/
binding by convergence may rather presup-
pose stimulus-based coding that is based on 
stimulus-specifi c modulation of discharge rates, 
that is, rate coding. 

 Are the diff erent coding strategies really par-
allel and complementary? Singer’s distinct codes 
basically refl ect spatial and temporal codes. 
Binding by convergence and rate coding presup-
pose basically a spatial code that relies on spatial 
convergence (see earlier), whereas binding by 

synchronization is a temporal code that accounts 
for temporal convergence. I  now hypothesize 
that diff erence-based coding is well suited to 
underlie both spatial and temporal encoding 
strategies of binding. 

 More specifi cally, I hypothesize that the spa-
tial code is not as purely spatial as implicitly pre-
supposed in rate coding. Th e resulting discharge 
rate is also very much dependent on the tempo-
ral positioning of the diff erent inputs and thus 
their relative temporal position to each other. 

 Most important, the spatial position of the 
stimulus is not encoded in isolation of its own 
and other stimuli’s temporal position in space. 
Instead, the spatial position of the stimulus is 
encoded in relation and thus relative diff erence 
to other stimuli’s temporal position in space. 
Hence, what appears to be exclusively spatial 
turns out to be intrinsically spatiotemporal (see 
  Fig. 10-4a,b  ).       

    NEURONAL HYPOTHESIS IIIB: 
DIFFERENCE-BASED CODING IS AN 
INTRINSICALLY SPATIOTEMPORAL 
CODING STRATEGY   

 Th is means that binding by convergence/chunk-
ing may also presuppose diff erence-based cod-
ing rather than stimulus-based coding. If so, 
both binding by convergence and binding by 
synchronization presuppose one and the same 
coding strategy, diff erence-based coding. 

 Both rate and relational coding must be 
regarded as two variants of the same underlying 
coding strategy; that is, diff erent-based coding, 
rather than as two diff erent and parallel oper-
ating coding strategies. Diff erence-based cod-
ing allows for the encoding of stimuli in both 
domains, spatial and temporal, at the same time, 
without segregating them from each other into 
parallel coding strategies. 

 Th is means that diff erence-based coding 
must be characterized as a unifying and intrin-
sically spatiotemporal coding strategy that 
applies the same code to both spatial and tem-
poral dimensions of stimulus-processing and 
subsequent neural activity. More radically put, 
diff erence-based coding makes superfl uous 
the assumption of segregated, parallel coding 
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strategies for spatial and temporal dimensions of 
neural activity. 

 Th e characterization of diff erence-based cod-
ing as unifying spatiotemporal encoding strat-
egy changes the view on spatial and temporal 
coding of neural activity. While Singer seems to 
suppose that temporal and spatial coding are dif-
ferent and extrinsic, both coding strategies may 
turn out to be distinct and intrinsic aspects of 
the same underlying coding strategy; namely, 
diff erence-based coding. 

 More specifi cally, the seemingly purely spa-
tial and temporal forms of coding must then be 
regarded as extremes on the continuum of diff er-
ent possible spatiotemporal diff erences encoded 
into neural activity. What Singer describes as 
purely spatial coding turns out to be a spatiotem-
poral diff erence whose balance is tilted strongly 

toward the spatial pole, whereas the converse 
holds for the seemingly purely temporal forms 
of coding.  

    NEUROCONCEPTUAL REMARK: BRAIN 
VERSUS OBSERVER   

 Why does Singer nevertheless propose two dif-
ferent coding strategies for spatial and temporal 
dimensions? I  suggest that this can be traced 
back to his need as an observer to experimen-
tally distinguish between spatial and temporal 
dimensions in his operational variables—for 
instance, the one he measures in fMRI or EEG. 
From his acquisition of both spatial and tempo-
ral variables in segregated ways, he then seems to 
infer that they must also be  encoded  by diff erent 
encoding strategies, spatial and temporal. 

 

Spatial coding
(a)

Temporal coding

0 1

0 1

Pure Temporal
coding as extreme
on a continuum:
Relational coding
(Singer)

–1

(b)

0 1

Pure Spatial
coding as extreme
on a continuum:
Rate coding
(Singer)

   Figure  10-4a and b     Functional segregation and continuum. Th e fi gure illustrates two diff erent 
forms, stimulus- and diff erence-based coding, of the relationship between spatial and temporal coding 
of neural activity.  ( a ) Stimulus-based coding implies segregated and independent coding of spatial and 
temporal dimensions into neural activity, with each dimension showing its own distinct continuum. 
( b ) Diff erence-based coding codes spatial and temporal dimensions on a continuum common to both. 
Here spatial and temporal dimensions are no longer considered as segregated and independent but 
rather as extremes on a common continuum. What W. Singer calls “relational coding” and “rate coding,” 
indicating the coding of temporal and spatial dimensions respectively, are then just extreme instances 
on a continuum common on to both dimensions.   
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 While the data acquisition and the parsing 
between spatial and temporal measures can be 
taken as given (for the sake of simplicity), the 
inference from the data about the brain to the 
brain itself and its coding strategy may never-
theless be put in doubt. Th e way we as observers 
can (and cannot) measure and thus observe the 
brain does not need to correspond one-to-one to 
the way the brain itself, independently of us and 
our observation, encodes its neural activity. 

 In other words, we need to distinguish 
between the observer’s experimental measures 
and the brain’s neuronal measures. Th e dis-
tinction between observer-based experimental 
measures and brain-based neuronal measures 
implies that we as observers need to refrain 
from projecting our own role as observers and 
its experimental requirements onto the neuronal 
function of the brain itself, such as its encoding 
strategies. 

 Th erefore, pending more experimental sup-
port for diff erence-based coding in the future, 
I postulate the following: the distinction between 
parallel and segregated spatial and tempo-
ral coding strategies may turn out to be more 
related to us and our roles as observers of the 
brain (observer-based) than to the brain itself, as 
it is independent of us and our observation, i.e., 
brain-based (see also appendix 3 in this Volume 
I  for more details on brain- vs. observer-based 
concepts).  

    Open Questions   

 Th e fi rst main question is whether phase reset-
ting described here is also behaviorally relevant. 
I have only focused on the neuronal mechanisms 
to describe stimulus–stimulus interaction in 
order to set a template for rest–stimulus inter-
action. Phase resetting and especially gamma 

synchronization have been observed to be rel-
evant in a variety of diff erent functions, includ-
ing sensorimotor, visual, and cognitive. Since 
gamma synchronization especially may also be 
phenomenally relevant (i.e., for consciousness), 
I will delegate their discussion to Volume II (see 
Chapters 14, 15, and 18–20). 
 Another issue pertains to the question of 
whether the discussion of parallel versus unify-
ing coding strategies is only theoretically rel-
evant or also empirically, that is, neuronally, 
important. Empirical importance would, for 
instance, be given if a particular psychological 
function is possible only on the basis of one or 
the other coding strategy, the unifying approach 
of diff erence-based coding or the parallel coding 
strategies of rate and relational coding. 
 As demonstrated in this chapter, this also per-
tains to the question of how spatial and tempo-
ral dimensions are encoded into neural activity. 
I  will argue that consciousness is possible only 
on the basis of a unifying coding strategy like 
diff erence-based coding. In contrast, the associa-
tion of a neuronal state with a phenomenal state, 
or consciousness, would remain impossible if 
spatial and temporal dimensions were encoded 
separately and independently into neural activity 
as in stimulus-based coding. Th is is the subject 
of volume II. 
 Why do we need a common coding strategy for 
the encoding of spatial and temporal dimensions 
into neural activity in order to associate a phe-
nomenal state, consciousness, with the neuronal 
states? Because only an encoding strategy com-
mon to both spatial and temporal dimensions 
allows for their intrinsic integration in neural 
activity. Th is will allow us to understand how 
the brain can predispose consciousness where 
spatial and temporal dimensions remain insepa-
rable in our subjective experience, that is, phe-
nomenal states. Th is will be explained in detail 
in Volume II.             
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    Summary   

 Th e brain receives continuous exteroceptive input 
from the environment. However, the exterocep-
tive stimuli do not encounter a passive empty 
brain but rather a highly active brain that consti-
tutes a statistically based spatiotemporal structure 
(see Part II) and generates predictions (see Part 
III). Th is means that the exteroceptive stimuli 
have no chance other than to interact with the 
brain’s resting-state activity if, metaphorically 
speaking, “they want to be processed and leave 
their trace in the brain.” Th is amounts to what 
I  call rest–stimulus interaction. What are the 
neuronal principles and mechanisms underly-
ing rest–stimulus interaction? My assumption is 
that the very same principles underlying stimu-
lus–stimulus interaction (see Chapter 10) do also 
apply to rest–stimulus interaction (and also to 
the converse direction in stimulus–rest interac-
tion). Recent data from both animals and humans 
show that the degree of stimulus-induced activ-
ity, including the associated behavioral measures, 
can be predicted by the degree of the preceding 
resting-state activity level. How is this possible? 
For this to be possible, the stimulus-induced 
activity must be linked and connected to the 
resting-state activity. Th is is, as I assume, possible 
by encoding the extrinsic stimulus in spatial and 
temporal relationship, that is, relative diff erence, 
from the brain’s intrinsic activity, thus presuppos-
ing diff erence-based coding. Why and how can 
the preceding resting-state activity be relevant for 
and even predict the stimulus as processed in sub-
sequent stimulus-induced activity? Based on pre-
vious empirical data, one may hypothesize that 
previous stimuli left  their traces in the resting-state 

activity via stimulus–rest interaction. Th e preced-
ing stimulus–rest interaction thus predisposes 
the resting state for the prediction of stimulus and 
consequently for rest–stimulus interaction. Based 
on their actual state, the resting state’s spatial and 
functional features, for example, functional con-
nectivity and low-frequency fl uctuations, may 
then provide a “spatiotemporal window of oppor-
tunity” for subsequent rest–stimulus interaction. 
Th e degree of the resting state’s “spatiotemporal 
window of opportunity” may then also determine 
the degree of diff erence-based coding (and its bal-
ance to the degree of stimulus-based coding) the 
resting state can possibly apply to its own process-
ing of the extrinsic stimulus during rest–stimu-
lus interaction. Th is means that the resting state’s 
activity level predisposes, not only the degree 
of diff erence-based coding, but also the degree 
of stimulus-induced activity and its associated 
behavioral and phenomenal eff ects.    

    Key Concepts and Topics Covered   

 Spatial and temporal coincidence, nonlinear-
ity, rest–stimulus interaction, diff erence-based 
coding, stimulus–rest interaction, biophysical- 
computational limits, spatiotemporal window of 
opportunity    

    NEUROEMPIRICAL BACKGROUND I: 
STIMULUS-INDUCED ACTIVITY AND RESTING 
STATE ACTIVITY   

 I discussed the neuronal mechanisms and prin-
ciples guiding stimulus–stimulus interaction in 

           CHAPTER 11 
 Rest–Stimulus Interaction and 
Difference-Based Coding        
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the last chapter. Earlier, in parts II and III, I dem-
onstrated the neuronal mechanisms underlying 
the brain’s intrinsic activity and its continuous 
changes with the constitution of a statistically 
based spatiotemporal structure. Th e question is 
now whether and how the brain’s resting-state 
activity impacts stimulus-induced activity. I here 
hypothesize that thereby the same neuronal 
principles and mechanisms are at work as during 
stimulus–stimulus interaction. 

 Th ere have been several studies in both ani-
mals and humans that demonstrate indeed 
that the resting-state activity strongly shapes 
and modulates stimulus-induced activity (see 
Northoff  et  al. 2010 for a recent review). For 
heuristic purposes, I  distinguish between intra- 
and transregional rest–stimulus interaction. 
Intraregional rest–stimulus interaction is given 
when the resting state of one particular region 
impacts the stimulus-induced activity in the very 
same region. In contrast, I speak of transregional 
rest–stimulus interaction when the resting-state 
activity in one region/network impacts the 
stimulus-induced activity in another region/
network. 

 One of the pioneers of investigating rest–stim-
ulus interaction in human functional imaging is 
Andreas Kleinschmidt. Andreas Kleinschmidt 
is a German neuroscientist who works in both 
Frankfurt, Germany, and Paris, France. He may 
thereby be able to combine the fi n, light French 
cuisine with the sometimes rather heavy German 
food. While I do not know whether and how he 
combines French and German food, he clearly 
combines the investigation of resting-state activ-
ity and stimulus-induced activity in extraor-
dinary ways. Henceforth, I  will focus on his 
studies to reveal some of the neuronal mecha-
nisms underlying rest–stimulus interaction. But 
I remain unable to describe all studies by other 
authors in full detail, which would be beyond the 
scope of this chapter (see the following, however, 
for a tentative overview).  

    NEURONAL FINDINGS IA: INTRA-REGIONAL 
REST–STIMULUS INTERACTION 

    One functional magnetic resonance imaging 
(fMRI) study from Kleinschmidt’s group focused 

on the auditory cortex (Sadaghiani et al. 2009). 
Th ey let subjects perform an auditory detection 
task and presented broadband noise stimuli in 
unpredictable intervals of 20–40 ms. Th e sub-
jects had to press a button when, and only when, 
they thought they heard the target sound; oth-
erwise, they did not hit the button. Th is allowed 
the researchers to compare the neural activity 
preceding hits with the one preceding instances 
where subjects did not hear the target sound. 

 Interestingly, successful detection was pre-
ceded by signifi cantly higher prestimulus activ-
ity, for example, resting-state activity, in auditory 
cortex, when compared to misses. Th at means 
that the level of resting-state activity in auditory 
cortex impacted the degree of perception, that is, 
whether subjects could hear the auditory stimuli. 

 How about rest–stimulus interaction in 
a sensory modality other than the auditory? 
Kleinschmidt’s group also investigated rest–
stimulus interaction in the visual modality (see 
Hesselmann et  al. 2008). Higher prestimulus 
resting-state activity levels in the fusiform face 
area were related to subsequent perception of a 
face rather than a vase in the Rubin’s ambigu-
ous vase-face fi gure. Th is means that the higher 
resting-state activity in the fusiform face biases 
the subsequent perceptual content toward seeing 
the face, rather than the vase (see   Fig. 11-1a  ).      

 Analogous fi ndings were observed with 
another visual stimulus like visual motion:  the 
resting-state activity in the visual motion area in 
the middle temporal cortex (V5/MT) predicted 
the degree of the subsequent perception of 
coherent motion (Hesselmann et al. 2008). Th ey 
also related prestimulus resting-state activity and 
peak stimulus-induced activity with behavioral 
performance:  the less prestimulus resting-state 
activity and peak stimulus-induced activity cor-
related each other, the better the subjects’ sub-
sequent behavioral performance, for example, 
the motion perception. Hence, better behavioral 
performance went along with increased distinc-
tion of stimulus-induced activity from the pre-
ceding resting-state activity. 

 Th e authors postulate in another paper 
(Hesselmann et al. 2008) and a subsequent review 
paper (Sadaghiani et al. 2010) nonlinear interac-
tion between the resting state and the stimulus 
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   Figure 11-1a     Local spontaneous variations in ongoing activity of specialized sensory regions impact 
perception.  Th e upper part illustrates the paradigm: (a) auditory detection experiment: in a free-response 
setting subjects detected an auditory target stimulus presented at perceptual threshold. (b) Perceptual 
decision on an ambiguous fi gure: subjects reported either faces or vase perception in response to fl ashes 
of the faces-vase ambiguous fi gure. (c) Motion decision experiment: random dot motion was presented 
at motion coherence threshold and subjects decided trial by trial whether motion was coherent or ran-
dom. In all experiments, trials followed at long and unpredictable intervals. In each experiment, the 
pre-stimulus BOLD signal (dotted vertical line marking stimulus onset) was examined as a function 
of perceptual outcome and sampled from accordingly specialized sensory areas. Th e corresponding 
regions of interest (early auditory cortex, FFA and hMT+, respectively) are presented on a canonical 
infl ated cortical surface of the right hemisphere. In all experiments, higher pre-stimulus time course 
in the respective sensory region biased towards perceiving stimulus properties for which these regions 
are particularly sensitive. Error bars represent standard error across subjects.     (Figure 3 reprinted from 
Sadaghiani S, Hesselmann G, Friston KJ, and Kleinschmidt A (2010). Th e relation of ongoing brain activ-
ity, evoked neural responses, and cognition.  Front Syst Neuroscie  2010, June 23, 4:20.)    

during the generation of stimulus-induced activ-
ity. Th ey argue that rest–stimulus interaction 
does not result from mere addition or summa-
tion of the levels of both resting-state activity 
and stimulus-induced activity. 

 Instead, the resting-state activity seems to exert 
a specifi c mechanism by itself, by means of which 
it is able to impact subsequent stimulus-induced 
activity. Th ereby the level of the resting-state 
activity itself may set the threshold for the degree 
to which the nonlinear mechanism can be exerted 
and imposed upon stimulus-induced activity (see 
Chapter 12 for more details on non-linearity dur-
ing rest-stimulus interaction) 

 Does intraregional rest–stimulus interac-
tion also hold in regions other than the sen-
sory cortex? Kleinschmidt’s group (Coste et  al. 
2011)  conducted a Stroop task wherein the 
names of colors interfered with the color in 
which the respective color names were presented 
(the word “green” was, for instance, presented 
inside the color “red”). Subjects had to push a 
button to determine the color and whether it was 
congruent or incongruent. 

 Th ey again showed that the pre-stimulus activ-
ity in relevant regions like the anterior cingulate 
cortex (ACC) and the dorsolateral prefrontal 
cortex (DLPFC) predicted subsequent behavioral 
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performance, that is, reaction times:  the higher 
the pre-stimulus resting-state activity in the ACC 
and the DLPFC, the faster the subsequent reac-
tion times in response to the stimuli. 

 While this concerns cognitive regions like 
the ACC and the DLPLFC, the reverse relation-
ship was observed in sensory regions involved 
in color and word processing:  the higher the 
pre-stimulus resting-state activity in the right 
color-sensitive area and the visual word form 
area, the slower the subsequent reaction times. 
Th ese data clearly show that rest–stimulus inter-
action is mediated by both higher order cog-
nitive and lower order sensory regions but in 
diff erent ways.  

    NEURONAL FINDINGS IB: TRANSREGIONAL 
REST–STIMULUS INTERACTION   

 So far we have discussed only intra-regional 
rest–stimulus interaction. How about the impact 
of the resting-state activity in one region on the 
stimulus-induced activity in another region? 
Th is may be subsumed under the concept of 
“trans-regional rest–stimulus interaction.” 

 A more or less analogous observation of tran-
sregional eff ects in humans was fi rst shown in a 
study by Greicius and Menon (2004). Th ey inves-
tigated how the default-mode network (DMN), 
the task-negative network, impacts subsequent 
stimulus-induced activity in visual and auditory 
tasks during passive sensory tasks within each 
subject. 

 Th e level of activity in the DMN during 
stimulation predicted the degree of neuronal 
activity in both visual and auditory cortex dur-
ing the auditory and visual tasks:  the lower 
the activity in the task-negative regions of the 
DMN during auditory/visual stimulation, the 
higher the stimulus-induced neuronal activity 
in task-positive regions like the auditory and 
visual cortex. Hence, the level of resting state 
activity in the task-negative regions of the DMN 
impacts the stimulus-induced neuronal activity 
in task-positive regions. 

 Support for the impact of the DMN on sen-
sory cortex also comes from the aforementioned 
auditory detection study by Sadaghiani et  al. 

(2009; see also Boly et  al. 2007; Mennes et  al. 
2011; Liu et al. 2011, for analogous results that 
demonstrate the impact of the DMN’s resting 
state on subsequent stimulus-induced activity in 
other regions). In addition to the auditory cortex 
(see earlier), other regions like the precuneus, 
the anterior insula, the thalamus, the medial pre-
frontal cortex, and the anterior cingulate cortex 
also showed higher pre-stimulus activity that 
preceded hits but not the misses: the higher the 
pre-stimulus activity in these regions, the better 
the subsequent behavioral performance; that is, 
successful detection of the target sound. 

 Interestingly, pre-stimulus activity in the 
regions of the dorsal attention system, including 
the parietal and lateral frontal cortices, was biased 
toward misses. Th e higher the pre-stimulus 
resting-state activity in these regions, the more 
likely subjects were to miss and not hear the 
target sound. Th is again underscores that tran-
sregional rest–stimulus interaction may occur 
throughout the whole brain, though in diff erent 
ways in diff erent regions and networks. 

 What about functional connectivity during 
stimulus-induced activity? Smith et  al. (2009) 
collected data from various fMRI activation 
studies that focused on stimulus-induced activ-
ity during diff erent kinds of stimuli and tasks. In 
addition (and independently), they also inves-
tigated resting-state connectivity in a separate 
sample of subjects. 

 In both cases (meta-analysis of their subject 
groups), they used independent component 
analysis (ICA) to delineate the regions whose 
time series correlated with each other to inves-
tigate the neural overlap of the resting state 
networks with those during stimulus-induced 
activity. Interestingly, the networks that 
yielded functional activity (FC) during the 
stimulus-induced activity resembled very much 
the FC during resting state activity. Going one 
step further, they also demonstrated that the 
resting state networks persisted more or less 
during the stimulus-induced activity. Th is means 
that the neural networks are continuously con-
nected and are thus ‘active’ during both resting 
state and stimulus-induced activity with the lat-
ter only modulating the FC of the former. 
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 In sum, the neural networks and their FC 
during stimulus-induced activity do seem to be 
very much predisposed by the ones during the 
resting state. Th e networks and their functional 
connectivity in the resting state may be regarded 
as necessary though non-suffi  cient condition of 
the kind of neural networks and their degrees 
of functional connectivity that can possibly be 
elicited by the stimulus. Hence, there is tran-
sregional rest–stimulus interaction, which also 
predicts the behavioral (and also mental; see 
Volume II for details) states associated with the 
respective stimulus-induced activity.  

    NEURONAL FINDINGS IIA: CAUSAL 
INTERACTION BETWEEN RESTING-STATE AND 
STIMULUS-INDUCED ACTIVITY IN ANIMALS 

   Th ese data clearly demonstrate that the 
resting-state activity level has an impact on sub-
sequent stimulus-induced activity and its behav-
ioral eff ects. What one needs to show, however, 
is that the resting-state activity causally impacts 
the stimulus-induced activity. One strategy 
here may be to vary the overall global level of 
resting-state activity and then to see how that 
impacts stimulus-induced activity during par-
ticular tasks. Th is was done in animals in a study 
by the group around Robert Shulman. 

 You may remember from part II, Robert 
Shulman is the physicist at Yale University who 
investigated the baseline metabolism of the brain 
and how it impacts the latter’s intrinsic activity 
level. Now he went one step further and tested 
how the baseline metabolism impacts subse-
quent stimulus-induced activity in an animal 
study by Maandag et al. (2007). 

 Maandag et al. (2007) induced pharmacologi-
cally (using anesthetic drugs halothane and chlo-
ralose that are supposed to act, at least in part, 
via GABA) high and low levels of resting-state 
activity (RSA) in rats and measured their neu-
ral activity in fMRI during forepaw stimulation. 
Th e high level of resting activity was associated 
with widespread activity across the cortex and 
rather weak evoked activity in sensorimotor 
cortex during the forepaw movement. Th is pat-
tern was reversed in the low RSA where neural 

activity was stronger in the sensorimotor cortex 
but more or less absent in other cortical regions. 

 Th ese results demonstrate that the level 
of RSA may modulate the distribution and 
intensity of stimulus-induced activity in diff er-
ent ways in diff erent cortical regions (see also 
Shulman et al. 2009a and b; and van Eijsden et al. 
2009, for discussion of the results by Maandag 
on a conceptual level). Most important, they 
provide evidence in favor of a causal impact of 
the resting-state activity on both intra- and tran-
sregional stimulus-induced activity.  

    NEURONAL FINDINGS IIB: CAUSAL 
INTERACTION BETWEEN RESTING-STATE 
ACTIVITY AND STIMULUS-INDUCED ACTIVITY 
IN HUMANS   

 How about such causal rest–stimulus interaction 
in humans? For that, Pengmin Qin (Qin et  al. 
2013)  from our group devised a clever experi-
mental design by taking advantage of the dis-
tinction between diff erent baselines. 

 Recall that we distinguished in Chapter  4 
between diff erent baselines in the brain. Th e 
“exteroceptive baseline” signifi es the brain’s rest-
ing state during unspecifi c exteroceptive stim-
uli during eyes open, while the “interoceptive 
baseline” describes the resting state when the 
eyes are closed and the unspecifi c interoceptive 
stimulus predominates. What did Pengmin Qin 
do in order to test for rest–stimulus interaction? 
He delivered the same auditory stimuli once 
during eyes open and once during eyes closed. 
Th is allowed him to test for the causal impact of 
two diff erent resting states, that is, intero- and 
exteroceptive baselines, on the stimulus-induced 
activity related to the same stimulus. 

 First, based on a special acquisition technique 
in fMRI, for example, sparse sampling, Pengmin 
Qin determined the impact of the scanner noise 
on the auditory cortex and compared that con-
dition to the complete absence of any scanner 
noise. As expected, this yielded strong activity 
changes in the bilateral auditory cortex in the 
comparison of noise versus no noise. Th is served 
to determine and locate the auditory cortex’s 
resting-state activity, albeit indirectly, via the 
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comparison of noise versus no noise. He then 
used the exact location in auditory cortex as the 
region of interest for the subsequent analyses. 

 In a second step, he conducted data acqui-
sition in fMRI during eyes open and closed to 
investigate the resting-state activity in visual 
cortex and its modulation by a very basic stimu-
lus, eyes open. Analogous to the auditory cor-
tex, this served to determine the visual cortex’s 
resting-state activity albeit indirectly via eyes 
open; this region was then used as a region of 
interest in subsequent analyses. Data in both 

eyes open and closed conditions were acquired 
in two diff erent modes, in 20-s periods (“block 
design”), which allowed for the generation of 
BOLD changes, that is, neural activity, and 6 min 
periods to determine functional connectivity of 
the visual cortex to other regions, for instance, 
the auditory cortex. 

 Finally, in a third step, Qin et  al. (2012) 
investigated auditory name perception in two 
conditions, eyes open and closed, by letting 
subjects listen to the same names during both 
conditions:  closed and open eyes. Th is served 
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   Figure 11-1b     Nonlinear rest–stimulus interaction in auditory cortex.  Th e fi gure describes the out-
come/signal changes in left  and right auditory cortex (lAC, rAC) of a functional magnetic resonance 
imaging (fMRI) study by Qin et  al. (2013), where the same auditory stimuli (subject’s own name/
SON as indicated by red bars; unknown name/UN as indicated by black bars) were presented during 
two diff erent resting-state conditions, eyes closed (EC) and eyes open (EO). ( a ) Th e fi gure shows the 
signal changes (bar diagrams) for the two conditions (own and unknown name) in both right and left  
auditory cortex. While the subject’s own name elicited the same degree of signal change during both 
EC and EO, this was not the case in the unknown name; here the signal change was much stronger 
during EO than EC. Since the stimuli were the same in both EC and EO, this can only be due to the 
diff erence in the resting-state activity itself, that is, the change from EC to EO. Th is diff erence with 
regard to the unknown name during EC and EO is further illustrated by fi gures ( b ) (based on real 
data) and ( c ) (schematically) showing that it can only be related to the diff erence in the resting-state 
activity caused by the diff erence between EC and EO. Th e diff erential reactivity of the resting state 
during EC and EO to the same stimulus, that is, the unknown name, while showing similar reactivity 
to another stimulus, the subject’s own name, is strongly indicative of nonlinear (rather than linear) 
rest–stimulus interaction.   
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to investigate the impact of eyes open and 
closed, mirroring diff erent baselines (i.e., extero- 
and interoceptive baseline; see Chapter  4) on 
stimulus-induced activity associated with the 
same stimulus (see   Fig. 11-1b  ).      

 How about the impact of the diff erent resting 
states on stimulus-induced activity? During eyes 
closed, the subject’s own name induced signifi -
cantly stronger activity in auditory cortex than 
the other person’s name. Th is diff erence disap-
peared, however, when the same names, his own 
and others, were presented during eyes open. 
Since the stimuli were the same in both cases, 
i.e., his own and other names, the absence of any 
diff erence in signal change between one’s own 
and other names during eyes open can only be 
due to the resting state itself and thus to the dif-
ference between eyes closed and open. 

 Th is means that the resting-state activity 
in auditory cortex must have undergone some 
changes when opening the eyes, thereby appar-
ently changing its sensitivity to especially the 
other names’ stimuli. While we currently do 
not know what exactly changed in the resting 
state itself, this demonstrates the causal impact 
of the resting-state activity level on subsequent 
stimulus-induced activity in auditory cortex. 

 Taken together, these fi ndings show that dif-
ferent levels of resting-state activity in auditory 
cortex (during eyes open and closed) impact sub-
sequent stimulus-induced activity, that is, name 
perception, in the very same region. Th is indicates 
that there must be some interaction between the 
resting-state activity and the stimulus-induced 
activity in auditory cortex. Hence, the amount 
or degree of stimulus-induced activity is not only 
determined by the stimulus itself but also by the 
level of the resting-state activity. Th e exact neu-
ronal mechanisms underlying the resting state’s 
impact on stimulus-induced activity remain 
unclear (see later for further discussion).  

    NEURONAL HYPOTHESIS IA: DIFFERENCE-BASED 
CODING OF REST–STIMULUS INTERACTION   

 What kind of neural coding and which neuro-
nal mechanisms mediate the reported intra- 
and transregional rest–stimulus interaction? 
Th e observed dependence of the possible 

degree of stimulus-induced activity on the pre-
ceding resting-state activity level is possible 
only if the activity the stimulus elicits, that is, 
stimulus-induced activity is encoded in its rela-
tive (spatial and temporal) diff erence from the 
resting-state activity level. 

 Th e degree of stimulus-induced activity is 
consequently determined by the degree of the 
“virtual” diff erence between resting-state activity 
and stimulus-induced activity (if it were induced 
independent of the brain’s resting-state activity). 
In short, I presume diff erence-based coding dur-
ing rest–stimulus interaction. 

 If, in contrast, there were stimulus-induced 
activity, the resulting stimulus-induced activ-
ity should be completely and exclusively traced 
back to the stimulus itself, while the preceding 
resting-state activity should have no impact at 
all. Th at contradicts, however, the fi ndings by 
the group around Kleinschmidt and others (see 
earlier discussion, as well as Northoff  et al. 2010, 
for a recent review). 

 Th e assumption of stimulus-based cod-
ing also contradicts the fi ndings by Qin et  al. 
(2013):  if stimulus-based coding holds, hear-
ing the same name should lead to the same 
degree of stimulus-induced during both eyes 
open and closed. Th is, however, is not the case, 
as described earlier. Instead, the resting-state 
activity level impacts and predicts subsequent 
stimulus-induced activity, including its associ-
ated behavioral (and mental) states. 

 Based on these observations, I  hypothesize 
that what is encoded into stimulus-induced 
activity is the (virtual spatiotemporal) diff er-
ence between the actual resting-state activ-
ity level and the degree of stimulus-induced 
activity if it were induced isolated and inde-
pendent of any resting-state activity. In short, 
I  postulate that rest–stimulus interaction pre-
supposes diff erence-based coding rather than 
stimulus-based coding.  

    NEURONAL HYPOTHESIS IB: DIFFERENCE-BASED 
CODING OF REST–STIMULUS INTERACTION 
AND CONSCIOUSNESS   

 Why is the characterization of rest–stimu-
lus interaction by diff erence-based coding so 
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important? I  hypothesize that diff erence-based 
coding of rest–stimulus interaction is relevant 
not only neuronally but also phenomenally; that 
is, for consciousness. If the stimulus is encoded 
in terms of stimulus-based coding, it is processed 
more or less independently and isolated from the 
resting-state activity. Th is means that there is no 
real interaction between rest and stimulus in the 
case of stimulus-induced activity. 

 Based on recent empirical data (see 
Chapters  28 and 29 in Volume II for details) 
I  propose that this is exactly what happens in 
patients with vegetative state (VS) who have 
lost their consciousness. Due to (presumably) 
their lack of metabolic energy, these patients 
are apparently no longer able to encode extrin-
sic stimuli relative to the resting state activity in 
terms of spatial and temporal diff erences. Th eir 
degree of diff erence-based coding during rest–
stimulus interaction is consequently rather low, 
while the degree of stimulus-based coding is 
rather high. 

 What does such reduced diff erence-based 
coding imply for the processing of the stimu-
lus? Th e stimulus can no longer properly inter-
act with the resting-state activity. For reasons 
that will become clear in Volume II, I  deem 
proper rest–stimulus interaction necessary in 
order to associate the resulting purely neuronal 
stimulus-induced activity with consciousness 
and its phenomenal features. Th e loss of proper 
rest–stimulus interaction, due to the extremely 
low degree of diff erence-based coding, may 
then go along with loss of consciousness as 
is observed in VS patients (see Chapters  28 
and 29 for details). Accordingly, I  suggest that 
diff erence-based coding of rest–stimulus inter-
action is relevant not only neuronally, but also 
phenomenally.  

    NEURONAL HYPOTHESIS IIA: REST–REST 
INTERACTION PRECEDES REST–REST 
INTERACTION   

 How can we specify the neuronal mechanisms 
underlying diff erence-based coding of rest–
stimulus interaction? Let us remember what 
I stated earlier, in the context of stimulus–stimu-
lus interaction. Th ere I described four functional 

principles, spatial and temporal coincidence, 
inverse eff ectiveness, and nonlinearity, which 
presuppose diff erence-based coding rather 
than stimulus-based coding (see Chapter 10 for 
details). 

 If we can now show that the same principles 
also hold for and determine rest–stimulus inter-
action, one must postulate that the latter also pre-
supposes diff erence- rather than stimulus-based 
coding. Accordingly, since the same functional 
principles apply, I postulate that diff erence-based 
coding applies to rest–stimulus interaction in 
very much the same way as it seems to operate 
during stimulus–stimulus interaction. 

 Let us be more concrete and discuss each 
principle separately, starting with the prin-
ciple of spatial coincidence. Th e principle of 
spatial coincidence states that the degree of 
stimulus-induced activity is dependent on the 
degree to which diff erent stimuli and their under-
lying neuronal activity converge spatially. How is 
transregional rest–stimulus interaction, such as 
that between the DMN’s resting-state activity 
level and the sensory cortical stimulus-induced 
activity, possible? 

 I propose that there must be some prior tran-
sregional interaction within the resting state 
itself, that is, rest–rest interaction in that the 
DMN’s resting-state activity must modulate the 
resting-state activity level of the sensory cortex 
(see Qin et al. 2013 for empirical support). Hence, 
transregional rest–stimulus interaction seems to 
presuppose transregional rest–rest interaction, 
which in turn predisposes the possible range of 
subsequent stimulus-induced activity.  

    NEURONAL HYPOTHESIS IIB: “SPATIAL 
COINCIDENCE” DURING REST–STIMULUS 
INTERACTION   

 What does this tell us about the spatial nature 
of rest–stimulus interaction? I  hypothesize 
that there must be spatial coincidence between 
resting-state activity changes and the neu-
ral activity changes as they can potentially be 
induced by the stimulus. More specifi cally, the 
spatial pattern of the preceding rest–rest interac-
tion must coincide with the spatial and temporal 
pattern related to the stimulus. What do I mean, 
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however, when I  speak of coincidence between 
rest and stimulus? 

 Th e reference to spatial (and temporal) pat-
tern refers to what we described in parts I and II 
as the stimuli’s statistical frequency distribution 
across diff erent discrete points in physical time 
and space; that is, the stimuli’s natural statis-
tics. As discussed in the preceding chapters (see 
Chapters  6 and 9), the same holds on the side 
of the brain and its resting-state activity: analo-
gously, the brain’s intrinsic activity shows a statis-
tical frequency distribution in its neural activity, 
its neuronal statistics (see Chapters 6 and 9) as 
they are manifested in what I  described as the 
resting state’s “spatial structure” (see Chapter 4). 

 What does this imply for rest–stimulus inter-
action? Th is means that the degree of spatial 
coincidence between the resting state’s and the 
stimuli’s statistically based spatial (and temporal) 
pattern ultimately comes down to the degree to 
which natural and neuronal statistics match and 
compare with each other. I henceforth hypoth-
esize the principle of spatial coincidence to also 
apply to rest–stimulus interaction:  Th is prin-
ciple is determined by statistically based spatial 
coincidence between the resting state’s spatial 
structure, its neuronal statistics, and the stimuli’s 
diff erent discrete points in physical space, their 
natural statistics.  

    NEURONAL HYPOTHESIS IIC: “TEMPORAL 
COINCIDENCE” DURING REST–STIMULUS 
INTERACTION   

 What about the principle of temporal coinci-
dence? Th e principle of temporal coincidence 
states that the degree of stimulus-induced activ-
ity is dependent on the degree to which, and 
how, diff erent stimuli and their underlying neu-
ronal activity converge temporally. 

 Electroencephalography (EEG) studies (see 
Northoff  et  al. 2010 for an overview as well as 
Chapters 5 and 10 for more details) clearly show 
that the temporal occurrence of the stimulus in 
relation to the resting-state activity is important 
to elicit and modulate stimulus-induced activ-
ity. Th is means that the temporal diff erence 
between, for instance, the slow wave oscillations 
of the resting-state activity and the temporal 

occurrence of the stimulus may determine and 
thus code subsequent stimulus-induced activity. 
Th is will be further discussed and supported by 
empirical examples in Chapter  12 as well as in 
Chapters 14, 15, 19, and 20). 

 Analogous to the spatial domain, the tempo-
ral features of the resting-state activity, for exam-
ple, the timing of the phase onsets and durations 
of its frequency fl uctuations and its functional 
connectivity, need to coincide with the tempo-
ral coordinates of the stimuli. Th ereby it is the 
statistical frequency distribution across the dif-
ferent discrete points in physical time of both the 
resting-state activity and the stimulus that is cen-
tral. In other words, as in the spatial domain, the 
resting state’s neuronal statistics and the stimuli’s 
natural statistics may be compared and matched 
with each other in their temporal features. 

 More specifi cally, I  hypothesize that the 
degree of temporal coincidence corresponds to 
the degree of matching or diff erence between 
the natural statistics of the stimulus’ occurrence 
across time and the neuronal statistics of the rest-
ing state’s frequency fl uctuations. Th at is possible 
only if the statistically based temporal diff erences 
between resting state and stimuli are encoded 
into neural activity (rather than encoding both 
separately and parallel; that is, independently). 

 Th is means that such statistically based tem-
poral coincidence presupposes diff erence-based 
coding rather than stimulus-based cod-
ing. Accordingly, as in the spatial domain, 
diff erence-based coding makes possible the prin-
ciple of coincidence during rest–stimulus inter-
action, while it would not be compatible with 
stimulus-based coding.  

    NEURONAL HYPOTHESIS IIIA: “INVERSE 
EFFECTIVENESS” DURING REST–STIMULUS 
INTERACTION   

 We also need to discuss the principle of inverse 
eff ectiveness. We recall from Chapter  10 that 
the principle of inverse eff ectiveness states that 
the degree of weakness of a particular stimulus 
enhances its possible interaction eff ects with 
another, rather strong, stimulus when compared 
to the state of both stimuli’s being strong (see 
Chapter 10). 



REST–STIMULUS INTERACTION AND DIFFERENCE-BASED CODING 239

 How does that apply to rest–stimulus inter-
action? One may want to argue that the level of 
resting-state activity may predispose the possible 
range of the subsequent stimulus-induced activ-
ity. But we need to be more specifi c: the stronger 
the degree of the resting state’s functional con-
nectivity and the more power its frequency fl uc-
tuations show, the less the stimulus will be able 
to elicit strong stimulus-induced activity. One 
would consequently hypothesize an inverse rela-
tionship between the strength or power of the 
resting-state activity and the possible degree of 
stimulus-induced activity. Th e weaker the one, the 
stronger the other, while the converse is also true. 

 How can we empirically support this assump-
tion of inverse eff ectiveness during rest–stimulus 
interaction? Some initial, more indirect support 
for that assumption comes from the animal 
study by Maandag et al. (2007). Th ey did indeed 
observe higher resting-state activity to go along 
with decreased activity in motor cortex, while 
low resting-state activity led to increased motor 
cortical activity (see earlier for details).  

    NEURONAL HYPOTHESIS IIIB: “TRAIT” VERSUS 
“STATE” RESTING-STATE ACTIVITY AND 
“INVERSE EFFECTIVENESS”   

 We need to be careful, however. Th e current data, 
especially from the group around Kleinschmidt, 
do not lend direct support to the assump-
tion that a lower resting state makes possible 
higher stimulus-induced activity. Th ey rather 
observed the opposite:  namely, that a higher 
pre-stimulus interval leads to higher subsequent 
stimulus-induced activity and stronger behav-
ioral eff ects. 

 How can we explain that? We need to dis-
tinguish among diff erent kinds of rest–stimulus 
interaction in orientation on the temporal scale. 
Th e group around Kleinschmidt tested for the 
eff ects of the actual resting-state activity level in 
each trial, i.e., trial-based, which thus concerns a 
state-dependent resting-state activity. 

 Th is diff ers from a more long-term 
resting-state activity across several trials, as 
investigated in the studies by Qin and Shulman; 
they therefore target trait rather than state fea-
tures in the resting-state activity. In short, 

based on the diff erent time scales and the use 
of either one or several trials, one may want to 
speak of “state resting-state activity” and “trait 
resting-state activity.” 

 How does that relate to the principle of 
inverse eff ectiveness? Th e principle of inverse 
eff ectiveness may apply to the “trait resting-state 
activity” and may thus be regarded a trait feature 
of the resting-state activity. In contrast, it may 
not apply to the “state resting-state activity” and 
is therefore not a state-dependent feature of the 
resting-state activity that, for instance, may be 
more manifest during particular events or single 
trials (as put in operational terms). Since the 
group around Kleinschmidt focused on the “state 
resting-state activity,” their fi ndings could not 
conform to the principle of inverse eff ectiveness.  

    NEURONAL HYPOTHESIS IIIC: RANGE OF 
THE RESTING-STATE ACTIVITY AND “INVERSE 
EFFECTIVENESS”   

 Another issue may be the range of the 
resting-state activity level. One may, for instance, 
want to distinguish between optimal and non-
optimal ranges of resting-state activity for sub-
sequent stimulus-induced activity. Increases in 
resting-state activity within its optimal range may 
make possible higher stimulus-induced activity. 

 Th is may imply that recruitment in the 
resting-state activity’s optimal ranges may 
go along with increased degrees of the prin-
ciple inverse eff ectiveness, which may indicate 
increased degrees of reactivity or sensitivity of 
the resting state to extrinsic stimuli. 

 In contrast, increases in the resting-state 
activity outside its optimal ranges may go along 
with a decrease in the possible degree of sub-
sequent stimulus-induced activity. Th at may 
signify decreased degrees of the principle of 
inverse eff ectiveness which indicates that the 
resting-state activity is simply no longer as reac-
tive to stimuli anymore. Th is may be the case 
in psychiatric disorders like depression, where 
the resting-state activity shows abnormally high 
levels of activity in certain regions that seem to 
be closely related to decreased stimulus-induced 
activity in the same regions (see Chapter 27 for 
details). 
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 However, we currently do not know much, 
if anything, about the optimal and nonoptimal 
ranges of the resting-state activity for subse-
quent stimulus-induced activity. Th is may also 
be related to the biophysical-computational 
features of the neurons and the resting-state 
activity itself, which will be discussed later (see 
  Fig. 11-2a  ).       

    NEURONAL HYPOTHESIS 
IVA: “NONLINEARITY” DURING 
REST–STIMULUS INTERACTION   

 What about the principle of nonlinearity? 
Th e principle of nonlinearity states that the 
stimulus-induced activity results, not from the 
mere addition or summation of two stimuli or 
resting state and stimulus-induced activity—
instead, the resulting stimulus-induced activity 
is either higher or lower than their mere addition 
or summation, which can only be due to nonlin-
ear eff ects in their interaction. 

 Th e earlier described data by Pengmin 
Qin from our group provide tentative empiri-
cal support in favor of nonlinearity in rest–
stimulus interaction. Th e same stimuli,.i.e., 
the subject’s own name, elicit diff erent degrees 
of stimulus-induced activity during diff erent 
resting-state conditions. And, most important, 
this was diff erent for diff erent stimuli, i.e., one’s 
own and another’s name, that interacted in dif-
ferent ways with the diff erent resting-state activ-
ity levels during the conditions of eyes open and 
closed. Such diff erential interaction of the diff er-
ent stimuli with the diff erent resting-state activ-
ity lets one suppose nonlinear rather than linear 
interaction. 

 Th e same may be inferred from the results by 
the group around A.  Kleinschmidt (see earlier 
discussion as well as Hesselmann et  al. 2008). 
However, future studies may want to apply mea-
sures of nonlinearity and see whether they pre-
dict neural activity changes during rest–stimulus 
interaction. 

 I tentatively hypothesize that nonlinear-
ity requires a specifi c constellation between the 
resting state’s neuronal statistics and the stimuli’s 
natural statistics (see   Fig. 11-2b  ). Th ere must be a 

specifi c statistically based spatiotemporal diff er-
ence in order for the stimulus to elicit nonlinear 
deviation from the actual resting-state activity 
level. If, in contrast, the “right” statistically based 
spatiotemporal diff erence is not met, the stimu-
lus will be able to only elicit linear rather than 
nonlinear changes in the brain’s resting-state 
activity. 

 However, what the “right” and “wrong” sta-
tistically based spatiotemporal diff erences are 
remains unclear at this point. Moreover, the neu-
ronal mechanisms underlying such nonlinearity 
during rest–stimulus interaction remain unclear, 
too (see   Fig.  11-2b  ); these will be discussed in 
further detail in Chapter 12 herein, as well as in 
Chapters 28 and 29 in Volume II.  

    NEURONAL HYPOTHESIS 
IVB: “NONLINEARITY” DURING 
REST–STIMULUS INTERACTION AND 
CONSCIOUSNESS   

 Th e assumption of nonlinearity in rest–stimulus 
interaction is not only neuronally relevant, but 
may also be of central relevance for conscious-
ness; that is, phenomenally relevant. I  assume, 
for instance, that patients in a vegetative state 
(VS), as defi ned by the loss of consciousness, 
may suff er from a lack of nonlinearity during 
rest–stimulus interaction (see Chapters  28 and 
29 for details). 

 If so, the degree of nonlinearity during 
rest–stimulus interaction may be related to the 
degree of consciousness: Th e higher the degree 
of nonlinearity during rest–stimulus interac-
tion, the more likely the resulting purely neuro-
nal stimulus-induced activity will be associated 
with consciousness and its phenomenal features. 
If, in contrast, there is a high degree of linearity 
(rather than nonlinearity) during rest–stimulus 
interaction, the lower the likelihood that con-
sciousness will be associated with the resulting 
stimulus-induced activity. 

 Since this reaches deeply into the realm of 
consciousness, I will discuss the exact underly-
ing neuronal mechanisms in Volume II, espe-
cially in Chapters 28 and 29. What is clear at this 
point is that nonlinearity during rest–stimulus 
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  Figure 11-2a and b     Inverse eff ectiveness and nonlinear interaction during rest–stimulus interac-
tion.  Th e fi gure illustrates the relationship between inverse eff ectiveness and nonlinearity in neural 
activity. Diff erent levels of resting-state activity (black, –1, 0, 1) are shown and how they impact sub-
sequent stimulus-induced activity(grey). Th is is illustrated in the upper three graphs in each fi gure, 
that is,  a  and  b . While the fourth graph in each fi gure ( a ,  b ) summarizes this by plotting the degree 
of stimulus-induced activity (y-axis) in dependence on the diff erent degrees of resting-state activity 
(x-axis). In the case of no inverse eff ectiveness, the diff erent degrees or levels of resting-state activity (–1, 
0, 1) elicit the same degree of stimulus-induced activity (fi rst three graphs), resulting in linear relation-
ship between both (fourth graph). In the case of inverse eff ectiveness, the diff erent degrees or levels of 
resting-state activity (–1, 0, 1) elicit diff erent degrees of stimulus-induced activity (fi rst three graphs), 
resulting in nonlinear relationship between both (fourth graph). 
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Figure 11-2a and b (continued)

interaction is not only neuronally but also phe-
nomenally relevant.  

    NEURONAL FINDINGS IIIA: STIMULUS–REST 
INTERACTION DURING SENSORY AND MOTOR 
STIMULI   

 So far I  have demonstrated that the brain’s 
resting-state activity exerts an impact on 

subsequent exteroceptive stimuli and their asso-
ciated stimulus-induced activity in either the 
same or other regions. Th is is what I subsumed 
under the concept of rest–stimulus interaction. 

 Th ere may be the reverse kind of interaction 
going on with the stimulus-induced activity mod-
ulating the resting-state activity level in either the 
same or other regions. Th is is what I  subsume 
under the general concept of “stimulus–rest 
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interaction” (see also Northoff  et al. 2010). Unlike 
in the case of rest–stimulus interaction, there are 
not yet many studies showing the impact of stim-
uli on subsequent resting-state activity. In the 
following I want to describe some of the earlier 
studies while not covering the whole territory. 
One study in humans investigated the eff ects 
of motor learning on resting-state activity in 
humans (Albert et al. 2009). Resting-state activ-
ity was investigated in fMRI before and aft er an 
11-minute visuomotor training session. Neural 
activity in lateral frontal and parietal regions and 
the cerebellum was signifi cantly increased aft er 
the visuomotor training session when compared 
to before the session. 

 Interestingly, the same network was not 
recruited during mere motor performance; 
changes in the resting-state activity in this net-
work may thus be more closely related to visuo-
motor learning rather than mere visuomotor 
performance. Accordingly, the neural eff ects of 
both motor learning and motor performance 
could be distinguished from each other with 
regard to their networks and their time period 
(i.e., stimulus- versus resting-state period). 

 Another study by Lewis et al. (2009) investi-
gated the eff ects of visual perceptual learning on 
resting-state connectivity. Th e subjects trained 
in a shape-identifi cation task constrained to 
one visual quadrant. Aft er several days of train-
ing, subjects underwent fMRI, which was done 
during the visual training task. Th is revealed 
an eff ect of the training of the respective side; 
that is, the respective visual quadrant, in the 
visual cortical activation when compared to the 
untrained side. 

 How about the impact of the training 
on the functional connectivity in the rest-
ing state? Subjects also underwent two sets of 
fMRI resting-state scans with visual fi xation 
before and aft er behavioral training. Th e train-
ing led to a diff erence in the resting-state con-
nectivity between the visual cortex and other 
regions, including task-positive (i.e., frontopa-
rietal regions involved in spatial attention) and 
task-negative (i.e., DMN) regions. Th ese fi ndings 
clearly demonstrate the impact of visual percep-
tual learning on the resting-state functional con-
nectivity inside and outside the DMN. 

 Analogous eff ects were observed in rat visual 
cortex (Han et al. 2008). Th e repetitive presen-
tation of a visual stimulus induced not only 
stimulus-induced activity in the visual cortex but 
also impacted subsequent spontaneous ongo-
ing activity in the same region. Th e subsequent 
spontaneous activity pattern in the visual cortex 
resembled very much the spatiotemporal pat-
tern of the preceding stimulus-induced activity. 
Th e authors called this “wave-mediated rever-
beration,” and postulated that it may contrib-
ute to the consolidation of the transient eff ects 
of sensory experience onto long-lasting cortical 
modifi cations. 

 Such stimulus–rest interaction is also sug-
gested by other recent animal studies (Berkes 
et  al. 2011; Fukushima et  al. 2012). Based on 
recording cellular and multicellular activity, they 
demonstrate that spontaneous activity patterns 
in either visual (Berkes et al. 2011) or auditory 
(Fukushima et  al. 2012)  cortex resemble very 
much the stimulus-induced activity pattern in 
their spatial and temporal pattern. Fukushima 
et al. (2012) showed that the spontaneous activ-
ity in monkey auditory cortex exhibits the same 
spatial covariation as the stimulus-induced tono-
topic maps in the same region. Th e same could 
be observed in visual cortex (V1) in ferrets, 
whose spontaneous activity resembled more and 
more the activity during stimulus-induced activ-
ity and the stimuli’s natural statistics (see Berkes 
et al. 2011; see also Chapter 9 for such stimulus–
rest interaction). 

 In sum, these initial studies demonstrate that 
stimuli can exert their eff ects on the subsequent 
resting state amounting to stimulus–rest interac-
tion. It should be noted that the neural eff ects 
concerned mainly long-term eff ects as averaged 
across diff erent trials of stimulus-induced activ-
ity. Th is suggests that the stimulus–rest interac-
tion eff ects reported here concern mainly trait 
rather than state features of the resting-state 
activity and thus the “trait resting state” as dis-
tinguished from the “state resting state” (see ear-
lier for this distinction). Moreover, the animal 
studies suggest that the encoding of the stimuli’s 
natural statistics into the resting-state activity 
and its neuronal statistics (see Chapter 9) may be 
the central encoding mechanism that provides 
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the bridge from the stimulus-induced to the 
resting-state activity.  

    NEURONAL FINDINGS IIIB: STIMULUS–REST 
INTERACTION DURING COGNITIVE AND 
EMOTIONAL STIMULI   

 Th ese studies show eff ects of the stimulus on the 
subsequent resting-state activity in sensory cor-
tex; this concerns mainly what we described as 
the “exteroceptive baseline” of the resting-state 
activity, since it is maintained by continuous 
unspecifi c sensory input (see Chapter  4 for 
details). How about the resting-state activity in 
other networks and regions of the brain, such 
as the “neural baseline,” the midline regions as 
part of the default-mode network where the 
input from the brain itself, the neural stimuli, 
predominates? Some studies also investigated 
the eff ects of sensorimotor stimuli and their 
stimulus-induced activity on the resting-state 
activity in the DMN. 

 A study by Pyka et al. (2009) investigated the 
activation of the DMN following diff erent loads 
(1- and 2-back) in working-memory tasks com-
pared to the activation in the DMN aft er the same 
task without any load (0-load). As expected, the 
diff erent task diffi  culties— the 0-, 1-, and 2-back 
loads—yielded diff erent degrees of deactivation; 
that is, negative BOLD response, in the regions 
of the DMN (perigenual anterior cingulate cor-
tex, posterior parietal, and posterior cingulate 
cortex) during the working-memory task. 

 Interestingly, the resting-state periods follow-
ing the working-memory task also diff ered in 
their degree of activation; that is, positive BOLD 
response. Th e resting-state periods following the 
1- and 2-back tasks showed signifi cantly higher 
signal changes in the aforementioned regions 
when compared to the ones following the 
0-back task. Th is suggests that the subsequent 
resting-state period was diff erentially modu-
lated by the diff erent loads of the preceding 
working-memory task, indicating stimulus–rest 
interaction. 

 An analogous modulation of the resting-state 
activity level in the DMN by the preceding stim-
uli could be observed for the stimuli’s degree of 
self-specifi city in a study by Felix Schneider from 

our group (Schneider et al. 2008). Higher degrees 
of self-specifi city in the preceding stimuli led 
to higher degrees of activity in the subsequent 
resting-state period in ventro- and dorsomedial 
prefrontal cortex and the posterior cingulate 
cortex (when compared to stimuli with lower 
degrees of self-specifi city; see Schneider et  al. 
2008, as well as Chapter 23 for more details). 

 Focusing on emotions, Eryilmaz et al. (2011) 
investigated the impact of fearful, joyful, and 
neutral movie clips (50-sec presentation) on 
subsequent resting-state activity (90-sec eyes 
closed). Th ey asked the participants aft er the 
resting-state period about their thoughts while 
lying in the scanner during fMRI. Th is revealed 
behaviorally that the subjects’ personally rel-
evant issues in their thoughts were increased 
aft er neutral movies, less increased aft er joyful 
movies, and signifi cantly decreased aft er fearful 
movies. Th ese results show a clear behavioral or 
better psychological eff ect of emotions on the 
thought contents in subsequent resting-state 
periods; fearful movies seem to leave apparently 
the strongest traces in the subsequent resting 
state’s thought contents. 

 Neuronally, as measured with fMRI, the 
same subjects showed higher neuronal activity 
in subcortical regions (pallidum, anterior thala-
mus, hypothalamus) during the resting-state 
periods aft er seeing the fearful faces when 
compared to the ones following neutral movies 
(rest aft er fearful larger than rest aft er neutral). 
Most interestingly, the reverse comparison (rest 
aft er neutral larger rest aft er fearful) revealed 
higher signal changes in various regions of the 
DMN (VMPFC, PACC, DMPFC, STG) (see also 
Sreenivas et  al. 2012 as well as Wiebking et  al. 
2011 for analogous overlap between emotion 
processing and the DMN). 

 Th is means that the inclusion of fearful emo-
tions in the preceding movie had a clear eff ect on 
the level of the subsequent resting-state activity. 
Th e stronger resting-state eff ects of the preced-
ing frightening movies are further confi rmed by 
the more delayed recovery of the signal changes 
during the resting-state period (90s) aft er emo-
tional movies. 

 Taken together, these studies demonstrate 
that stimulus-induced activity impacts the 
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level of resting-state activity in both subcorti-
cal and cortical regions. However, due to the 
low number of studies, this conclusion must be 
considered preliminary, hence awaiting further 
empirical support. 

 Moreover, we need to be careful in distin-
guishing between state-related and trait-related 
eff ects:  if studies show resting-state eff ects in 
single trials, the latter may concern state-related 
features, as in the studies on working memory 
and emotions. If, in contrast, the eff ects occur 
over several trials on a more long-term basis, 
the stimuli may rather aff ect trait features of the 
resting-state activity. We have to be clear, how-
ever, that neither the exact neuronal mecha-
nisms underlying both state and trait features 
of the resting-state activity, nor their diff erential 
manipulation by stimuli, are currently known.  

    NEURONAL HYPOTHESIS VA: SPATIAL AND 
TEMPORAL COINCIDENCE DURING STIMULUS–
REST INTERACTION   

 These examples clearly demonstrate that 
there is bilateral traffic between the resting 
state and stimuli. The resting state impacts 
the stimulus-induced activity, which in turn 
leaves its traces in the resting-state activity 
on either its state or trait features. This means 
that rest–stimulus and stimulus–rest interac-
tion go hand in hand and may, metaphorically 
speaking, be considered two sides of one and 
the same coin. 

 I assumed that rest–stimulus interaction 
presupposes diff erence-based coding, which in 
turn makes possible the application of the four 
principles discussed earlier, spatial and temporal 
coincidence, inverse eff ectiveness, and nonlin-
earity. Without going into details, I now suggest 
the same to hold for stimulus–rest interaction. 

 Let me specify this for the principles of spatial 
and temporal coincidence. Th e stimulus-induced 
activity must spatially and temporally coincide 
with the subsequent resting-state activity in 
order to modulate the latter. Th e resting-state 
activity may thus show (or be constrained or 
imposed by the stimulus) the same spatial and 
temporal activity pattern as during the preceding 
stimulus-induced activity. 

 One would then postulate similarity or resem-
blance in spatiotemporal activity patterns between 
stimulus-induced activity and resting-state activ-
ity, which is indeed empirically supported, as 
demonstrated in the study on rat visual cortex by 
Han et al. (2008) and the other above mentioned 
studies by Berkes et  al. (2011) and Fukushima 
et al. (2012). Th ere may thus be spatial and tem-
poral coincidence between stimulus-induced 
activity and resting-state activity, which suggests 
that the principles of spatial and temporal coinci-
dence also hold for stimulus–rest interaction. 

 We have to be careful, however, since there is 
one diff erence. In the case of rest–stimulus inter-
action, the resting state and the stimulus had to 
spatially and temporally coincide. As detailed ear-
lier, spatial and temporal coincidence describes 
a statistically based spatiotemporal coincidence 
of the resting state’s neuronal statistics with the 
stimuli’s natural statistics when the resting state 
impacts the stimulus. Such statistically based spa-
tial and temporal coincidence is accompanied by 
nonlinear interaction and inverse eff ectiveness 
during rest–stimulus interaction. . 

 However, the situation is diff erent in the 
case of stimulus–rest interaction. Here, the 
stimulus-induced activity and its spatial and 
temporal statistical frequency distribution, i.e.,, 
the stimuli’s natural statistics, must spatially 
and temporally coincide with the resting state 
activity itself, i.e., the neuronal statistics. Th is 
means that the direction of spatial and tempo-
ral coincidence is no longer directed from the 
brain’s resting-state activity to the stimuli from 
the environment, but rather in reverse, from 
environmental stimuli to the brain’s resting state. 
While there may be spatial and temporal coin-
cidence between stimulus-induced activity and 
resting-state activity, the question is whether 
such stimulus-rest interaction still is related to 
nonlinearity and inverse eff ectiveness. Th is will 
the discussed in the next section.  

    NEURONAL HYPOTHESIS VB: NONLINEARITY 
DURING STIMULUS–REST INTERACTION   

 How about nonlinear changes in the level of the 
resting-state activity itself aft er the exposure to 
the stimuli when compared to before stimuli? 
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Th e degree of the resulting resting-state activity 
changes may not be accounted for by the mere 
addition or summation between the degree of 
stimulus-induced activity and the degree of the 
resting-state activity level prior to the stimulus. 
Instead, the resulting resting-state activity level 
aft er the stimulus may be either higher or lower 
than their mere addition or summation would 
account for. 

 How would such nonlinearity impact the neu-
ronal and behavioral eff ects of the stimulus–rest 
interaction? One would suggest the following: the 
higher the degree of nonlinearity during stimu-
lus–rest interaction, the stronger the neuronal 
and behavioral eff ects that the stimulus can exert 
on the subsequent resting-state activity. Th is 
means that the resting-state activity and its spa-
tiotemporal activity pattern would be highly sen-
sitive and reactive to changes and modulations by 
the stimuli including its behavioral eff ects. 

 In contrast, lower degrees of nonlinearity 
in stimulus–rest interaction may lead to lower 
behavioral and neuronal eff ects of the stimu-
lus on the subsequent resting state. Here the 
resting-state activity may be less sensitive and 
reactive to changes and modulations in its spa-
tiotemporal activity pattern by the stimuli. 

 Th is may be the case in patients with vegeta-
tive state (VS) who have lost their consciousness. 
Here the stimulus may still elicit stimulus-induced 
activity, as has been demonstrated in various 
imaging studies applying cognitive tasks in VS 
patients (see Chapters 28 and 29). However, the 
stimulus may no longer aff ect the resting-state 
activity anymore because the latter, probably 
due to lacking energy, is no longer sensitive and 
reactive to the modulation of its spatiotemporal 
activity pattern by stimuli (see Chapters 28 and 
29 for details). Th is means that the occurrence 
of nonlinearity may not only be neuronally rel-
evant, that is, for stimulus–rest interaction, but 
also phenomenally, that is, for consciousness.  

    NEURONAL HYPOTHESIS VIA: RESTING-STATE 
ACTIVITY PREDISPOSES REST–STIMULUS 
INTERACTION 

    Why are the resting state and its spatiotemporal 
activity pattern sensitive and reactive to stimuli 

as suggested by stimulus–rest interaction? As 
described earlier, the data show statistically based 
resemblance and similarity in the spatiotempo-
ral activity pattern between stimulus-induced 
activity and resting-state activity. 

 What does such a similarity in their statisti-
cally based spatiotemporal activity pattern imply 
for the relationship between resting-state activity 
and stimulus-induced activity? By encoding the 
extrinsic stimuli’s natural statistics into its own 
spatiotemporal activity pattern and its neuronal 
statistics, the brain’s intrinsic activity may “pre-
pare itself ” optimally for the subsequent process-
ing of the same extrinsic stimuli. In other words, 
by letting its own spatiotemporal activity pattern 
be modulated and changed by the stimuli during 
stimulus–rest interaction, the brain and its rest-
ing state provide the “optimal ground” for subse-
quent rest–stimulus interaction. 

 I hypothesize that rest–stimulus interac-
tion may be predisposed by prior stimulus–
rest interaction. Th ere is consequently bilateral 
relationship between resting-state activity and 
stimulus-induced activity, with both mutually 
impacting, changing, and modulating each 
other’s statistically based spatiotemporal activ-
ity pattern as manifested in rest–stimulus and 
stimulus–rest interaction. Such bilateral rela-
tionship makes possible that the eff ects of the 
one, stimulus–rest interaction, are conveyed and 
transferred to the respective other, rest–stimulus 
interaction. 

 How now can we describe such a trans-
feral  of the eff ects of stimulus–rest interac-
tion onto subsequent rest–stimulus interaction 
in further detail? Th is leads us back to the 
resting-state activity itself, which commonly 
mediates both. 

 I propose that the resting-state activity pro-
vides a spatiotemporal predisposition for the 
possible ranges of subsequent rest–stimulus and 
stimulus–rest interaction. Th e resting state’s con-
fi guration of its spatiotemporal structure, that is, 
its neuronal statistics, may open up the possibil-
ity for various stimuli and their respective natu-
ral statistics to interact strongly with the resting 
state. Or, alternatively, the resting state’s neuro-
nal statistics may be spatiotemporally confi gured 
in such way that it rather narrows and limits the 
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possible degrees of subsequent rest–stimulus 
and stimulus–rest interaction.  

    NEURONAL HYPOTHESIS VIB: RESTING-STATE 
ACTIVITY PROVIDES A “SPATIOTEMPORAL 
WINDOW OF OPPORTUNITY”   

 How can we better illustrate the resting state and 
the kind of predisposition for subsequent rest–
stimulus and stimulus–rest interaction? Th e 
resting state’s predisposition may be compared 
to a spatiotemporal window of opportunity the 
resting state itself provides for its subsequent 
processing of the stimuli. I therefore speak of a 
“spatiotemporal window of opportunity.” Th e 
concept of “spatiotemporal window of opportu-
nity” describes the resting state’s predisposition 
for its subsequent interaction with stimuli. 

 How is the resting state’s “spatiotemporal 
window of opportunity” mediated? I  postulate 
that the resting state’s “spatiotemporal window 
of opportunity” consists in the particular confi g-
uration or constellation of its statistically based 
spatiotemporal activity pattern. 

 Neuronally, that may for instance be mani-
fested in the resting state’s functional connectivity 
pattern and its low and high frequency fl uc-
tuations, including the coupling of their phase 
onsets and amplitudes (see Chapters 4 and 5 for 
details). Th is is suggested by the observations 
of spatial and temporal coincidence between 
resting-state activity and stimulus-induced 
activity, as reported in the fi ndings on rest–stim-
ulus and stimulus–rest interaction. 

 By providing such a “spatiotemporal win-
dow of opportunity,” the resting-state activity 
can impact the subsequent processing of the 
stimulus and thus stimulus-induced activity. 
Th e resting-state activity may restrict or enlarge 
the range in the degree of changes in functional 
connectivity or low frequency fl uctuations the 
stimulus can possibly elicit in the brain and its 
resting-state activity. 

 If the resting-state activity is spatially and 
temporally confi gured in an optimal way, the 
resting-state activity may show high degrees of 
sensitivity and reactivity to stimuli, so that the 
latter may then be able to exert strong eff ects 
with possibly high degrees of nonlinearity and 

inverse eff ectiveness. In this case the resting 
state’s “spatiotemporal window of opportunity” 
is wide open to possible change and modulation 
by stimuli. 

 What we here refer to as the resting state’s 
“spatiotemporal window of opportunity” has 
also been described as “state dependency,” the 
dependence of perception and cognition on 
the initial psychological and neuronal state of 
the respective subject (see Silvanto et  al. 2008; 
Silvanto and Pascual-Leone 2008). Th e concept 
of “state dependency” has been used especially in 
the context of transcranial magnetic stimulation 
(TMS): the eff ects of the magnetic pulses on the 
visual cortex have been shown to be dependent 
not only upon the degree of stimulation itself, 
but also on the initial state of the brain and the 
psychological state of the person (see Najib et al. 
2010; Silvanto et al. 2008).  

    NEURONAL HYPOTHESIS VIC: CONSCIOUSNESS 
AND THE RESTING STATE’S “SPATIOTEMPORAL 
WINDOW OF OPPORTUNITY”   

 We can observe major changes in the resting state 
in psychiatric patients with depression. Here, the 
resting-state activity is abnormally high in for 
instance the anterior midline regions that show 
abnormal functional connectivity and low and 
high frequency fl uctuations (see Chapter 27 for 
details). Th e resting-state activity is therefore in a 
less optimal range, which decreases its sensitivity 
and reactivity to stimuli; the range in the degrees 
of changes the stimuli can possibly elicit is here 
very much restricted and therefore limited by 
the resting state itself. 

 Th e resting-state activity’s “spatiotemporal 
window of opportunity” is here no longer as 
wide open in depression as in healthy subjects. 
Since such partial closing of the resting state’s 
spatiotemporal window of opportunity goes 
along with major changes in the contents of con-
sciousness, I discuss the case of depression in full 
detail in Volume II (see Chapter 27). 

 Th ere we will also encounter the most extreme 
case of when the resting-state activity closes its 
“spatiotemporal window of opportunity.” In the 
case of the minimally conscious state (MCS) and 
vegetative state (VS), the resting-state activity’s 
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“spatiotemporal window of opportunity” seems 
to be partially closed, with the resting state being 
less sensitive and reactive to its modulation and 
change by stimuli. As suggested in Chapters 28 
and 29, such partial closure of the resting state’s 
“spatiotemporal window of opportunity” may 
be closely related to the lack of consciousness in 
these patients. 

 In the most extreme case, the resting-state 
activity is no longer sensitive and reactive to any 
kind of change or modulation in its spatiotem-
poral activity pattern by stimuli. Th is means that 
the resting-state activity does not provide any 
reactivity and sensitivity and thus an opportunity 
at all anymore for any kind of stimulus. Nothing 
happens anymore in the brain and its resting-state 
activity. Th e resting state’s “spatiotemporal win-
dow of opportunity” is then not only closed, but 
locked. Th at is when we slip from coma into brain 
death (see Chapters 28 and 29). 

 On a whole, stimulus–rest interaction is 
assumed to be relevant in constituting the spatial 
and temporal structure of the resting-state activ-
ity in such way that it can optimally process stim-
uli during subsequent rest–stimulus interaction 
and stimulus–rest interaction. Th is leads to what 
I  describe as the resting state’s “spatiotemporal 
window of opportunity,” which concerns the 
resting state’s predisposition for possible changes 
and modulations elicited by stimuli during both 
rest–stimulus and stimulus–rest interaction. 

 In addition to its neuronal relevance, the rest-
ing state’s spatiotemporal window of opportunity 
may also be central for consciousness and thus 
phenomenally relevant: the resting state’s “spatio-
temporal window of opportunity” seems to be par-
tially closed in minimally conscious state (MCS) 
and vegetative state (VS) and then completely in 
coma and brain death (see Chapters 28 and 29).  

    NEURONAL HYPOTHESIS VID: 
DIFFERENCE-BASED CODING, NONLINEARITY, 
AND THE RESTING STATE’S “SPATIOTEMPORAL 
WINDOW OF OPPORTUNITY”   

 How can we further characterize and specify 
the resting state’s “spatiotemporal window of 
opportunity” in neuronal terms? So far, I  have 
characterized it by a particular constellation 

and confi guration in the statistically based spa-
tiotemporal activity pattern of the resting-state 
activity. We may, however, want to detail it fur-
ther in neuronal terms; this is the focus in the 
next sections. 

 Let me start with the neuronal character-
ization of the resting state’s “spatiotemporal 
window of opportunity.” I  demonstrated in 
Chapters  4 through 6 that the resting-state 
activity itself encodes the continuous dynamic 
changes in its own activity levels in terms of 
spatial and temporal diff erences, which is pos-
sible only on the basis of diff erence-based coding 
(as distinguished from stimulus-based coding). 
However, diff erence-based coding is not a matter 
of all-or-nothing, presence or absence. Instead, 
diff erence-based coding comes and operates in 
diff erent degrees, showing a reciprocal balance 
with the degree of stimulus-based coding (see 
Chapters 1, 2, 4, and 6). 

 Who and what determines the degree of 
diff erence-based coding in the resting state? Th is 
is where the resting state itself and its “spatio-
temporal window of opportunity” come in. By 
setting its level at a certain degree and showing 
a particular spatiotemporal confi guration and 
constellation, the resting-state activity itself may 
modulate the degree of diff erence-based coding 
of neural activity. Th is means that certain levels 
of resting-state activity and particular spatio-
temporal constellations and confi gurations may 
allow for a higher degree of diff erence-based 
coding (and a lower degree of stimulus-based 
coding) than others. 

 In other words, the resting state may provide 
an optimal “spatiotemporal window of oppor-
tunity” for high degrees of diff erence-based 
coding of its own neural activity during both 
the resting state and subsequent rest–stimulus 
interaction. Th e resting state’s “spatiotemporal 
window of opportunity” may then be wide open 
to diff erence-based coding and rather closed to 
stimulus-based coding during rest–rest, rest–
stimulus, and stimulus–rest interactions. 

 However, the resting state can also close 
its “spatiotemporal window of opportunity” 
for diff erence-based coding by changing its 
level and/or modulating its spatiotempo-
ral activity pattern. In that case, the degree of 
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diff erence-based coding will decrease while 
the one of stimulus-based coding will increase. 
Th e resting state’s “spatiotemporal window 
of opportunity” is then partially closed for 
diff erence-based coding, while it is more open 
for stimulus-based coding of neural activity dur-
ing the resting state itself and rest–stimulus and 
stimulus–rest interaction (see   Figs. 11-3a  ).       

    NEURONAL HYPOTHESIS VIE: DIFFERENT 
DEGREES OF DIFFERENCE-BASED CODING 
MODULATE THE “SPATIOTEMPORAL WINDOW 
OF OPPORTUNITY”   

 Why is all that relevant? As described earlier, the 
degree of the various functional principles of rest–
stimulus and stimulus–rest interaction is strongly 
dependent upon the degree of diff erence-based 
coding. More specifi cally, the degree to which 
spatial and temporal coincidence, inverse 
eff ectiveness, and nonlinearity operate during 
rest–stimulus and stimulus–rest interaction is 
dependent upon the degree of diff erence-based 
coding. Higher degrees of diff erence-based cod-
ing make more likely higher degrees of spatial 
and temporal coincidence, inverse eff ectiveness, 
and nonlinearity during rest–stimulus and stim-
ulus–rest interaction. 

 What does mean for the resting state’s “spa-
tiotemporal window of opportunity”? By modu-
lating the degree of diff erence-based coding via 
its level or spatiotemporal activity pattern, the 
resting state itself can impact the possible degree 
to which spatial and temporal coincidence, 
inverse eff ectiveness, and nonlinearity apply and 
operate during rest–stimulus and stimulus–rest 
interaction. 

 Higher degrees of diff erence-based coding 
will make possible higher degrees of nonlinear-
ity, whereas higher degrees of stimulus-based 
coding will decrease the degree of nonlinear-
ity and increase the degree of linearity during 
rest–stimulus and stimulus–rest interaction. 
Th is means that there are optimal and less opti-
mal “spatiotemporal windows of opportunity” 
(or thresholds) set by the resting-state activity 
itself for the employment of high degrees of non-
linearity during subsequent rest–stimulus and 
stimulus–rest interaction (see   Fig. 11-3b  ).  

    NEURONAL HYPOTHESIS VIF: THE RESTING 
STATE’S “SPATIOTEMPORAL WINDOW OF 
OPPORTUNITY” MODULATES THE DEGREE OF 
SPARSE CODING   

 As discussed earlier, the degree of nonlinearity 
strongly impacts the degree of stimulus-induced 
activity a stimulus can possibly elicit in the brain 
and its resting-state activity. High degrees of 
nonlinearity during rest–stimulus interaction 
may lead to high degrees of stimulus-induced 
activity. In contrast, low degrees of nonlinearity 
will only allow for a rather limited range in the 
degree of stimulus-induced activity. Th is means 
that the resting state’s “spatiotemporal window 
of opportunity” is neuronally relevant in that 
it strongly impacts the degree of subsequent 
stimulus-induced activity. 

 Th e neuronal relevance of the resting state’s 
“spatiotemporal window of opportunity” is fur-
ther supported by its impact on the degree of 
sparse coding. We recall from Chapters 1 through 
3 and Chapter 6 that the neural activity during 
both resting-state activity and stimulus-induced 
activity may be encoded into neural activity in a 
spatially and temporally sparse way. 

 Th is means that the relationship between the 
number of stimuli and the number of active cells/
regions does not correspond in a one-to-one 
(local coding) or one-to-many (dense coding) 
but rather in terms of many-to-one. Th e stimuli 
and their spatial and temporal features are thus 
encoded into neural activity in a temporally and 
spatially sparse way during both resting state and 
stimulus-induced activity. 

 As in the case of diff erence-based coding, sparse 
coding is not an all-or-nothing matter, but comes 
rather in diff erent degrees standing in recipro-
cal balance to dense/local coding (see Chapters 1 
and 2). Higher degrees of sparse coding, then, are 
accompanied by lower degrees of local/dense cod-
ing, while increases in the degree of the latter entail 
decreases in the degree of the former. 

 Most important, I demonstrated in Chapters 1, 
3, and 6 that sparse coding presupposes 
diff erence-based coding:  the encoding of spatial 
and temporal diff erences into neural activity via 
diff erence-based coding leads to and entails the 
sparsening of the spatial and temporal activity 
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(b)

  Figure 11-3a, b, c, and d     Resting state as “spatiotemporal window of opportunity” for rest–stimulus 
interaction.  Th e fi gure illustrates the dependence of the degree of coding ( a ), nonlinearity ( b ), sparse cod-
ing ( c ), and the stimuli’s phenomenal (mental) and behavioral eff ects ( d ) during rest–stimulus (and pos-
sibly applicable also to stimulus–rest interaction) interaction (y-axis) on the degree of the resting-state 
activity level (x-axis) in relation to its maximally minimally possible biophysical-computational spec-
trum. Th ereby the resting state is characterized by temporal, that is, frequency fl uctuations, and spatial, 
that is, functional connectivity, features. Th ese spatial and temporal features predispose the resting-state 
activity to interact with the stimuli in a particular way, which aff ects their degree of diff erence-based 
coding in stimulus-induced activity ( a ), the latter’s degree of nonlinearity ( b ), the degree of sparse coding 
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( c ), and the stimuli’s phenomenal (mental) and behavioral eff ects ( d ). Depending on its degree and 
how it relates to the brain’s biophysical-computational spectrum and its maxima and minima, the 
resting-state activity level may provide a smaller or larger window of spatiotemporal opportunity for 
the stimuli to elicit the aforementioned coding, nonlinear, and phenomenal (mental)-behavioral eff ects. 
Th e two inner dotted lines indicate the optimal biophysical-computational range of the resting-state 
activity level for subsequent stimulus-induced activity, while the two outer dotted lines indicate the 
biophysical-computational maximum and minimum of the resting-state activity level (and its spatial 
and temporal measures). 
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patterns. Th e degree of sparse coding is conse-
quently strongly dependent upon the degree of 
diff erence-based coding. 

 What does this dependence of sparse coding 
on diff erence-based coding imply for its rela-
tionship to the resting state’s “spatiotemporal 
window of opportunity”? Since the resting state’s 
“spatiotemporal window of opportunity” can 
modulate the degree of diff erence-based coding 
during subsequent rest–stimulus (and stimulus–
rest) interaction, it also impacts the degree of 
sparse coding. 

 Optimal ranges in the resting state’s “spa-
tiotemporal window of opportunity” may then 
allow for high degrees of sparse coding during 
rest–stimulus interaction. In contrast, less opti-
mal ranges may lead to higher degrees of local/
dense coding (see   Fig. 11-3c  ).  

    NEURONAL HYPOTHESIS VIG: THE RESTING 
STATE’S “SPATIOTEMPORAL WINDOW OF 
OPPORTUNITY” MEDIATES BEHAVIORAL AND 
PHENOMENAL FUNCTIONS   

 In addition to this neuronal relevance, the resting 
state’s “spatiotemporal window of opportunity” 
may also be behaviorally and phenomenally 
(or mentally) relevant. Stronger behavioral 
eff ects may be associated with high degrees of 
diff erence-based coding and nonlinearity dur-
ing rest–stimulus (or stimulus–rest) interaction. 
While this remains to be demonstrated explicitly 
in the future, the data reported here make this 
assumption rather likely. 

 Finally, the resting state’s “spatiotemporal 
window of opportunity” may also be relevant for 
consciousness; that is, phenomenally (or men-
tally) relevant. By allowing for (or preventing), 
for instance, high degrees of diff erence-based 
coding and nonlinearity during rest–stimulus 
interaction, the resting-state activity itself may 
predispose the likelihood to which the purely 
neuronal stimulus-induced activity will be asso-
ciated with a phenomenal state, or consciousness. 

 As will be discussed in full detail in Chapters 28 
and 29, higher degrees of diff erence-based coding 
and nonlinearity during rest–stimulus interaction 
increase the likelihood that consciousness will be 
associated with the resulting stimulus-induced 

activity. More technically put, this means that the 
resting-state activity itself and its level and spatio-
temporal activity pattern predispose the degree 
of possible consciousness during rest–stimulus 
interaction. 

 In sum, the resting state’s “spatiotemporal 
window of opportunity” is relevant not only neu-
ronally and behaviorally but also phenomenally. 
We will see later in Chapters 28 and 29 that this 
is highly relevant in, for instance, explaining the 
loss of consciousness in patients with vegetative 
state (VS) (see   Figs. 11-3d  ).  

    NEUROMETAPHORICAL EXCURSION: 
WINDOWS, APARTMENTS, AND BRAINS   

 I characterized the resting state as a “spa-
tiotemporal window of opportunity” whose 
degree of openness strongly depends on 
its actual position relative to its underlying 
biophysical-computational continuum. How can 
we further illustrate this? Let’s compare the situ-
ation to a real window in your house. 

 If the window is barely open, you as a per-
son on the street have almost no chance of see-
ing anything inside the other person’s house. No 
matter how hard you try, you have no chance 
of seeing anything. Why? Because the window 
of opportunity (in both literal and fi gurative 
senses) is nearly shut down. If, in contrast, the 
window is wide open, you have a good chance of 
seeing something inside the house. 

 Most important, where the window itself is 
open, everything else—namely, how and where 
the window of opportunity is given—depends on 
your glasses and your level on the street where 
you stand, and so on. Th e real window thus 
provides an opportunity or “predisposition” for 
you to see something inside the house, a “look 
inside the house.” However, whether you can see 
inside depends now on you whether you grasp 
and seize that opportunity—your own position, 
your glasses, etc. 

 Analogous to the real window, the brain’s rest-
ing state can be said to provide a predisposition, 
or a spatiotemporal window of opportunity, for 
possible interaction with stimuli in subsequent 
rest–stimulus and stimulus–rest interaction. In 
the same way as the real window can be more 
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or less open, the resting state’s spatiotemporal 
window of opportunity may also be more or less 
open for the stimulus to have “look inside the 
house,” which is called the brain in our case, thus 
amounting to a “look inside the brain.” 

 Th e stimulus goes further, though. Th e stim-
ulus “looks” around in the house or apartment 
called “brain” and “sees” whether it can change 
the spatiotemporal confi guration of its neuronal 
furniture; that is, functional connectivity and 
low-frequency fl uctuations. Th e better the stim-
ulus links itself to the resting state’s spatiotem-
poral structure, the more it will be able to move 
its hosts’ neuronal furniture around. Hence, the 
stimulus can be regarded as a rather impolite 
guest who intrudes and tries to impose itself 
upon the neuronal furniture of its host, the brain 
and its resting-state activity. 

 Of course, it is not only the stimuli them-
selves that determine what will happen during 
the stimuli’s “look inside the brain.” It is also the 
brain and specifi cally the resting-state activity 
itself that has an active role in determining what 
the stimuli can and cannot do inside the “house 
of the brain.” 

 If, for instance, the neuronal furniture of the 
resting state itself is abnormally confi gured, with 
abnormal resting-state functional connectiv-
ity and low frequency fl uctuations, the stimuli 
may elicit rather strange and abnormal changes 
in the resting state and thus in the “house of the 
brain.” Th is can lead to rather bizarre behavioral 
and phenomenal states, such as in psychiatric 
disorders like depression and schizophrenia, as 
will be discussed in full detail in Volume II (see 
Chapters 17, 22, and 27).  

    NEURONAL HYPOTHESIS VIIA: “PARTIAL 
DEPENDENCE” OF THE RESTING 
STATE’S “SPATIOTEMPORAL WINDOW 
OF OPPORTUNITY” ON THE BRAIN’S 
BIOPHYSICAL-COMPUTATIONAL SPECTRUM   

 One may fi nally want to raise the question of 
how we can determine the possible range of the 
resting state’s “spatiotemporal window of oppor-
tunity.” Th is is a question for the neuronal fea-
tures of the resting-state activity itself, which 
ultimately are determined and constrained by 

the biophysical-computational features of the 
neurons and the regions and ultimately of the 
brain as a whole. 

 We already encountered the brain’s 
biophysical-computational features in the con-
text of sparse coding (see Chapters 2 and 3) as 
well as in the resting state (see Chapter  6). We 
now aim to briefl y discuss how the brain’s 
biophysical-computational features determine 
its resting state’s “spatiotemporal window of 
opportunity.” Th is is not only of purely theo-
retical interest, but also highly relevant for con-
sciousness, as we will see in Chapters 28 and 29. 

 How are the brain’s biophysical-computational 
features related to the resting state’s “spa-
tiotemporal window of opportunity”? Th e 
biophysical-computational features provide the 
brain with a certain biophysical-computational 
spectrum upon which its resting-state activity can 
operate. Th is means that the brain’s resting-state 
activity can vary its degree, its level, and its spatio-
temporal activity pattern within the range deter-
mined by its brain’s biophysical-computational 
spectrum. 

 Since diff erent species show diff erent 
biophysical-computational spectrums in their 
brains, the range in which their resting-state 
activity can possibly operate is diff erent between 
for instance dogs, bats, and humans. One would 
consequently postulate that the resting state’s 
“spatiotemporal windows of opportunity” are 
defi ned in diff erent ways in diff erent species, 
which in turn determines their respective stance 
(or point of view) within the environment (see 
Chapter 21 for details). 

 How is all this related to the resting state’s “spa-
tiotemporal window of opportunity”? Th e brain’s 
biophysical-computational spectrum deter-
mines and limits the possible minima and max-
ima of the resting state’s “spatiotemporal window 
of opportunity.” In other words, the resting state’s 
“spatiotemporal window of opportunity” can 
only operate within the range and limits deter-
mined by its brain’s biophysical-computational 
spectrum. Figuratively put, the brain’s 
biophysical-computational spectrum deter-
mines the degree to which the resting state can 
open and close its “spatiotemporal window of 
opportunity.” 
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 Is the resting state’s “spatiotemporal window 
of opportunity” thus enslaved by the brain’s 
biophysical-computational spectrum? Yes and 
no! Yes, there is partial dependence. Th e brain’s 
biophysical-computational spectrum determines 
the minima and maxima and thus the possible 
range within which the resting state’s “spatio-
temporal window of opportunity” can operate. 
Th e range of the resting state’s “spatiotemporal 
window of opportunity” is consequently pre-
determined and thus predisposed by the brain’s 
biophysical-computational spectrum. Th is is 
what I mean by “partial dependence.”  

    NEURONAL HYPOTHESIS VIIB: “PARTIAL 
INDEPENDENCE” OF THE RESTING 
STATE’S “SPATIOTEMPORAL WINDOW 
OF OPPORTUNITY” ON THE BRAIN’S 
BIOPHYSICAL-COMPUTATIONAL SPECTRUM   

 Such dependence and predetermination, 
however, covers only one-half of their rela-
tionship. Th e other half consists of partial 
independence of the resting state’s “spatiotem-
poral window of opportunity” from the brain’s 
biophysical-computational spectrum. 

 We discussed earlier that there are optimal 
and less-optimal ranges in the resting state’s “spa-
tiotemporal window of opportunity” itself for 
subsequent diff erence-based coding, nonlinear-
ity, sparse coding, and even behavioral and phe-
nomenal eff ects. Th is means that the resting-state 
activity itself can vary, change, and modulate the 
degree of (for instance) diff erence-based coding 
and sparse coding. 

 How does that relate to the brain’s 
biophysical-computational spectrum? Due to 
its ability to vary and modulate neuronal mea-
sures, the resting-state activity applies and oper-
ates diff erent degrees of diff erence-based coding 
and sparse coding across the range of its brain’s 
underlying biophysical-computational spec-
trum. Th e resting-state activity and its vari-
ous neuronal measures, like diff erence-based 
coding, sparse coding, and nonlinear-
ity, are thus not completely enslaved by the 
brain’s biophysical-computational spectrum. 
Instead, the resting-state activity can modu-
late and impact the degrees of diff erence-based 

coding, sparse coding, and nonlinearity by 
“using” diff erent positions within the brain’s 
biophysical-computational spectrum. 

 In other words, the resting state’s “spatiotem-
poral window of opportunity” operates across and 
supersedes the brain’s biophysical-computational 
spectrum rather than being tied and corre-
sponding to it in a one-to-one way. Th is means 
that the resting state’s “spatiotemporal window of 
opportunity” has indeed some partial indepen-
dence from and is thus not completely enslaved 
by the biophysical-computational spectrum of 
its underlying brain. 

 As illustrated in the preceding fi gures, the 
degree of enslavement of the resting state’s 
“spatiotemporal window of opportunity” is 
strongest in the maximal and minimal ranges 
of the brain’s biophysical-computational spec-
trum. Th is is manifested in the high degrees 
of stimulus-based coding, linearity, and local/
dense coding and the low behavioral and phe-
nomenal eff ects. In contrast, the degree of 
enslavement is the lowest in the middle ranges 
of the brain’s biophysical-computational ranges 
where the highest degrees of diff erence-based 
coding, sparse coding, and nonlinearity, as well 
as strong behavioral and phenomenal eff ects, 
can occur.  

    NEURONAL HYPOTHESIS VIIC:  RESTING-STATE 
ACTIVITY AS AN “ACTIVE PLAYER” IN THE 
BRAIN’S FIELD OF NEURAL ACTIVITY   

 Why is all that relevant? We will see later in 
Volume II that the degree of enslavement of the 
resting state’s “spatiotemporal window of oppor-
tunity” by the brain’s biophysical-computational 
spectrum is relevant for the degree to which 
consciousness, a phenomenal state, can be asso-
ciated with the brain’s neuronal states. 

 If the brain and its resting-state activity oper-
ate at the lower or minimum end of the brain’s 
biophysical-computational spectrum, the resting 
state’s “spatiotemporal window of opportunity” 
is strongly enslaved by the latter. Th at, I hypoth-
esize, decreases the likelihood that a phenom-
enal state— consciousness, —is associated with 
the purely neuronal activity during either resting 
state or stimulus-induced activity. 
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 I consequently hypothesize that the rest-
ing state’s “spatiotemporal window of oppor-
tunity” in patients in vegetative state operates 
close to the minimum end of their brain’s 
biophysical-computational spectrum (see 
Chapters 28 and 29 for details). And the closer 
the resting state’s spatiotemporal window of 
opportunity operates to the minimum of the 
brain’s biophysical-computational spectrum, the 
less likely its neural activity will be associated 
with consciousness and its phenomenal features. 

 Taken together, the characterization of the rest-
ing state by a “spatiotemporal window of opportu-
nity” provides the resting state with a neuronal tool 
of enormous impact. By varying and modulating 
the level and spatiotemporal activity pattern of its 
resting-state activity, the brain can make itself at 
least partially independent of its enslavement by its 
own biophysical-computational spectrum. Th at in 
turn makes it possible for the resting-state activity to 
impact and modulate its own neural activity during 
both resting-state activity and stimulus-induced 
activity, via diff erence-based coding of rest–stimu-
lus and stimulus–rest interaction. 

 In other words, the brain and more specifi -
cally its resting-state activity must be considered 
an active player in modulating and determining 
its own neural activity. Due to this active role, 
the resting-state activity is able to constitute 
a statistically based spatiotemporal structure 
that supersedes and operates across the brain’s 
biophysical-computationally based features, the 
biophysical-computational spectrum. 
 On the whole, we have to consider the diff erence 
between the biophysical-computationally based 
features of the brain and the statistically based 
spatiotemporal structure of the resting-state 
activity. Th is diff erence will prove central not 
only neuronally but also behaviorally and phe-
nomenally, as we will see in Volume II (see 
Chapters 21, 28, 29). In a nutshell, the diff erence 

between the merely biophysical features of the 
brain and its neuronal resting state activity 
makes the diff erence between a passive recipient 
and an active player within the fi eld of the brain’s 
neural activity. Th is, as I will demonstrate later in 
volume I will prove central for making possible 
the diff erence between non-consciousness and 
consciousness.  

    Open Questions   

 One may fi rst wonder why I restricted rest–stim-
ulus and stimulus–rest interaction to exclusively 
exteroceptive stimuli while completely neglect-
ing interoceptive stimuli from the subject’s own 
body. Th is is even more puzzling given the fact 
that in the brain’s intrinsic activity I  distin-
guished the “interoceptive baseline” from the 
“exteroceptive baseline” (see Chapter  4). One 
may consequently suggest that we need to inves-
tigate both baselines, intero- and exteroceptive, 
separately with regard to their respective rest–
stimulus interactions. 
 Th is means that one may want to distinguish 
between rest–extero and rest–intero interaction 
as well as between intero–rest and extero–rest 
interaction. Unfortunately, though, there are not 
many data currently available for the interaction 
between resting-state activity and interoceptive 
stimuli, hence my focus here on exteroceptive 
stimuli. Th is does not mean, however, that I dis-
regard the role of the body and thus rest–intero 
and intero–rest interactions. I will provide more 
details on interoceptive processing and aware-
ness in Volume II (see Chapter 32). 
 Another question here is how such rest–stimulus 
interaction is related to sparse coding. I assumed 
sparse coding to also hold on the regional level 
of both stimulus-induced activity (see Chapter 3) 
and resting-state activity (see Chapter  6). Th is 
raises the question whether rest–stimulus (and 
stimulus–rest) interaction can also be character-
ized by spatial and temporal sparsening. I  will 
address this question in Chapter 12.             
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    Summary   

 Chapter  11 demonstrated the neuronal mecha-
nisms underlying rest–stimulus and  stimulus–
rest interaction. However, this left  open the 
neurophysiological mechanisms. Based on both 
stimulus-induced activity on the cellular level 
(see Chapter  2) and resting-state activity (see 
Chapter  6), one would hypothesize that GABA 
and neural inhibition may play an essential 
role in mediating rest–stimulus and stimulus–
rest interaction. Th erefore, this chapter focuses 
on GABA and neural inhibition and how they 
mediate neural activity, especially during rest–
stimulus interaction. One hallmark feature of 
stimulus-induced activity is gamma frequency 
fl uctuations. Recent data show that the rest-
ing state can be characterized by an ongoing 
gamma cycle that is dependent upon the bal-
ance between neural excitation and inhibition. 
Th at, in turn, strongly impacts stimulus-induced 
activity, which is possible, as I hypothesize, only 
if one presupposes diff erence-based rather than 
stimulus-based coding. Moreover, recent fi nd-
ings in humans demonstrate that the resting-state 
concentration of GABA predicts the degree 
of stimulus-induced activity in the same local 
region, while the resting-state concentration of 
glutamate seems to exert its eff ects in more distal 
and thus remote regions during both resting state 
and stimulus-induced activity. Taken together, 
the fi ndings suggest a central role for GABA and 
neural inhibition in mediating the transition 
from resting-state to stimulus-induced activity. 
Th at is possible, as I propose, by the dispropor-
tionate increase of GABA-ergic-mediated neural 
inhibition relative to glutamatergic-mediated 

neural excitation during the resting state’s 
encounter with the stimulus. Th e dispropor-
tionate increase of GABA-ergic-mediated neu-
ral inhibition may account for the nonlinear 
changes in stimulus-induced activity when com-
pared to the preceding resting state as discussed 
in Chapter 11. Finally, as based on the fi ndings 
discussed in Parts I and II, one also would sug-
gest GABA-ergic-mediated neural inhibition to 
induce temporal and spatial sparsening of neu-
ral activity during rest–stimulus interaction. In 
short, I  postulate GABA-ergic-mediated neural 
inhibition to be central in making possible both 
diff erence-based coding and sparse coding dur-
ing rest–stimulus interaction.    

    Key Concepts and Topics Covered   

 Gamma frequencies, stimulus-induced activ-
ity, rest–stimulus interaction, neural inhibition, 
gamma cycle, GABA, glutamate, rest–stimulus 
interaction, fMRI and MRS, diff erence-based 
coding, gamma frequencies, sparse coding, 
resting-state activity      

      NEUROEMPIRICAL BACKGROUND IA: 
“NEURONAL CONTINUITY” BETWEEN 
RESTING-STATE AND STIMULUS-INDUCED 
ACTIVITY   

 So far, I have considered the coding strategy and 
the principles that determine stimulus–stimu-
lus interaction (Chapter  10) and rest–stimulus 
(and stimulus–rest) interaction (Chapter  11). 
Empirical evidence in both instances speaks 

           CHAPTER 12 
 Rest–Stimulus Interaction and GABA-ergic 
Neural Inhibition        
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in favor of diff erence-based coding rather than 
stimulus-based coding as the main coding strat-
egy. Th is was manifest in the principles of spatial 
and temporal coincidence, inverse eff ectiveness, 
and nonlinearity that were shown to apply to and 
operate during both stimulus–stimulus and rest–
stimulus (and stimulus–rest) interaction. 

 What I left  open, however, are the exact neu-
rophysiological mechanisms that allow for the 
encoding of spatial and temporal diff erences 
into the neural activity during rest–stimulus 
interaction. 

 Let us briefl y recall from the preceding 
parts:  We discussed the central role of GABA 
and glutamate in the neural coding of sparse 
inhibition during stimulus-induced activity on 
a cellular and population level (see Chapter 2). 
And I showed how GABA and glutamate medi-
ate diff erence-based coding and ultimately 
sparse coding of the brain’s resting-state activity, 
that is, rest–rest interaction, on a regional level 
(see Chapter  6). Do GABA and glutamate also 
mediate the constitution of neural diff erences, 
that is, diff erence-based coding, on a regional 
level during the resting state’s encounter with the 
stimulus, that is, rest–stimulus interaction? Th is 
is the focus in the present chapter. 

 Th e question for the constitution of neural 
diff erences by GABA and glutamate during rest–
stimulus interaction is not only of importance 
for our understanding of how stimulus-induced 
activity is constituted. Reaching deeper, it also 
pertains to a more basic issue, namely the ques-
tion of whether there is neuronal continuity 
between resting-state and stimulus-induced 
activity (see also appendix 1 for a more extensive 
discussion where I suggest what I describe as the 
“continuity hypothesis”).  

    NEUROEMPIRICAL BACKGROUND IB:   
“MORE-OR-LESS CONTINUUM” BETWEEN 
RESTING-STATE AND STIMULUS-INDUCED 
ACTIVITY   

 Do GABA and glutamate mediate rest-rest and 
rest-stimulus interaction? One would expect 
GABA and glutamate to mediate the neuronal 
continuity between rest–rest and rest–stimulus 
(and also stimulus–stimulus and stimulus–rest) 

interactions. Th is raises the question how the 
resulting stimulus-induced activity can be suf-
fi ciently distinguished from the preceding 
resting-state activity. 

 Such a distinction seems to be necessary, 
since otherwise we may not be able to distinguish 
the stimulus in our perceptions and cognitions 
from the brain’s resting-state activity itself and its 
associated psychological functions like thoughts 
and mind-wandering (see Chapter 26 for more 
details on the latter). Th erefore, as an alterna-
tive to the assumption of neuronal continuity, 
one may propose a principal distinction between 
resting-state activity and stimulus-induced 
activity. 

 Th e constitution of neural diff erences during 
stimulus-induced activity should then be medi-
ated by neurophysiological mechanisms other 
than GABA and glutamate and neural inhibition 
and excitation. Th at, however, raises the ques-
tion how stimulus-induced and resting-state 
activity are linked and connected to each other 
as it is suggested by the empirical evidence for 
rest–stimulus and stimulus–rest interaction (see 
Chapter 11). 

 As usual, the brain itself defi es our all-or- 
nothing dichotomies and might “opt” (if it could) 
for a more-or-less continuum between resting 
state and stimulus-induced activity. Instead of 
mutually exclusive alternatives, the alternatives 
of complete neuronal continuity and principal 
diff erence between resting-state activity and 
stimulus-induced activity may be considered 
extreme cases on the maximal and minimal ends 
of a neuronal continuum. 

 How does such neuronal continuum look 
like? Both resting state and stimulus-induced 
activity may refl ect diff erent variations of the 
same neural activity: What we call resting-state 
and stimulus-induced activity may then simply 
refer to diff erent degrees of change in the same 
neural activity that may be elicited either spon-
taneously during the resting-state activity itself 
or by the extrinsic stimuli. From the perspec-
tive of such a more-or-less continuum between 
resting state and stimulus-induced activity, 
the assumption of their principal diff erence 
seems to be more related to the observer than 
to the brain itself; that is, observer- rather than 
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brain-based (see Appendix 3 for details on the 
latter distinction). 

 What does such “more-or-less continuum” 
between resting state and stimulus-induced 
activity imply for the roles of GABA and gluta-
mate? GABA and glutamate may mediate both 
rest–rest and rest–stimulus (and stimulus–
stimulus and stimulus–rest) interaction, thus 
allowing for some degree of neuronal continu-
ity. At the same time, GABA and glutamate 
seem to allow for suffi  cient distinction of the 
stimulus-induced activity from the preceding 
resting-state activity by modulating the degree 
of the excitation-inhibition balance (EIB). 

 How is such co-occurrence between neuronal 
continuity and distinction between resting state 
and stimulus-induced activity possible? Th is will 
be the focus of the present chapter. 

 I will proceed in this chapter in two steps. 
In a fi rst step, I  will discuss the relationship 
between neuronal excitation and inhibition 
during rest–stimulus interaction. For that I will 
turn to recent results on gamma oscillations and 
how they are mediated by the balance between 
neural excitation and inhibition. Th is prepares 
the ground for the second step, the involve-
ment of GABA and glutamate in modulating 
rest–stimulus interaction on a regional level of 
stimulus-induced activity that complements my 
accounts of the cellular level (see Chapter 2) and 
the regional level of the resting state activity (see 
Chapter 6).  

    NEURONAL FINDINGS IA: STIMULUS-INDUCED 
ACTIVITY AND GAMMA   

 Before going into the neurophysiological details 
of rest–stimulus interaction, let us recall from 
Chapter  10 the neuronal mechanism underly-
ing stimulus–stimulus interaction. I showed that 
resetting and alignment of the phases of gamma 
frequency fl uctuations may be central in bind-
ing diff erent stimuli and their respective tempo-
ral positions together during stimulus-induced 
activity. 

 Such binding between the stimuli’s distinct 
temporal positions was supposed to be possible 
only on the basis of encoding the stimuli’s dif-
ferent temporal positions relative to the timing 

of the ongoing gamma phase. Th e gamma phase 
provides then the temporal reference frame (or 
temporal template) against which the diff erent 
stimuli’s temporal positions can be compared 
and matched. Th is, in turn, makes possible their 
binding (or nonbinding). 

 Gamma frequency fl uctuations seem 
to be particularly central in mediating 
stimulus-induced activity. Gamma-band syn-
chronization (30–80 Hz) was early observed in 
the cat’s olfactory cortex and was related to the 
encoding of olfactory information (see Uhlhass 
et al. 2009, 2011 for reviews). Th is was comple-
mented by observation of gamma-band synchro-
nization in the 40 Hz range in cat primary visual 
cortex during the perception of global stimulus 
properties (see Singer 1999, 2009 for reviews). 

 Th ese fi ndings led to the hypothesis that 
synchronized gamma-band oscillations across 
diff erent cells and columns of cells serve as 
mechanisms to coordinate and integrate dis-
tributed neuronal responses and hence to bind 
together diff erent features of stimuli. Th is is the 
binding-by-synchronization hypothesis as dis-
cussed in Chapter 10, which is closely tied to the 
occurrence of gamma-band synchronization. 

 Characterizing stimulus-induced activity in 
general, gamma-band synchronizations have 
been shown to be crucially involved in various 
functions like object recognition, feature bind-
ing, polysensory integration, sensory-motor 
coordination, working memory, long-term 
memory, and selective attention (Fries et  al. 
2007; Fries 2009). Moreover gamma oscilla-
tion has also been associated with conscious-
ness (see Koch 2004), which will be discussed in 
further detail in Volume II (see Chapters 18 and 
especially 19). 

 Taken together, these and other fi ndings 
(see Chapters  10 and 19)  suggest that gamma 
frequency fl uctuations seem to be a hallmark 
feature of stimulus-induced activity in general 
irrespective of the type of stimulus, the region 
of the brain, and the kind of function. Hence, 
if we want to understand the neurophysiologi-
cal mechanisms underlying rest–stimulus inter-
action, gamma frequency fl uctuations may be 
a good candidate to start with on the side of 
stimulus-induced activity.  
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    NEURONAL FINDINGS IB: GAMMA 
CYCLES AND THE TIMING OF STIMULI   

 Let me now go into more neurophysiological 
details about gamma and how it mediates rest–
stimulus interaction on a cellular and population 
level. Th ere is a specifi c temporal constellation 
between the discharges of GABA-ergic inter-
neurons and glutamate-ergic pyramidal cells 
during gamma-band synchronization. Th e pyra-
midal cell’s discharge occurs a few milliseconds 
earlier than the one of the interneuron (see also 
Chapter 2) as it has been shown for the hippo-
campus and the prefrontal cortex (see Buzsáki 
2006, and Fries 2009, for reviews; as well as 
Canolty and Knight 2010; Fell and Axmacher 
2011; Sauseng and Klimesch 2008; and Mazzoni 
et al. 2010). 

 Such a temporal delay may be due to the fact 
that the glutamate-ergic pyramidal cell excites 
the GABA-ergic interneurons that yield inhibi-
tion, which then in turn terminates the excita-
tion of both pyramidal cells and interneurons 
(see also Chapter 2 for details). Th ere is thus only 
a short time window, the time between the onset 
of pyramidal excitation and the onset of the 
interneurons’ inhibition, for the pyramidal cell to 
exert its excitatory impact (see Chapter 2). Th is 
short time window is the time window for the 
gamma oscillation to start anew before the whole 
network is inhibited (see   Fig. 12-1  ). Hence, these 
are what Fries et al. (2007) call “gamma cycles.”      

 Th ese gamma cycles are supposed to be con-
tinuously generated during the brain’s resting 
state irrespective of whether stimuli are encoun-
tered. However, the stimuli can modify and 
thus modulate the ongoing gamma cycle by (for 
instance) shift ing its phase onsets. 

 Following Fries et  al. (2007; see also Fries 
2009), such modulation of the gamma cycle is 
possible on the basis of diff erent mechanisms. 
First, the timing of the gamma cycle itself and 
thus the temporal course of its phase(s) and 
phase onsets may be modifi ed by the stimu-
lus. Second, I  suggest that the strength of the 
stimulus and its associated degree of neural 
excitation may exert an impact on subsequent 
neural inhibition which in turn may modu-
late the strength (i.e., power) and timing (i.e., 

phases) of the gamma cycle. Th ird, I propose the 
ongoing gamma cycle itself and more specifi cally 
its strength (i.e., power) may impact the degree 
to which the stimulus can (or cannot) exert its 
modulating eff ects. 

 Let us go into more detail and start with the 
fi rst mechanism, the timing. Recording both 
multiunit activity (MUA) and local fi eld poten-
tials (LFPs) in the primary visual cortex of cats 
showed a clear relationship between spike tim-
ing and gamma cycle. During depolarization in 
the LFPs, spiking as recorded in MUA occurred 
earlier when compared to hyperpolarization in 
the LFPs where it occurred later. Th is means 
that the exact timing of the spiking activity as 
measured with MUA is very much dependent 
on its temporal relationship, its relative tempo-
ral diff erence, to the ongoing gamma cycle. Let 
me detail and explain these results, which show 
that the exact timing of the pyramidal excitation 
and the associated stimulus eliciting the spiking 
is extremely important. Th e occurrence of pyra-
midal excitation during moments of decreased 
inhibition—that is increased depolarization 
within the gamma cycle—leads to short tempo-
ral latencies and thus earlier onsets of the spikes. 
Th e earlier the spiking occurs, the more likely 
that it can impact other pyramidal cells before 
the GABA-ergic neural inhibition starts (and 
“kicks in”). 

 If, in contrast, stimulation and subsequent 
pyramidal excitation occur during phases of 
strong inhibition, that is, hyperpolarization, 
within the ongoing gamma cycle, the spikes occur 
later with longer latencies and later onsets. Such 
longer latencies of the spikes makes their impact 
on other pyramidal cells less likely because their 
timing may coincide with the phases of strong 
inhibition in the ongoing gamma cycle (see Fries 
et al. 2007; Fries 2009; Buzsáki 2006; Vinck et al. 
2010). Taken together, this suggests that the 
timing of the stimulus relative to the ongoing 
gamma cycle is central.  

    NEURONAL FINDINGS IC: GAMMA CYCLES 
AND THE STRENGTH OF STIMULI   

 How about the strength of the stimulus and 
the degree of neural excitation it induces? Th is 
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   Figure 12-1a and b     Neurophysiological mechanisms of the gamma cycle.  Evidence for an interac-
tion between excitation and rhythmic inhibition in the visual cortex. ( a ) Gamma-band synchronization 
among visual cortical spike train recordings entails phase leads and lags that depend on relative excitation 
levels. A pair of multi-unit activity (MUA1 and MUA2) was recorded under three diff erent visual stimula-
tion conditions. For each condition, the cross-correlation histogram (CCH) between the two MUAs was 
calculated and fi tted with a Gabor function (diff erent lines for the three stimulation conditions). A CCH 
peak with negative (positive) time off set indicates that MUA1 was leading (lagging) MUA2. In condition 1 
(Gabor fi t), MUA1 received more optimal visual stimulation than did MUA2. In condition 2 (fi t), MUA2 
received more optimal stimulation than did MUA1. In condition 3 (fi t), the relative activation advantage 
of MUA2 was further increased. Th e results demonstrate that relative activation (and thereby excitation) 
strengths are translated into relative spiking phases within the gamma cycle. ( b ) Ongoing gamma-band 
oscillations co-determine the timing of fi rst spiking in primary visual cortex aft er stimulus onset. LFPs 
and MUA were recorded from corresponding positions in primary visual cortex of the two hemispheres of 
an anesthetized cat. Th e average stimulus-related LFP is shown as a dashed line, defi ning response onset 
at 23 ms. Two subsets of trials were then chosen in which the LFP just before response onset was falling 
(rising), corresponding to spontaneous neuronal depolarization (hyperpolarization). Th e corresponding 
average LFPs are shown as diff erent curves in (i). (ii) shows the MUA responses averaged separately for 
these two groups of trials. When the LFPs indicated spontaneous depolarization (hyperpolarization), the 
MUA response was particularly early (late).     (Reprinted with permission of Elsevier, from Fries P, Nikoli ć  
D, Singer W. Th e gamma cycle.  Trends Neurosci . 2007 Jul;30(7):309–16.)   
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touches upon the question of what the exact 
interaction between the excitation strength of the 
pyramidal cell and the gamma cycle looks like. 

 One would, for instance, expect that pyra-
midal cells with stronger excitation may inter-
act with the gamma-band synchronization in a 
diff erent way than those with weaker excitation. 
To put it into more technical terms, the strength 
of the pyramidal cell’s excitation may be trans-
lated into a phase value that corresponds to the 
exact timing of the spikes within the ongoing 
gamma cycle. 

 Th is was addressed in a study by Vinck et al. 
(2010) (see also Womelsdorf et al. 2012). Vinck 
et  al. (2010) investigated LFP and MUA in the 
primary visual cortex of rhesus monkey ( n  = 3) 
during visual stimulation of grating drift  direc-
tions with 800–1000 ms pre-stimulus baseline 
and 800–1500 ms passive stimulus viewing (with 
preferred and nonpreferred orientation of stim-
uli). All spikes recorded during MUA were related 
to the average LFP recorded simultaneously from 
separate electrodes (at 1–3 cm distance). 

 Th is demonstrated clear phase-locking with 
a high number of spikes occurring particu-
larly in the gamma-frequency band (spike-LFP 
pairs: peaking at around 67 Hz in monkey one 
and at around 40 Hz in monkeys two and three). 
When neurons were more strongly excited, they 
spiked signifi cantly earlier in the cycle of the 
LFP, thus showing gamma-phase shift ing (see 
also Fries et al. 2007). If, in contrast, the neurons 
less strongly excited are showing low strength in 
their spiking, their spikes occurred later within 
the ongoing gamma cycle in the LFP. 

 What do these results tell us about the rela-
tionship between spiking and the gamma phase? 
Th ey suggest that stronger stimuli induce higher 
excitation levels, which in turn shift  the gamma 
phase (including its phase onsets) when com-
pared to the lower excitation levels of weaker 
stimuli. Accordingly, the strength of stimuli may 
have an impact on the degree of gamma-phase 
shift ing and its temporal course.  

    NEURONAL FINDINGS ID: GAMMA CYCLES 
AND THE POWER OF RESTING STATE ACTIVITY   

 In addition to the timing and strength of the 
stimulus, the strength or power of the ongoing 

gamma cycle itself in the resting state preced-
ing the onset of the stimulus may also exert an 
impact. 

 For instance, stronger rhythmic modu-
lation of the gamma cycle may make it less 
likely for spikes, triggered by stimuli, to induce 
gamma-phase shift ing in the ongoing gamma 
cycle. Th e stronger the power of the ongoing 
gamma cycle in the preceding state, the less likely 
the stimulus and the respectively induced spikes 
are able to induce a shift  in the gamma phase 
(see also Womelsdorf et al. 2012). Accordingly, 
if the resting state’s gamma power is strong, the 
stimulus-induced gamma shift  should be weak. 
And, of course, the converse also applies with 
weaker resting-state gamma power leading to 
stronger stimulus-induced gamma shift s. 

 Th is hypothesis was tested by Vinck 
et  al. (2010), who compared trials with high 
gamma-band power with those showing low 
gamma-band power in the resting state. Strong 
excitation/activation and thus strong spikes 
induced less phase shift ing during high gamma 
band-band power when compared to trials with 
low gamma-band power. Th e same was observed 
during the baseline condition, the pre-stimulus 
interval. Weak gamma-band power in the 
pre-stimulus interval and thus in the resting 
state was here associated with stronger phase 
shift ing by the subsequent spikes. 

 Most interestingly, Vinck et  al. (2010) also 
tested the reverse scenario by distinguish-
ing neurons that were strongly phase-locked 
to gamma rhythms from those that were 
only weakly phase-locked. As expected, the 
activation-dependent gamma-phase shift s were 
much stronger in those neurons that were only 
weakly phase-locked. Th is indicates a clear 
impact of the strength, that is, power, of the rest-
ing state’s gamma rhythm on the subsequent 
stimulus-induced gamma-phase shift . 

 Taken together, these data show that the 
degree of the resting-state activity level, that is, 
gamma power, exerts a strong impact on the 
degree of to which a subsequent stimulus can 
shift  the gamma cycle, the gamma phase shift . 
Th is clearly demonstrates the mutual interplay 
and reciprocal dependence between resting-state 
activity and stimulus on a cellular and popula-
tion level of neural activity.  
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    NEURONAL HYPOTHESIS IA: TEMPORAL 
LINKAGE BETWEEN INTRINSIC ACTIVITY 
AND EXTRINSIC STIMULUS 

    Remember that we encountered an almost 
analogous scenario of timing during  stimulus–
stimulus interaction in Chapter  10. More 
specifi cally, cross-modal interaction between 
visual/auditory and tactile stimuli was also 
made possible by linking and aligning the 
stimulus-induced phases of the one stimulus, 
the unimodal stimulus, to the temporal posi-
tion of the respective other, the cross-modal 
stimulus. Th at, I  proposed, is possible only 
by encoding the temporal position of the 
cross-modal stimulus relative to the timing 
of the phases associated with the unimodal 
stimulus. 

 Th is concerned stimulus–stimulus interac-
tion. We now encounter an almost analogous 
scenario in the current context of rest–stimulus 
interaction. Th e incoming stimulus exerts its 
eff ects via glutamate-ergic pyramidal cells, thus 
inducing neural excitation. Th e stronger the 
incoming stimulus is, the more pyramidal cells 
spike and the stronger the degree of subsequent 
neural excitation. 

 Th e degree of neural excitation, however, 
does not act alone and independent of the level 
of the resting-state activity, the ongoing oscilla-
tory power and its respective phases as manifest 
in (for instance) the gamma cycle. Th e neural 
excitation, as induced by the stimulus, must thus 
be linked temporally to the phases of the ongo-
ing oscillatory resting-state activity in order to 
be processed further and exert maximally pos-
sible impact in the resulting stimulus-induced 
activity. 

 Th is is well refl ected in the results showing 
that the exact timing of the neural excitation in 
relation to the ongoing gamma cycle is central 
for its subsequent eff ects on gamma. As in the 
case of stimulus–stimulus interaction, this pre-
supposes that the actual temporal position of 
the stimulus-induced neural excitation must be 
encoded relative to the timing of the phase of the 
resting state’s ongoing oscillatory power in the 
gamma cycle.  

    NEURONAL HYPOTHESIS IB: GAMMA CYCLE 
AND DIFFERENCE-BASED CODING   

 How can we account for the observed temporal 
linkage between the ongoing gamma cycle in 
the resting state and the degree of spiking dur-
ing stimulus-induced activity? Th e observed 
temporal linkage between intrinsic activity and 
extrinsic stimulus is possible only when presup-
posing the encoding of temporal diff erences 
between the actual temporal position of the 
stimulus-induced excitation, the spiking, and 
the timing of the resting state’s gamma phase, the 
ongoing gamma cycle. 

 Th is leads me to the following hypothesis. 
I  hypothesize that the kind of temporal align-
ment of the gamma cycle to the onset of the 
stimulus and its spiking as observed in the 
gamma shift  is possible only when presuppos-
ing diff erence-based coding in temporal regard. 
In short, the observed gamma shift  requires the 
encoding of relative temporal diff erences. 

 Since they are based on both the stimulus and 
the resting state, the encoded temporal diff er-
ences should be modulated and impacted by the 
strength and temporal position of the stimulus 
and its degree of spiking, as well as by the power 
of the ongoing gamma cycle in the resting state. 
Th is is exactly what the data show, as described 
earlier, that therefore support the assumption of 
diff erence-based coding albeit indirectly. 

 Th is gamma shift  would, in contrast, remain 
impossible if there were stimulus-based coding. 
In that case, the temporal position of both the 
stimulus-induced excitation, the spiking, and the 
resting state’s gamma phase, the gamma cycle, 
would be encoded independently and isolated from 
each other. In this case, the single discrete points in 
physical time as associated with both gamma phase 
ad spiking would be encoded by themselves and 
thus isolated and independent from each other. 

 How would such scenario of stimulus-based 
coding look like in empirical regard? Th e power of 
the gamma cycle in the resting state should have 
no impact on the temporal position and gamma 
power related to the stimulus and its spiking. Nor 
should the latter, the stimulus and its spiking, be 
able to induce a shift  in the resting state’s ongoing 
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gamma cycle. In other words, the gamma phase 
shift  should remain impossible in the case of 
stimulus-based coding. Th is, however, contradicts 
the earlier described data, which therefore lend 
strong empirical support to diff erence-based cod-
ing as distinguished from stimulus-based coding.  

    NEURONAL HYPOTHESIS IC: DIFFERENCE-BASED 
CODING AS COMMON CODE BETWEEN 
INTRINSIC ACTIVITY AND EXTRINSIC STIMULUS   

 How can we further characterize such 
diff erence-based coding? Th e resulting tempo-
ral diff erence value may be considered the “fi nal 
functional common pathway” into which both 
stimulus/spiking and resting state/gamma power 
converge. Hence, the temporal diff erence value 
may refl ect the code that is shared and common 
to both resting-state activity, or gamma cycle, 
and stimulus, or neural excitation/spiking. 

 Such common coding is possible, however, 
only on the basis of diff erence-based coding 
that allows for the constitution of temporal (and 
spatial) neural diff erences between resting-state 
activity/gamma power and stimulus-induced 
activity/spiking. Stimulus-based coding, in con-
trast, would make such common coding impossi-
ble, since both stimulus/spiking and resting state/
gamma power would then be coded indepen-
dently and isolated from each other. Th ere would 
thus be a binary code rather than a common code. 

 Why is all that important? Th e earlier 
described results and hypotheses illustrate the 
kind of neuronal mechanisms that underlie rest–
stimulus interaction and determine the degree 
of stimulus-induced activity on a regional level. 
Such neuronal mechanisms concern the impact of 
the power and the timing of the ongoing gamma 
cycle in the resting state and how it impacts the 
subsequent stimulus-induced activity. 

 At the same time, the timing and strength 
of the stimulus itself exert considerable impact 
on the resulting stimulus-induced activity. 
Th e stimulus-induced activity can therefore be 
regarded a true “hybrid” between the spatial and 
temporal features of the stimulus itself and those 
of the ongoing resting-state activity (see later for 

a more detailed characterization of the hybrid 
nature of stimulus-induced activity). 

 In addition to such neuronal relevance, these 
neuronal mechanisms are also relevant for con-
sciousness; that is, phenomenally relevant. As 
I  will demonstrate in Volume II in detail, the 
degree of alignment of the stimulus and its tem-
poral position to the ongoing phase onsets and 
durations of the resting state’s low frequency 
fl uctuations are central in associating conscious-
ness to the stimulus and its stimulus-induced 
activity (see especially Chapter 20). 

 Th e better the brain’s intrinsic resting-state 
activity and its spatial and temporal features 
can align and couple its low frequency fl uctua-
tions’ phase onsets to the onset of the extrinsic 
stimuli and their spatial and temporal features, 
the more likely the resulting purely neuronal 
stimulus-induced activity can be associated with 
consciousness. Th e exact neuronal mechanisms 
of such mutual alignment between resting state 
and stimulus via their respective spatial and tem-
poral features will be discussed in Volume II (see 
Chapters 14, 15, 20, 21, 28, and 29).  

    NEUROMETAPHORICAL EXCURSION IA: 
SOCCER AND RELATIVE POSITIONS   

 How can we illustrate such a mutual and recipro-
cal adjustment between resting-state activity and 
stimulus-induced activity in a more easy and 
accessible way? Let us compare the relationship 
between resting state and stimulus to that of soc-
cer with two teams playing against each other. 

 Th e action on the soccer fi eld is neither 
determined by the absolute position of the one 
team’s players in either defense or attack. Nor 
is it determined by the absolute position of the 
other team’s players. What instead determines 
the positions and movements of all players from 
the one team is their respective spatial and tem-
poral position to the ball and how that relates in 
turn to the positions of the other team’s players. 
Th e players from the one team must thus think 
in terms of relative time and space by encoding 
their respective positions relative to the ball and 
the other team’s players. 
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 Th ereby it does not matter whether the spe-
cifi c player is in the attack or the defense (or the 
midfi eld). Only his actual position relative to the 
ball and the other players, and thus his relative 
position in space and time, matters, which, most 
importantly, determines his role: that is, whether 
he will attack or defend. 

 Th is is further supported by considering 
the players from the other team. Th e players 
from the opposing team will not care whether 
the player they confront in their attacking half 
is originally a defense or an attack player. All 
they will care about is the other player’s spa-
tiotemporal position relative to the ball and 
themselves and how that, in turn, increases the 
likelihood that the other player will be able to 
shoot a goal. 

 An analogous scenario surfaces in the case of 
the brain. Th e brain and its resting-state activity, 
to put it metaphorically, may not so much care 
about whether the stimulus it processes comes 
from the brain itself, the body, or the environ-
ment. Th is corresponds to the fact that ultimately 
it does not matter whether the player appearing 
in front of the other team’s goal is originally a 
defense or attack player. 

 Moreover, the brain’s resting-state activ-
ity may not care so much about the absolute 
temporal and spatial position of the stimulus 
itself independently and isolated from the rest-
ing state’s own spatial and temporal positions. 
Rather, the resting-state activity may very much 
care about how the stimulus’ temporal and spa-
tial position is related to the actual position of 
its own resting-state activity, that is, its gamma 
phases (and the phases of its frequency fl uctua-
tions in other ranges), and thus, more generally, 
the resting state’s spatiotemporal structure (see 
Chapters 4 and 5). 

 What is encoded into the brain’s neural activ-
ity are the relative rather than absolute temporal 
and spatial positions of the stimulus, its spatial 
and temporal position relative to the one of the 
resting-state activity. Th is corresponds to the 
situation that a player of the one team does not 
much care about whether he is at spatial position 
x of the soccer fi eld at time point a. More impor-
tant for him is how his position x and time point 
a are related to the positions and time points of 

the ball and the other players (from both his own 
and the other team).  

    NEUROMETAPHORICAL EXCURSION IB: 
DEFENSE AND RESTING STATE ACTIVITY   

 Let us for now shift  our perspective of the out-
side observer to a perspective from the inside of 
the fi eld itself, the perspective the players them-
selves take while playing. Th is would correspond 
to, metaphorically, taking the perspective of the 
stimulus itself that approaches the brain and its 
resting-state activity. One may then be inclined 
to compare the brain’s resting-state activity to 
the ball’s and the other players’ positions in space 
and time. Let us be more specifi c. 

 Th e ball and the other players serve as refer-
ence, standard, and measure for determining the 
spatial and temporal position of the player and 
his subsequent moves; namely, where and how 
fast he will run in the next seconds. Analogously, 
the brain’s resting-state activity, for example, the 
power and phases of its ongoing gamma cycles 
(and its other measures), serve as reference, stan-
dard, and measure to determine the spatial and 
temporal position of the stimulus. Very much 
like the ball and the other players serve as spa-
tiotemporal template or grid on which our player 
orients himself and determines his subsequent 
moves, the resting state’s spatiotemporal struc-
ture provides a template or grid for the stimulus 
to align itself to the brain and its resting-state 
activity. Good soccer coaches tell you that noth-
ing should happen independently of the ball, 
its spatial position and its temporal features 
(whether it moves fast or slow). Th e brain seems 
to have taken that lesson to heart (metaphorically 
speaking): nothing happens without the involve-
ment of the brain’s resting-state activity since a 
stimulus that does not involve and modulate the 
resting-state activity will not exert any neuronal, 
behavioral, and phenomenal eff ects. Such stimu-
lus could then be compared to a soccer player 
running 90 minutes up and down the soccer fi eld 
independent of the ball and the other players. 

 One may consequently be inclined to com-
pare the resting state to the ball in soccer:  Th e 
actual position of the ball serves as the point 
of orientation and reference for any player no 
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matter from what team he is on and what posi-
tion he is supposed to play. Analogously, the 
brain’s resting state provides the spatiotemporal 
template, standard and measure, the point of 
orientation, against which any stimulus and its 
spatial and temporal features are processed. 

 Th is applies to all players from both teams 
also the referee. Th e same holds in the case of the 
brain, where it also applies to all stimuli, whether 
they originate in the brain itself, the body, or the 
environment. Like the ball itself, which does not 
“care” about whether the player is from this or 
that team (and whether he is a defense or attack 
player), the resting state itself does not “care” 
about the origin of the stimuli and the role they 
are supposed to play. 

 Accordingly, all the resting-state activity cares 
about is measuring and referencing all stimuli, 
regardless of their origin, against itself and its 
own spatiotemporal structure (see Chapter 25 for 
an extensive discussion of possible “origin-based 
coding” of neural activity).  

    NEUROMETAPHORICAL EXCURSION IC: 
RESTING-STATE ACTIVITY AS AN ACTIVE PLAYER   

 Is our brain nothing but a ball? Th ere is one 
important diff erence. Th e ball itself is passive 
since it does not move and change its positions 
by itself; it requires the players to do that. Th e 
brain, in contrast, is active since it can change the 
level of its resting-state activity by itself as sig-
nifi ed by rest–rest interaction. Accordingly, the 
brain may be compared to an active ball. 

 How is such an active ball driven? By the 
metabolic-energy supply it receives from 
the body. Hence, the body seems to take over the 
role of the soccer players in the case of the brain. 
In the same way as the players provide the energy 
and power that lets the ball move and fl y across 
the space and time of the soccer fi eld, the body 
supplies the metabolism and energy to the brain 
that let its resting-state activity constitute its spa-
tiotemporal structure. 

 Now let us take the perspective of the players 
of the team that currently fi nds itself in a defensive 
position. If the defending players learn the soc-
cer coach’s lesson well and position themselves in 
space and time relative to the ball and the attacking 

players, they will be able to resist the attack from 
the other team and to consequently prevent goals. 

 Th is is also the case with the brain. If the brain 
and its resting state activity position themselves 
well and thus relative to the stimulus, this may 
prevent the latter from intruding and shooting 
the resting state’s neural activity to new levels, 
that is, stimulus-induced activity. 

 Like the defending players, the brain and 
its resting-state activity may have the neuro-
nal means to minimize and contain the degree 
of their colonization by the stimulus. In other 
words, like the defensive players with regard to 
the attacking players from the opposing team, 
the brain and its resting-state activity can take 
an active role in containing the impact of the 
stimuli from body and environment. 

 Th is leads us to what we defi ned in the last 
chapter as the resting state’s “spatiotemporal 
window of opportunity.” In the same way as the 
defending players in their own team can actively 
create a “spatiotemporal window of opportu-
nity” for their own attack players to shoot a goal, 
the brain’s resting-state activity can actively con-
stitute and modulate its own “spatiotemporal 
window of opportunity” that either opens, i.e., 
maximizes, or closes, i.e., minimizes, the pos-
sible eff ects the stimuli can exert in the brain. 

 In sum, like the soccer players, the resting-state 
activity itself must be considered an active player 
in the neuronal fi eld of the brain and its various 
“neuronal games” (which we like to call resting 
state and stimulus-induced activity).  

    NEUROEMPIRICAL BACKGROUND II: 
MODULATION OF REST–STIMULUS 
INTERACTION BY GLUTAMATE AND GABA   

 Th e previous sections in this chapter and the 
preceding two chapters in this part discussed 
the neuronal mechanisms underlying stimulus–
stimulus and rest–stimulus interaction. Both 
stimulus–stimulus and rest–stimulus interaction 
were shown to be possible only on the basis of 
diff erence-based coding. 

 How do glutamate and GABA mediate such 
rest–stimulus interaction and make possible its 
encoding in terms of diff erence-based coding? 
Th is is an important question, since GABA and 
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glutamate are the key players in constituting 
stimulus-induced activity. 

 Based on our considerations at the beginning 
of this chapter, there are two requirements for 
the glutamate- and GABA-ergic modulation of 
stimulus-induced activity: On one hand, GABA 
and glutamate must allow for some degree of 
neuronal continuity between resting state and 
stimulus-induced activity. On the other hand, 
they must create some degree of neuronal distinc-
tion between resting state and stimulus-induced 
activity to allow the stimulus (and its behavioral, 
cognitive, and phenomenal features) to be suf-
fi ciently diff erent from the resting-state activity. 

 I suggest that glutamate and GABA, and 
especially their interplay in constituting the 
excitation-inhibition balance, are central in allow-
ing for both neuronal continuity and distinc-
tion between resting state and stimulus-induced 
activity (see later for details). How can I lend sup-
port to that hypothesis? Th e fi rst step consisted 
in showing the central role of neural excitation 
and inhibition and thus the excitation-inhibition 
balance, the EIB, in rest–stimulus interaction, as 
was demonstrated by the example of the gamma 
cycle. Th is is now complemented by the second 
step, which aims to demonstrate how the EIB is 
modulated by glutamate and GABA. 

 Let us remind the reader that we already dis-
cussed glutamate and GABA in previous chap-
ters in this volume. I  so far have demonstrated 
the involvement of glutamate and GABA in 
stimulus-induced activity on a cellular level (see 
Chapter 2) and in resting-state activity on a regional 
level (see Chapter  6). I  left  open, however, how 
glutamate and GABA mediate stimulus-induced 
activity and especially rest–stimulus interaction 
on a regional level of neural activity. Th is will be 
the focus in the remainder of this chapter.  

    NEURONAL FINDINGS IIA:  GLUTAMATE  
MODULATES  INTRA-REGIONAL  REST–
STIMULUS INTERACTION   

 Several studies combined fMRI with magnetic 
resonance spectroscopy (MRS) to measure the 
intra- and extracellular concentration of GABA 
and glutamate. Combining MRS with fMRI 
allows us to link the investigation of neural 

activity (fMRI) with the measurement of its bio-
chemical modulation by GABA and glutamate 
(MRS). Such combination of fMRI and MRS 
makes it possible to investigate the modulation of 
rest-stimulus interaction and stimulus-induced 
activity by GABA and glutamate.   

 Recent studies combining fMRI and MRS 
demonstrated that the intra-regional concen-
tration of glutamate predicted the degree of 
stimulus-induced signal changes in the same 
region during particular tasks. For instance, 
Jocham et al. (2012) showed that the resting state 
concentration of glutamate in PACC predicted 
the degree of stimulus-induced activity in the 
same region during a reward task. Interestingly, 
both GABA and glutamate concentrations in 
PACC predicted the value-related behavioral 
eff ects as well as the associated stimulus-induced 
activity in the same region, though in opposing, 
positive and negative, ways: the higher the PACC 
glutamate concentration and the lower the one 
of GABA, the higher the PACC signal changes 
and the higher the behavioral value associated 
with the respective stimulus. 

 Interestingly, the same study also showed a 
particular temporal constellation in the eff ects 
of glutamate and GABA. Individuals with higher 
glutamate and lower GABA concentrations 
showed faster signal changes during the early 
phases of the trials, Th is was diff erent in the 
later phases of the trials, where the same subjects 
(lower GABA, higher glutamate) showed faster 
termination of the signal changes. Such timing 
eff ects were observed only in diff erence-based 
signal changes that directly compared high and 
low values whereas they were not observed in the 
raw BOLD signal itself. Th at makes it rather likely 
that the eff ects of GABA and glutamate are related 
to the encoding of the stimulus’ value into neuro-
nal activity as measured with the BOLD signal in 
fMRI rather than to the BOLD signal itself. 

 Another study, by Falkenberg et  al. (2012), 
investigated the resting state concentration of 
glutamate in dorsal anterior cingulate (DACC) 
in MRS. In fMRI subjects performed a cogni-
tive control task with attention focused on either 
the main (salient) stimulus or the control (less 
salient) stimulus. Th e concentration of glutamate 
in DACC predicted the degree of task-related 
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activity in the same region (and other regions 
like the retrosplenial cortex, the orbitofrontal 
cortex, and the basal ganglia): the higher the con-
centration of glutamate in DACC, the higher (or 
lower) the signal changes in the above mentioned 
regions during the cognitive attention task. 

 Moreover, they could observe that glutamate 
eff ects diff ered depending on the degree of task 
diffi  culty:  Low levels of glutamate predicted 
BOLD increases when the task was diffi  cult; that 
is, when the subject’s attention was distracted by 
a less salient stimulus. In contrast, high levels of 
glutamate predicted increased BOLD signals dur-
ing the easy part of the task when the attention 
was not distracted and aligned to the stimulus. 

 Finally, a study by Schmaal et al. (2012) dem-
onstrated that the concentration of glutamate in 
the same region, the dorsal anterior cingulate cor-
tex (DACC), predicted the behavioral measures 
during a reward task (delay discounting). Th e 
behavioral measures of delay discounting were 
in turn correlated with the degree of resting-state 
functional connectivity of the DACC with a sub-
cortical spot including the ventral tegmental area/
subthalamic nucleus (VTA/STN), a region that is 
central for reward. Th ese results suggest that the 
eff ects of DACC glutamate on delay discounting 
are mediated by resting-state functional con-
nectivity from DACC to the subcortical regions 
(which was supported by mediation analysis). 

 Taken together, these studies demonstrate 
that the resting state concentration of glutamate 
impacts intra-regional stimulus-induced activity. 
Most important, the study by Jocham et al. (2012) 
demonstrates diff erential—opposing—eff ects of 
glutamate and GABA on both the signal changes 
and their time course. Th is suggests that glutamate 
makes a diff erential contribution during rest–
stimulus interaction on a regional level of activity 
when compared to the one of GABA (see later).  

    NEURONAL FINDINGS IIB:  GLUTAMATE  
MODULATES  TRANS-REGIONAL  REST–
STIMULUS INTERACTION   

 Th ese studies show mainly intra-regional 
eff ects of resting state glutamate on the 
stimulus-induced activity in the same region. 
How about trans-regional eff ects with 

resting state glutamate in one region modulat-
ing stimulus-induced activity in another region? 
Th is was tested for by Niall Duncan from our 
group in an earlier study (Duncan et al. 2011). 

 Using MRS, Niall Duncan from our group 
(Duncan et al. 2011) investigated the resting-state 
concentration of glutamate in the PACC and the 
supragenual anterior cingulate cortex (SACC). 
He then applied an empathy paradigm (perceiv-
ing and showing empathy with faces from the 
Ekman Series) in fMRI to elicit stimulus-induced 
activity in the very same regions in order to 
investigate their modulation by glutamate. 

 As expected, the PACC as typical DMN 
region showed negative BOLD response dur-
ing the empathy task. In contrast, the SACC, a 
region not typically associated with the DMN, 
exhibited rather positive BOLD responses. How 
are the more resting state–associated nega-
tive BOLD responses in PACC related to the 
stimulus-induced positive BOLD responses 
in SACC? 

 It is well known that PACC and SACC as dis-
tinct parts of the anterior cingulate cortex are 
closely related to each other in terms of structural 
connectivity. Based on this structural connectiv-
ity pattern, one would expect strong functional 
connectivity between PACC and SACC. Th is was 
indeed the case. Duncan et  al. (2011) showed 
strong functional connectivity between the sig-
nal changes in both regions, more specifi cally 
between negative BOLD responses in PACC and 
positive BOLD responses in SACC. One can thus 
speak here of functional connectivity across the 
division of resting state and stimulus-induced 
activity since it links the resting-state activity in 
PACC to the stimulus-induced activity in SACC. 

 However, this relationship was unidirec-
tional:  signal changes in the PACC (as seed 
region) covaried with the ones in SACC across 
time, thus indicating functional connectivity. In 
contrast, the reverse scenario, signal changes in 
SACC (as seed region) covarying with the ones 
in PACC, did not hold. Th is suggests that the 
PACC modulates the SACC, but the latter does 
not impact the former. Th ere is thus unilateral 
functional connectivity (i.e., eff ective connectiv-
ity) from PACC and their resting state–related 
negative BOLD response to the stimulus-induced 
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positive BOLD response in SACC. Th is fur-
ther supports the assumption of trans-regional 
rest–stimulus functional connectivity (while the 
reverse direction of trans-regional stimulus–rest 
functional connectivity does not hold). 

 How is such unilateral rest–stimulus func-
tional connectivity from PACC to SACC now 
related to glutamate? First, Duncan et al. (2011) 
observed that the resting-state concentration of 
glutamate in PACC predicted the signal changes 
in the SACC:  the higher the resting-state con-
centration of glutamate in PACC, the stronger 
the stimulus-induced positive BOLD response 
in SACC. 

 Secondly, as expected, he observed that 
the degree of functional connectivity from 
PACC to SACC was also predicted by the 
resting-state concentration of glutamate in the 
PACC:  the higher the resting state concentra-
tion of glutamate in PACC, the higher the 
degree of functional connectivity from resting 
state–related negative signal changes in PACC 
to stimulus-related positive signal changes 
in SACC.   (see   Fig. 12-2a  ).      

 Does the resting state glutamate in the PACC 
mediate the stimulus-induced activity in SACC 
directly, or rather indirectly via the resting-state 
activity in SACC? Duncan et al. (2011) also mea-
sured the resting state concentration of glutamate 
in the SACC which however did not correlate 
with the degree of stimulus-induced activity in 
the same region. Moreover, he did not observe 
any correlation of the concentration of glutamate 
in SACC with the one in PACC. Taken together 
with the earlier described fi ndings, this suggests 
that the observed correlation of PACC resting 
state glutamate with SACC stimulus-induced 
signal changes is a direct rather than indirect 
trans-regional rest-stimulus interaction eff ect. 

 Accordingly, glutamate seems to exert 
direct transregional modulation dur-
ing rest–stimulus interaction, such as, for 
instance, from resting-state activity in PACC 
to stimulus-induced activity in SACC. 
Unfortunately, the study by Duncan et al. (2011) 
did not include the measurement of GABA, so 
a direct comparison between GABA and glu-
tamate with regard to trans-regional eff ects 
remains impossible. 

 Th ese fi ndings of glutamate mediating 
trans-regional functional connectivity dur-
ing rest-stimulus interaction converge with 
the observation that glutamate also mediates 
trans-regional functional connectivity in the 
resting state that is rest-rest interaction. Th is was 
described in Chapter 6. One may thus postulate 
that glutamate mediates trans-regional eff ects in 
general irrespective of whether they are related 
to the resting state itself, that is rest-rest inter-
action, or to stimulus-induced activity and its 
rest-stimulus interaction.  

    NEURONAL FINDINGS IIIA:  GABA  MODULATES 
 INTRA-REGIONAL  REST–STIMULUS INTERACTION 
IN  SENSORY AND MOTOR  REGIONS   

 Using fMRI and MRS, Muthukumaraswamy 
et al. (2009, 2012)  investigated the resting-state 
concentration of GABA in the visual cortex 
and its eff ects on subsequent stimulus-induced 
activity in the visual cortex itself and gamma fre-
quency bands. Th ey measured resting-state lev-
els of GABA in the visual cortex with MRS and 
applied fMRI and magnetic encephalography 
(MEG) to measure stimulus-induced activity 
changes in the visual cortex. 

 What did they observe? Th e resting-state 
concentration of GABA in the visual cortex pre-
dicted the degree of stimulus-induced activation 
(positive BOLD response) and elevated gamma 
frequency power in the same brain region:  the 
higher the resting-state concentration of GABA 
in visual cortex, the lower the positive signal 
changes in the same region elicited by a visual 
stimulus, and the lower the stimulus-induced 
gamma power. In contrast, such relationship 
could not be observed for glutamate that did 
not correlate with either the signal changes or 
the gamma power (see also Gaetz et al. 2011 for 
more or less analogous fi ndings in the motor 
cortex). 

 Further confi rmation of the role of GABA in 
mediating neural activity changes in visual cor-
tex comes from Qin et al. (2012a). He correlated 
neural activity changes in visual and auditory 
cortex during the transition from eyes closed 
to eyes open with the resting state density of 
GABA-A receptors in the same regions. 
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 Qin et al. (2012) observed that the degree of 
resting-state GABA-A receptor density in both 
visual and auditory cortex predicts the neu-
ral activity changes in the same regions (and 
other regions like the precuneus and the pre-
frontal cortex) during the transition from eyes 
closed to eyes open (see Chapter  6 for a more 
detailed description of this study, since it con-
cerns mainly the resting state itself rather than 
stimulus-induced activity and rest–stimulus 
interaction).  

    NEURONAL FINDINGS IIIB:  GABA  MODULATES 
NEURAL INHIBITION DURING  INTRA-REGIONAL  
REST–STIMULUS INTERACTION IN  SENSORY AND 
MOTOR  REGIONS   

 How is GABA related to neural inhibition on a 
regional level of neural activity? Tentative sup-
port for the association of GABA with neural 
inhibition comes from studies by Stagg et  al. 
(2011a and b). Th ey combined the measure-
ment of GABA and glutamate with transcranial 
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   Figure  12-2a     GABA ergic and glutamatergic modulation of rest–stimulus interaction. ( a ) Areas of 
deactivation from rest in response to the empathy task are shown (contrast [fi xation > empathy]), along 
with activations in response to the empathy task (contrast [empathy > smoothed]). Mean percent sig-
nal changes are shown for the viewing of emotional pictures, the viewing of smoothed pictures, and 
the fi xation period in the pgACC (box in upper image) and sgACC (box in lower image) MRS voxels. 
Mean percentage signal changes were calculated using the Marsbar toolbox (available at: http://mars-
bar.sourceforge.net/). Error bars represent SEM. Images are shown with a threshold of P = 0.005 (unc.) 
for the purpose of illustration. ( b ) Unidirectional connectivity between negative signal changes in the 
pgACC MRS region (red box) and positive signal changes in the sgACC MRS region during the empathy 
task was demonstrated using PPI analyses. A relationship between the BOLD response during the same 
task in the sgACC and the level of glutamate in the pgACC was demonstrated using regression analyses. 
A plot of the regression between the mean sgACC BOLD response and pgACC glutamate at the peak 
regression voxel within the sgACC is shown. A combined plot of the PPI regression results for each indi-
vidual subject obtained from their fi rst level PPI analysis at the peak voxel within the sgACC (from the 
group level analysis) is also shown. Regression plots were produced by obtaining the fi tted response at 
the peak voxel via the ‘‘fi tted response’’ option of the “plot” function in SPM, and plotting these against 
the relevant explanatory variable in MATLAB (Th e Mathwork Inc., Natick, MA). Activation images are 
shown with a threshold  P  ¼ 0.005 (unc.) for the purpose of illustration.   

http://mars-bar.sourceforge.net/
http://mars-bar.sourceforge.net
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magnetic stimulation (TMS) in motor cortex 
and measured the degrees of neural inhibition 
and excitation applying special TMS protocols 
over the motor cortex. 

 What do they show in their results? Th e degree 
of neural inhibition was directly related to the 
concentration of GABA measured in the motor 
cortex: the higher the concentration of GABA in 
motor cortex, the higher the degree of neural inhi-
bition in the same region (see, though, Tremblay 
et al. 2012, who did not fi nd a correlation of GABA 
concentration in left  motor cortex with the silent 
period duration in inhibitory TMS). Furthermore, 
cortical excitability in motor cortex was related to 
glutamate:  the higher the concentration of gluta-
mate in motor cortex, the stronger the degree of 
cortical excitability in the same region. 

 Th ere is, of course, abundant support from 
the animal side that links changes in GABA to 
changes in neural inhibition (see, for instance, 
Buzsáki 2006). One measure in fMRI that may 
be indicative of GABA-ergic-mediated neural 

inhibition may be negative signal changes (as 
distinguished from positive ones), the so-called 
deactivation or negative BOLD response (see 
Lauritzen et al. 2012 for an overview). Based on 
this observation, one would now expect that neg-
ative BOLD response correspond to an increase 
in neural inhibition as mediated by GABA (see 
also Lauritzen et al. 2012). 

 Th is was indeed demonstrated by Shmuel 
et  al. (2002, 2006)  in both monkey and human 
visual cortex. Th ey measured both LFPs and 
fMRI: increase in negative BOLD response in fMRI 
was accompanied by a decrease in LFPs, which is 
indicative of increased neural inhibition (see also 
Goense et  al. 2012 for further neurophysiologi-
cal diff erentiation of positive and negative BOLD 
responses, with regard to especially their eff ects on 
cerebral blood fl ow and volume in diff erent cor-
tical layers). Unfortunately they did not include 
measures of GABA, which would have been neces-
sary to close the suggested triangular relationship 
between negative BOLD response, GABA, and 
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neural inhibition (see also Logothetis et al. 2010; 
Lauritzen et al. 2012, Northoff  et al. 2007). 

 Taken together, these data show that the 
resting-state concentration of GABA in sensory 
and motor cortex predicts the degree of subse-
quent stimulus-induced activity in the same (and 
other) regions (see also Chapter 32 for fi ndings 
on GABA in the insula). Th ereby such intrare-
gional rest–stimulus prediction seems to be spe-
cifi c for GABA since it was either not observed 
in or diff ered from the eff ects of glutamate.  

    NEURONAL FINDINGS IIIC:  GABA  
MODULATES  INTRA-REGIONAL  REST–STIMULUS 
INTERACTION IN  MIDLINE  REGIONS   

 One may now question whether this applies 
also to other regions like the midline regions 
as a core part of the default-mode network 
(DMN). As discussed in Part II, the regions of 
the DMN show special neuronal features, espe-
cially in fMRI, which may also touch upon their 
underlying biochemical modulation. One would 
consequently like to see analogous GABA-ergic 
modulation of rest–stimulus interaction in the 
DMN before assuming GABA-ergic mediation 
of rest–stimulus interaction in general. 

 Using combined MRS and fMRI, a recent 
study from our group (Northoff  et  al., 2007) 
investigated the level of gamma-aminobutyric 
acid (GABA) in a typical DMN, the perigenual 
anterior cingulate cortex (PACC). Th e PACC 
is part of the DMN and shows predominant 
negative blood oxygen level dependent (BOLD) 
response during stimulus-induced activ-
ity in fMRI. Th e question was whether such 
stimulus-induced negative BOLD response is 
modulated by the resting-state concentration 
of GABA and must consequently be related to 
neural inhibition. 

 How now is the resting-state concentration 
of GABA related to the stimulus-induced nega-
tive BOLD response in PACC? Th e resting-state 
level of GABA in the PACC correlated with the 
degree of negative BOLD response as induced 
by an emotional judgment task in the very same 
region:  the higher the resting-state concentra-
tion of GABA in the PACC, the higher was the 
degree of negative BOLD response in the same 
region during stimulus-induced activity. 

 Moreover, this relationship holds specifi cally 
for GABA because it was not found for glutamate; 
the latter was not related to the negative BOLD 
response. Th ese fi ndings thus demonstrate that the 
resting state concentration of GABA may be cen-
tral in mediating the transition from resting-state 
activity to stimulus-induced activity in the PACC 
by mediating its degree of stimulus-induced nega-
tive BOLD responses (see   Fig. 12-2b  ).       

    NEURONAL FINDINGS IIID:  GABA-A 
RECEPTORS  MODULATE  INTRA-REGIONAL  
REST–STIMULUS INTERACTION IN  MIDLINE  
REGIONS   

 Th e fMRI-MRS study demonstrated that the 
resting-state concentration of GABA in the 
PACC may indeed impact rest–stimulus interac-
tion and consequently stimulus-induced activity 
changes in the PACC. Does this also hold true 
for GABA A  receptors? Christine Wiebking 
from our group (Wiebking et  al. 2012)  com-
bined measurement of stimulus-induced activ-
ity in fMRI with whole-brain measurement of 
GABA-A receptors using 18-F-Flumazenil posi-
tron emission tomography (PET) that allows to 
measure the density of GABA-A receptors in the 
resting state. She combined the PET with the 
investigation of fMRI where she tested a task for 
intero- and exteroceptive awareness (perception 
with counting of either the own heart beat or an 
externally presented tone). 

 As in the fMRI-MRS study, the resting-state 
GABA-A receptor density in the PACC predicted 
the degree of stimulus-induced activity (i.e., 
exteroceptive awareness during tone counting) 
in the same region, that is, the PACC: the higher 
the GABA-A receptor density in PACC, the lower 
the degree of stimulus-induced activity, namely 
negative BOLD responses, in the same region. 

 Since unlike MRS, 18-F-Flumazenil PET 
allows for whole-brain measurement of GABA-A 
receptor density, we could also test other regions 
besides the PACC. Th is revealed one other 
region; namely, the posterior cingulate cortex 
(PCC), where the GABA-A receptor density also 
predicted the degree of stimulus-induced activ-
ity in the same way. Th is suggests that GABA and 
more specifi cally GABA-A receptors seem to 
operate in similar ways in diff erent regions of the 
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DMN (like PACC and PCC) and also in regions 
outside the DMN as in sensory and motor cortex 
as described earlier. 

 Interestingly, this relationship between 
GABA-A receptor density and stimulus- 
induced activity holds for only one condi-
tion: exteroceptive awareness, as tested for by 
tone-counting. In contrast, no such modula-
tion by GABA-A receptor density was observed 
in another condition, interoceptive awareness 
that was measured by letting subjects counts 

their own heartbeat. Most important, the dif-
ference between intero- and exteroceptive 
awareness persisted even though there was 
no diff erence in the degree of signal change 
between intero- and exteroceptive awareness 
in PACC. Th at makes a psychologically spe-
cifi c eff ect of GABA-A receptors in both PACC 
and PCC rather likely:  the GABA-A recep-
tors in PACC and PCC mediate specifi cally 
extero- rather than interoceptive awareness 
(see   Fig. 12-2c and d  ).            
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   Figure  12-2b     GABA-ergic and glutamatergic modulation of rest–stimulus interaction.  Correlation 
between GABA concentration and negative BOLD responses in the ACC.
 ( a ) Correlation between GABA concentrations (relative to creatine levels) and negative BOLD responses 
in the ACC for all pictures (PIC,  r  = –0.713,  P  < 0.01, fi lled circles and black line) and the EX (not sig-
nifi cant, P > 0.9, open circles and dotted line). ( b ) Separate correlations for PV ( r  =  –0.554,  P  < 0.1, 
open squares and open dashed line) and PJ ( r  = –0.635,  P  < 0.05, solid triangles and dense dashed line). 
( c ) Local maxima of the voxel-wise simple regression analysis of the contrast [Rest > all pictures] with 
GABA levels in the ACC region of interest. Shown are the coronal (left ) and transversal (right) sections. 
Orange boundaries indicating region of interest size and location correspond to the MRS voxel. Negative 
BOLD responses correlating with GABA concentrations are clearly restricted to the medial prefrontal 
gray matter in the ACC even on an uncorrected level of signifi cance ( P  < 0.005).     (Reprinted with per-
mission of  Nature Neuroscience,  from Northoff  G, Walter M, Schulte RF, Beck J, Dydak U, . . . Boesiger 
P.  GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in 
fMRI.  Nat Neurosci . 2007 Dec;10(12):1515–7.)   
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    NEURONAL FINDINGS IIIE:  GABA-A RECEPTORS  
MODULATE  TRANS-REGIONAL  REST–STIMULUS 
INTERACTION IN  MIDLINE  REGIONS   

 How are the midline regions related to senso-
rimotor cortex? Th is question was addressed in 
a study by Hayes et  al. (2013) from our group. 
He applied an aversion task (targeted to mea-
sure the contextual aversion eff ects) that acti-
vated the sensorimotor cortex as demonstrated 
in fMRI. Th e same subjects also underwent 
18-F-Flumazenil PET to measure the density of 
GABA-A receptors (during the resting state) in a 
midline region, the ventromedial prefrontal cor-
tex (VMPFC) (closely located to the PACC), and 
other regions including the sensorimotor cortex 
(unlike MRS, 18-F-Fluamzenil PET allows us to 
scan the whole brain). 

 He observed that the density of GABA-A 
receptors in the VMPFC (and also in the sen-
sorimotor cortex) positively correlated with 
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   Figure 12-2c     Intero-and exteroceptive awareness and neural activity in the cortical midline regions.  
Cortical midline regions of interest (ROI functional) were defined by the contrast [Fixation > Internal 
(IA)/External Awareness (EA)] (P  ≤ 0.05, FWE-corrected, k  ≥ 5, n =  24 subjects; see SPM images on the 
left  side). Bar diagrams, next to the SPM images, show percent signal changes (PSC, mean SEM) and 
accordingly negative BOLD responses (NBRs) during fixation, EA, and IA.  Paired t-tests between the 
PSC were calculated (** P   ≤ 0.005, * P   ≤ 0.05, (*)  P   ≤ 0.1). ROI functional were also applied to an inde-
pendent data sample ( n  =  30 subjects), and paired  t -tests between PSC were calculated. Note that there 
was no major signifi cant diff erence in the degree of signal changes between intero- and exteroceptive 
awareness in both anterior and posterior cortical midline regions.   

and thus predicted the degree of signal change 
during aversion in sensorimotor cortex:  the 
higher the GABA-A receptor density in VMPFC 
(and sensorimotor cortex), the higher the 
aversion-induced signal changes in the senso-
rimotor cortex. Th is clearly suggests that the 
midline GABA-A receptors exert transregional 
eff ects on (for instance) the sensorimotor corti-
cal activity. 

 Finally, the attentive reader may 
have noticed that the correlation of the 
stimulus-induced activity in PACC with the 
GABA-A receptors (PET) is positive rather 
than negative as in the case of the GABA con-
centration (MRS) (see earlier). The reasons for 
that are unclear. GABA-A receptors as mea-
sured with PET are obviously closely related 
to the intra- and extracellular concentration 
of GABA as measured with MRS. Their exact 
relationship remains unclear at this point, 
however. Whether the GABA-A receptor 
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   Figure 12-2d     Modulation of exteroceptive awareness by GABA-A receptors.  [18F]FMZ-PET imag-
ing was used to calculate binding potentials (BPND-Pons) for GABAA receptors, applying functional 
regions of deactivation (ROIfunc, green color ) derived from the contrast [Fixation > Internal/External 
Awareness] (P ≤ 0.05, FWE-corrected, k ≥ 5 ; see also Fig. 1 ). Th ese values were correlated (controlled 
for gray matter) with percent signal changes (PSC) of the ROIs (see partial correlation graph showing 
the residuals of BPND-Pons and PSC, * P  ≤ 0.05, ** P  ≤ 0. 01). Moreover, BPNDPons values were entered 
into a whole brain regression analysis in SPM (controlled for the proportion of gray matter). Th e lower 
part shows a negative correlation for the contrast [Fixation > External Awareness] with BPND-Pons 
(P ≤ 0.001, uncorrected, k ≥ 20). ( a ) Shows results for the left  mPFC and ( b ) for the bilateral precuneus.   
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density (and affinity) decreases or increases 
with lower or higher concentration of GABA 
has not been explored yet. Therefore, we 
remain unable to interpret the opposite corre-
lations of GABA-A receptor density (PET) and 
GABA concentration (MRS) with the BOLD 
signal in fMRI. 

 Taken together, these studies (and others, 
see Jocham et  al. 2012 as earlier) demonstrate 
that resting state GABA in midline regions like 
the PACC and PCC mediates stimulus-induced 
activity in the very same regions. Whether GABA 
mediates stimulus-specifi c eff ects as related to 
the respective region (as suggested in the study by 
Wiebking et al. 2012; see also Jocham et al. 2012 
for GABA predicting stimulus-induced activity 
during especially rewarding stimuli) remains 
unclear. Accordingly, the question for psycho-
logical and regional specifi city of GABA-ergic 
eff ects during rest-stimulus interaction cannot 
be addressed at this point in time.  

    NEUROEMPIRICAL BACKGROUND III: 
NEURONAL CONTINUITY AND DISTINCTION 
BETWEEN RESTING STATE AND 
STIMULUS-INDUCED ACTIVITY   

 How do these various fi ndings on glutamate and 
GABA account for diff erence-based coding that 
is supposed to underlie rest–stimulus interac-
tion? Most important, we need to address this 
question by considering the neuronal mecha-
nisms that allow for both neuronal continuity 
and neuronal distinction between resting state 
and stimulus-induced activity. 

 Th e resting state activity can exert some 
impact on the stimulus-induced activity only 
of the latter is continuous with the former. Such 
continuity is, as I will explicate in Volume II, of 
utmost importance to associate consciousness 
with the resulting stimulus-induced activity. At 
the same time, though, the stimulus-induced 
activity has to suffi  ciently diff er from the 
resting-state activity in order to allow for the 
stimulus to induce its distinct behavioral and 
phenomenal eff ects. Th at is also important 
for our perception of the stimulus in our con-
sciousness as suffi  ciently distinct from the 

continuously ongoing inner thoughts as related 
to the resting state activity. 

 Accordingly, the neuronal mechanisms 
underlying rest–stimulus interaction are 
“confronted” with the challenge of providing 
both neuronal continuity and distinction of 
stimulus-induced activity from resting-state 
activity. How is such combination of both neuro-
nal continuity and distinction possible? For that, 
I  suggest that the interplay between glutamate 
and GABA is central.  

    NEURONAL HYPOTHESIS IIA: 
GLUTAMATE MEDIATES 
STIMULUS-INDUCED NEURAL 
EXCITATION   

 Let us start with the glutamate and its role in rest–
stimulus interaction. Th e fi ndings demonstrate 
that the resting state concentration of glutamate 
increases the neural activity (as measured with 
the positive BOLD signal in fMRI) in diff erent 
regions like the PACC and the DACC during dif-
ferent tasks like reward and cognitive control. In 
addition to such intra-regional eff ects, the rest-
ing state concentration of glutamate also modu-
lates trans-regional eff ects on stimulus-induced 
activity in other regions, as shown in the study 
by Duncan et al. (2012; see also Falkenberg et al. 
2012 for transregional eff ects). 

 What do these results imply for the neu-
rophysiological mechanisms of glutamate in 
rest–stimulus interaction? Glutamate apparently 
increases neural activity on a regional level as 
is manifested in the observed stimulus-related 
positive BOLD responses. Th ese positive BOLD 
responses have been shown to be neurophysi-
ologically related to the power of local fi eld 
potentials as measured with multi-unit activ-
ity (see Logothetis et al. 2001; Logothetis 2008; 
Lauritzen et al. 2012). 

 Since local fi eld potentials are closely related 
to neural excitation, one would now suggest glu-
tamate to exert its eff ects on a regional level to 
the modulation in the degree of neural excita-
tion. Th erefore, taking both cellular and regional 
levels together, I  postulate that, on a regional 
level of neural activity, glutamate mediates the 
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degree of neural excitation that is elicited by par-
ticular stimuli or tasks. 

 Most important, the level of neural excitation 
seems to remain independent of the degree of 
neural inhibition elicited by the same stimulus 
or task; that may be so because of the temporal 
delay between neural excitation and inhibition as 
we will discuss later (see also Chapters 2 and 6). 
Accordingly, the degree of stimulus-induced 
glutamate-ergic-mediated neural excitation may 
be characterized in an absolute way, as it remains 
independent of the degree of stimulus-induced 
neural inhibition. 

 We have to be careful, however. Glutamate- 
ergic-mediated neural excitation may only be 
independent of stimulus-related changes in neu-
ral inhibition. Th is may concern predominantly 
phasic inhibition that is modulated by the stimu-
lus. In contrast, the glutamate-ergic-mediated 
neural excitation is still very much dependent on 
the degree of ongoing tonic inhibition. 

 For instance, higher degrees of tonic inhibi-
tion in the resting state may make it more dif-
fi cult for glutamate to induce neural excitation 
during stimulus-induced or task-related activity. 
Th is leads us to explore the exact mechanisms of 
how glutamate mediates the transition from rest-
ing state to stimulus-induced activity.  

    NEURONAL HYPOTHESIS 
IIB: STIMULUS-INDUCED 
GLUTAMATE-ERGIC-MEDIATED NEURAL 
EXCITATION IS DEPENDENT ON 
RESTING-STATE ACTIVITY   

 Th e stimulus-induced glutamate-ergic-mediated 
neural excitation is still very much dependent 
on the degree of resting-state activity and its 
actual excitation-inhibition balance. Th is is sug-
gested by the earlier described results, which 
show that the degree of stimulus-induced activ-
ity and its associated behavioral eff ects are 
dependent on the concentration of glutamate 
in the resting state. Accordingly, the degree of 
stimulus-induced glutamate-ergic-mediated 
neural excitation seems to be based and thus 
dependent on the resting-state activity and its 
level of glutamate. 

 What are the exact neuronal mechanisms by 
means of which glutamate induces neural exci-
tation on the basis of the resting-state activity 
level? Some of the neuronal mechanisms may 
concern (for instance) the modulation of the 
power and/or timing of the resting state’s gamma 
cycle, described earlier. To show that, we would 
need to conduct EEG studies and combine them 
with measurements of glutamate and GABA; 
this, however, remains to be reported. One 
would hypothesize that the gamma cycle is not 
only mediated by GABA, as suggested by Fries, 
but also by glutamate, which, however, may 
modulate distinct neuronal measures (like the 
gamma cycle’s phase shift  rather than its power). 

 In order to further reveal the neuronal 
mechanisms of glutamate and how it modulates 
the resting-state activity during the encounter 
with stimuli, we also need to be clearer about 
the resting-state activity itself. When we talk of 
resting-state activity here, we refer to its trait fea-
tures (across time) rather than its state features 
(at one particular point in time) (see Chapter 11 
for more details on the distinction between trait 
and state features of the resting-state activity). 

 How does the distinction between trait and 
state features apply to glutamate? Th e MRS 
does not allow us to measure spontaneous 
changes in glutamate in relation to single trials 
or stimuli (though some functional MRS studies 
have recently been carried out; see for instance 
Schaller et  al. (2013)). Th e spectra obtained in 
MRS result from an integral of about 5-10 min-
utes of measurement (which for GABA is even 
longer). Th is makes it likely that what is mea-
sured in MRS concerns the trait glutamate of 
the resting-state activity rather than the state 
glutamate as related to spontaneous changes in 
the resting-state activity (or to stimulus-induced 
activity as related to single trials). 

 How does that relate to the earlier described 
fi ndings? Th e fi ndings suggests that the resting 
state concentration of glutamate as trait feature of 
the resting-state impacts the more state-related 
changes during stimulus-induced or task-related 
activity. Th is, however, leaves open the role of the 
state features of the resting-state activity itself, its 
spontaneous changes and dynamic fl uctuations 
in the glutamate concentration. To measure the 
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state changes of glutamate and its impact on sub-
sequent stimulus-induced activity, we however 
need to develop better technical devices that 
may allow measuring the spontaneous changes 
in glutamate concentration in the resting state 
itself. 

 How would such spontaneous changes of 
glutamate in the resting state impact subsequent 
stimulus-induced activity? Depending on (for 
instance) the timing or power of the stimulus rel-
ative to the resting state’s glutamate fl uctuations, 
the stimulus may induce stronger or weaker neu-
ral excitation. In the same way that we showed 
how the dynamic changes in the gamma cycle 
impact subsequent stimulus-induced activity, 
we may then assume a “glutamate cycle.” Th e 
assumption of such “glutamate cycle” and its 
specifi c features, however, remains speculative at 
this time.  

    NEURONAL HYPOTHESIS IIC: 
GLUTAMATE MODULATES 
TRANS-REGIONAL EFFECTS AND 
NEURONAL CONTINUITY DURING 
REST–STIMULUS INTERACTION   

 Another feature of glutamate seems that it can 
exert eff ects in distant regions, thus showing 
trans-regional eff ects. Th is has been nicely dem-
onstrated in the study by Duncan et al. (2011), 
who demonstrated that the resting state concen-
tration of glutamate in PACC predicts the degree 
of stimulus-induced activity in the SACC, includ-
ing their trans-regional rest–stimulus functional 
connectivity. Analogous trans-regional eff ects 
were also observed in the study by Falkenberg 
et al. (2012) where the DACC resting state gluta-
mate exerted eff ects on stimulus-induced activ-
ity in other cortical regions. 

 How can glutamate mediate such 
trans-regional rest–stimulus interaction? 
Th is, I  argue, may be mainly due to the spe-
cifi c anatomo-structural organization (see also 
Buzsaki 2006 for details): glutamate and its vari-
ous types of receptors (metabotropic, NMDA, 
AMPA) are located predominantly at pyrami-
dal cells (mainly in layer 4 of the cortex). Th ese 
show abundant aff erent and eff erent connections 
to neurons in more distant and remote regions. 

 Such anatomo-structural considerations pre-
disposes the glutamate in one region to exert 
its eff ects in other regions. Th is may account 
for the observed trans-regional eff ects of glu-
tamate during rest–stimulus interaction. Since 
this concerns anatomo-structural features, one 
would expect the same kind of trans-regional 
eff ects of glutamate to be manifested already 
during the resting state itself. Th is is indeed 
the case with glutamate modulating the degree 
of trans-regional functional connectivity in the 
resting state itself, as we described it in Chapter 6 
(see especially Duncan et al. 2013). 

 Combining this with the apparent eff ects of 
glutamate on neural excitation, one would pro-
pose the trans-regional eff ects of glutamate to 
be mediated by the induction or spread of neu-
ral excitation across diff erent regions. Whether 
such glutamatergic-mediated spread of neural 
activity across diff erent regions may underlie 
what has been described as “travelling waves” 
must remain open though at this point in time. 
In sum, glutamate seems to be central in induc-
ing neural excitation as related to the stimulus. 
Th is may allow the stimulus-induced activ-
ity to be suffi  ciently distinct from the preced-
ing resting-state activity. At the same time, the 
stimulus-induced glutamate-ergic-mediated 
neural excitation is very much dependent on 
the level of the resting-state activity as (for 
instance) its glutamate concentration (while 
remaining independent of the stimulus-related 
phasic GABA changes; see below). Th is means 
that glutamate is central in providing the tran-
sition from resting state to stimulus-induced 
activity, thus allowing for their neuronal 
continuity.  

    NEURONAL HYPOTHESIS IIIA: GABA 
AND GLUTAMATE EXERT DIFFERENTIAL 
EFFECTS ON THE REGIONAL LEVEL OF 
NEURAL ACTIVITY   

 I have so far shown that glutamate seems to 
provide some neuronal continuity from the 
resting-state activity to the stimulus-induced 
activity. At the same time, it induces neural exci-
tation by means of which the stimulus-induced 
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activity can distinguish itself from the 
resting-state activity. 

 How now can the stimulus-induced activ-
ity be even further distinguished from the 
resting-state activity in order to “bring out” the 
distinct neuronal, behavioral, and phenom-
enal eff ects of the stimulus itself? I hypothesize 
that GABA and its interplay with glutamate are 
central here. 

 Let us start with the results on GABA 
described earlier. Th e fi ndings show that the 
resting state concentration of GABA (and/
or the resting state density of GABA-A recep-
tors) in various regions, including sensory and 
motor cortex and midline regions, impacts 
stimulus-induced activity in the same regions. 
Th is again suggests that the resting-state 
 activity—more specifi cally, its concentration 
of GABA—exerts an impact on the degree of 
the subsequent stimulus-induced activity. Th e 
stimulus-induced activity is thus very much 
dependent upon the resting-state activity and its 
(trait) concentration of GABA. 

 We are thus confronted with the same sce-
nario as in the case of glutamate, where an anal-
ogous dependence of stimulus-induced activity 
on the resting-state concentration of glutamate 
can be observed. Th is, however, is the point 
where the similarities between GABA and gluta-
mate end and their diff erences start. 
 Th e diff erences between GABA and glutamate 
are suggested by the fi ndings described earlier 
(which, however, due to the low number of stud-
ies, must be taken tentatively). GABA and gluta-
mate diff ered in their temporal (i.e., early versus 
late; see Jocham et al. 2012), neurophysiological 
(i.e., neural inhibition and excitation; Stagg et al. 
2011a and b), and stimulus-specifi c (i.e., extero- 
versus interoceptive awareness; Wiebking et  al. 
2012, 2013) eff ects.  

    NEURONAL HYPOTHESIS IIIB: GABA 
MODULATES NEURAL INHIBITION ON 
THE REGIONAL LEVEL OF NEURAL 
ACTIVITY   

 How are such diff erences between GABA and 
glutamate possible? Th eir diff erences already 
start on the cellular level. As discussed in 

Chapter  2, GABA is associated with inhibi-
tory interneurons that receive strong connec-
tions from glutamate-ergic-mediated pyramidal 
cells. Th ese direct connections allow for the 
glutamate-ergic pyramidal cells to excite and 
activate the GABA-ergic inhibitory interneu-
rons, which can in turn exert their inhibitory 
eff ects by introducing and increasing neural 
inhibition (see later for more details on that). 
Most important, as the results on the cellar level 
show, there is a temporal delay of around 10ms 
between glutamate-ergic-mediated neural exci-
tation and GABA-ergic-mediated neural inhibi-
tion (see   Fig. 12-3a  ).      

 Th e cellular level shows that neural inhibition is 
dependent on prior neural excitation; there is thus 
a ‘neurophysiological dependence’ between gluta-
mate and GABA. In addition there is also a ‘bio-
chemical dependence’, since the synthesis of GABA 
depends on glutamate as its direct precursor. How 
now is such neurophysiological and biochemi-
cal dependence between GABA and glutamate 
manifested on the regional level? Th e biochemical 
dependence may be refl ected in the positive corre-
lation between GABA and glutamate, as has been 
reported in Jocham et al. (2012) and Wiebking et al. 
(2013) (see Chapter 32 for details on the latter). 

 How about the neurophysiological depen-
dence of neural inhibition on neural excitation? 
Th e data show that GABA and glutamate stand in 
diff erent relation to positive and negative BOLD 
responses in fMRI. While glutamate seems to 
increase positive BOLD response, GABA appar-
ently modulates negative BOLD changes (or 
decreases positive BOLD responses). 

 Since positive and negative BOLD responses 
have been associated with neural excitation and 
inhibition, respectively (see Northoff  et al. 2007; 
Logothetis et al. 2001; Logothetis 2008; Lauritzen 
et al. 2012; Shmuel et al. 2002, 2006), their dif-
ferential modulation by glutamate and GABA 
seems to conform (more or less) to the distinc-
tion between neural excitation and inhibition. 
Th is is also supported by the fi ndings from Stagg 
et  al. (2011a and b) who, combining MRS and 
TMS in motor cortex, could directly link gluta-
mate to neural excitation and GABA to neural 
inhibition (see earlier). Taken together, this sug-
gests that, as on the cellular level, glutamate and 
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GABA mediate neural excitation and inhibition 
also on a regional level of neural activity. 

 How about the temporal delay between 
glutamate-ergic neural excitation and GABA- 
ergic neural inhibition on a regional level of neu-
ral activity? Th e study by Jocham et  al. (2012) 
observed diff erential, opposing eff ects of the 
resting state concentrations of glutamate and 
GABA during early and late stages of the BOLD 
signals; that is, the stimulus-induced activity. 

 While this provides some initial support for 
diff erential temporal eff ects of glutamate and 
GABA, it does not address the question of the tem-
poral delay between neural excitation and inhibi-
tion on a regional level of neural activity. For that, 
one would probably need to undertake EEG/MEG 
and combine it with MRS (and most likely TMS 
to measure the degrees of cortical excitability and 
inhibition), which remains to be reported, though. 

 Th ese fi ndings suggest, though tentatively, 
that the diff erential features of glutamate and 
GABA on the cellular level are somehow pre-
served and resurface in a not-yet-fully clear way 
on the regional level of neural activity.  

    NEURONAL HYPOTHESIS IIIC: 
GABA-ERGIC EFFECTS ARE DEPENDENT 
ON STIMULUS-RELATED GLUTAMATE 
AND RESTING-STATE ACTIVITY   

 How can we further characterize the eff ect of 
GABA on the regional level of neural activity? Due 
to the need for prior glutamate-ergic-mediated 
neural excitation, GABA is not indepen-
dent from glutamate. Instead, the degree of 
GABA-ergic-mediated neural inhibition very much 
depends on the degree of prior stimulus-induced 
glutamate-ergic-mediated neural excitation. 

 

Gaba-ergic
mediated
phasic
inhibition/desini
hibition

Gaba-ergic
mediated tonic
inhibition  

Rest-Rest Interaction Rest-Stimulus Interaction

Glutamatergic-
mediated
variation in
neural excitation 
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Difference-based coding:
Excitation- Inhibition Balance
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Time 

   Figure  12-3a     GABA, glutamate, and rest–stimulus interaction.  Th e fi gure illustrates the role of 
GABA and glutamate in rest–stimulus interaction with regard to the excitation-inhibition balance ( a ) 
and GABA-ergic-mediated nonlinearity ( b ). ( a ) Th e fi gure illustrates the relationship between GABA 
and glutamate during rest–rest and rest–stimulus interaction. Glutamate mediates fl uctuations in the 
degree of neuronal excitation during both resting-state and stimulus-induced activity (upper line). 
GABA mediates tonic middle line and phasic lower line above the time axis changes in the degree of 
neural inhibition during rest–rest and rest–stimulus interaction. Together, GABA and glutamate con-
stitute what is called the excitation-inhibition balance, which is indicated by the thin black dotted lines 
and is based on diff erence-based coding, i.e., the encoding of spatial and temporal diff erences. If the 
resting-state activity encounters a stimulus (brown arrow), the excitation-inhibition balance is rebal-
anced between the early glutamatergic-mediated neural excitation and slightly temporally delayed 
GABA-ergic-mediated phasic neural inhibition. Th e net eff ect of both, the degree of change in the 
excitation-inhibition balance, accounts for the change in or deviation of the stimulus-induced activity 
(as indicated by the absence of dotted lines) from the resting-state activity level.   
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 Such dependence on its excitatory counter-
part distinguishes GABA-ergic-mediated neu-
ral inhibition from glutamate-ergic-mediated 
neural excitation, which, as described earlier, 
remains independent of its inhibitory sibling 
during stimulus-induced activity. Accordingly, 
there is unilateral dependence of stimulus-related 
(phasic) GABA from stimulus-related gluta-
mate, but not of stimulus-related glutamate from 
stimulus-related (phasic) GABA. 

 In addition, GABA-ergic mediated (phasic) 
neural inhibition is also very much dependent on 
the resting-state activity. Th is is well refl ected on 
a cellular level in the earlier mentioned depen-
dence of the stimulus-related gamma shift  and 
the degree of subsequent GABA-ergic-mediated 
neural inhibition on the power and timing of the 
resting state’s ongoing gamma cycles. 

 Th e same apparently holds true on the 
regional level. Otherwise, the degree of stimulus- 
induced negative BOLD response, as related 
to neural inhibition, would not be predicted 
and parametrically modulated by the resting 
state concentration of GABA (see Northoff  
et al. 2007; Wiebking et al. 2012; Shmuel et al. 
2002, 2006).  

    NEURONAL HYPOTHESIS IIID: 
TRAIT VERSUS STATE GABA   

 We also need to distinguish between phasic and 
tonic neural inhibition. GABA-ergic-mediated 
inhibitory interneurons may exert a continuous and 
thus tonic inhibitory impact on other neurons that 
persists more or less throughout the resting-state 
activity. Since tonic GABA-ergic-mediated neural 
inhibition is a more persistent feature, it may be 
regarded as a trait rather than state feature of the 
resting-state activity. 

 As such, tonic GABA-ergic inhibition 
may strongly impact the possible degree of 
glutamate-ergic-mediated neural excita-
tion. In addition, tonic GABA-ergic inhibi-
tion may also modulate the degree to which 
the stimuli can modulate the more phasic 
GABA-ergic-mediated neural inhibition during 
subsequent stimulus-induced activity. 

 In contrast to tonic inhibition, phasic inhi-
bition may rather be regarded as a state feature 

of the resting-state activity that refl ects the 
actual state and level of the resting state at a 
particular point in time. Th is is manifested in 
the spontaneous and dynamic fl uctuations of 
the concentration of GABA in the resting state 
itself. And it is such GABA-ergic-mediated 
phasic inhibition that is most likely aff ected by 
the stimulus and its glutamate-ergic-mediated 
neural excitation. 

 How does that stand in relation to the reported 
results? Due to the low temporal resolution in 
MRS for GABA (with acquisition times usually 
at around 15–20 min), the measured resting state 
concentration may refl ect trait-related GABA in 
the resting state rather than state-related GABA. 
Future investigations may therefore tackle the 
question how the spontaneous resting state 
fl uctuations in GABA concentration aff ect sub-
sequent stimulus-induced activity, including its 
degree of neural inhibition.  

    NEURONAL HYPOTHESIS IVA: 
GLUTAMATE-ERGIC-MEDIATED 
NEURAL EXCITATION AND 
GABA-ERGIC-MEDIATED NEURAL 
INHIBITION ARE DIFFERENCE-BASED 
SIGNALS   

 What do these results on glutamate and 
GABA imply for the encoding of rest– 
stimulus interaction into neural activity? As 
demonstrated earlier, both stimulus-induced 
glutamate-ergic-mediated neural  excitation and 
GABA-ergic-mediated neural  excitation must 
be considered diff erence-based rather than 
stimulus-based signals. Although stimulus- 
induced glutamate-ergic-mediated neural exci-
tation is not dependent upon the degree of 
stimulus-induced phasic GABA-ergic-mediated 
neural inhibition, it remains nevertheless depen-
dent upon the resting-state activity:  that is, its 
level, power, and timing (which also include the 
tonic GABA-ergic eff ects). 

 Th is means that the stimulus-induced 
glutamate-ergic-mediated neural excitation does 
not only and exclusively encode the stimulus 
itself but rather its spatial and temporal relation-
ship to the resting-state activity and its particu-
lar spatiotemporal structure. Stimulus-induced 
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glutamate-ergic-mediated neural excitation is 
thus a diff erence- rather than stimulus-based 
signal. Th erefore, what we observe and describe 
as stimulus-induced glutamate-ergic-mediated 
neural excitation presupposes the encoding 
of spatial and temporal diff erences between 
stimulus and resting-state activity, that is, 
diff erence-based coding. 

 Th e same applies for the GABA-ergic- 
mediated neural inhibition. As described 
earlier GABA-ergic-mediated neural inhibi-
tion is dependent upon both the degree of 
stimulus-induced glutamate-ergic-mediated 
neural excitation and the resting-state activ-
ity itself. Th erefore, GABA-ergic-mediated 
neural inhibition refl ects neither the degree 
of glutamate-ergic-mediated neural excitation 
alone nor that of the resting-state activity itself. 
Instead, GABA-ergic-mediated neural inhibi-
tion results from their integration and must 
therefore be considered a diff erence- rather than 
stimulus-based signal. 

 In sum, both stimulus-induced glutamate- 
ergic-mediated neural excitation and 
GABA-ergic-mediated neural inhibition must 
be characterized as diff erence- rather than 
stimulus-based signals. Th is is possible only 
by encoding spatial and temporal diff erences 
amounting to diff erence-based coding rather 
than stimulus-based coding.  

    NEURONAL HYPOTHESIS IVB: 
NONLINEAR EFFECTS DURING REST–
STIMULUS INTERACTION AND GABA   

 How now does such diff erence-based coding 
relate to the “need of the stimulus-induced activ-
ity” to suffi  ciently diff er from the resting-state 
activity in order to bring forth the neuronal, 
behavioral, and phenomenal peculiarities of the 
stimulus? In order to properly diff erentiate the 
stimulus-induced activity from the resting-state 
activity, the spatial and temporal diff erences 
encoded during rest–stimulus interaction need 
to be suffi  ciently large. 

 Only if the stimulus-induced activity diff ers 
suffi  ciently in neuronal terms from the preced-
ing resting-state activity may the stimulus have a 
“chance” to exert its own and distinct behavioral 

(and phenomenal) eff ects (see also the neuroem-
pirical background at the beginning of this chap-
ter). I now propose that GABA and its mediation 
of nonlinear eff ects may play a central role in 
generating suffi  ciently large spatial and temporal 
diff erences during the encoding of rest–stimulus 
interaction. Th is in turn allows us to suffi  ciently 
distinguish the resulting stimulus-induced activ-
ity from the resting-state activity. 

 Let us recall nonlinearity as one of the 
central principles guiding both stimulus– 
stimulus interaction (Chapter  10) and rest– 
stimulus interaction (see Chapter  11). Th e prin-
ciple of nonlinearity states that stimulus-induced 
activity cannot be considered the result of mere 
addition or summation of the stimulus on top of 
the existing resting-state activity level. Instead, the 
stimulus interacts with the resting-state activity in 
such way that the latter changes in an exponential, 
or nonlinear, rather than parametric, or linear, way. 
Th is indicates nonlinear rather than linear interac-
tion between resting-state activity and stimulus. 

 While there is plenty of empirical evidence for 
the occurrence of such nonlinearity during rest–
stimulus interaction, its exact neurophysiological 
mechanisms remain unclear. Th is is the moment 
where GABA and neural inhibition come into 
play. Following Buzsaki (2006, 63–65), the intro-
duction of GABA-ergic inhibitory interneu-
rons injects nonlinear eff ects into an otherwise 
predominantly linear glutamatergic-mediated 
excitatory system. How does such injection of 
non-linearity look like? Th at shall be discussed 
in the next section.  

    NEURONAL HYPOTHESIS IVC: 
GABA MEDIATES NONLINEARITY 
DURING REST–STIMULUS INTERACTION   

 How does GABA introduce nonlinear eff ects into 
rest–stimulus interaction? To answer that ques-
tion, we need to consider the number of pyra-
midal cells and interneurons (see also Chapters 2 
and 6). As detailed in especially Chapter 2 (and 
Chapter 6), there is an imbalance between gluta-
matergic pyramidal cells and GABA-ergic inter-
neurons, with the number of the latter exceeding 
that of the former. 
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 What does this imbalance between glutama-
tergic pyramidal cells and GABA-ergic interneu-
rons imply for the excitation-inhibition balance 
(EIB)? GABA-ergic interneurons require glu-
tamatergic excitation in order to get activated. 
Th is is further supported on a regional level by 
the observation of a correlation between intra-
regional GABA and glutamate concentrations as 
measured in MRS (Waddell et al. 2011; Schmaal 
et  al. 2012, Wiebking et  al. 2013, Jocham 
et al. 2012). 

 Once activated by glutamatergic excitation, 
the GABA-ergic interneurons, due to their large 
number, increase their degree of neural inhibi-
tion in a disproportionately strong way that far 
exceeds the initial degree of neural excitation 
(see Kapfer et  al. 2007 for empirical support, 
who demonstrate that two pyramidal cells in rat 
somatosensory cortex recruit a tenfold number 
of inhibitory interneurons and thus increase the 
level of recurrent inhibition disproportionately 
when compared to the level of excitation). 

 Th e disproportionally string increase in the 
degree of neural inhibition leads to a major shift  
in the EIB from neural excitation toward neu-
ral inhibition (see also Priebe and Ferster 2008, 
492–493; as well as Logothetis et  al. 2010 for 
support for nonlinear increase in neural inhibi-
tion in visual cortex). Th e diff erence-based value 

of the EIB consequently changes in a nonlinear 
way, by means of which the resulting degree of 
neural activity— stimulus-induced activity—can 
diff er in a nonlinear way from the initial level of 
the preceding activity, the resting-state activity. 

 Th is leads me to the following hypothesis. 
I  hypothesize that the degree of the diff erence 
between stimulus-induced and resting-state 
activity is directly proportional to the degree 
of GABA-ergic-mediated nonlinearity and its 
encoding of spatial and temporal diff erences 
during rest–stimulus interaction:  the higher 
the degree of GABA-ergic-mediated nonlin-
earity during rest–stimulus interaction, the 
larger the encoded spatial and temporal dif-
ferences, and the larger the diff erence between 
stimulus-induced activity and resting-state 
activity (see   Fig. 12-3b  ).      

 Accordingly, GABA-ergic-mediated neural 
inhibition may enlarge the spatial and temporal 
diff erences that are encoded during rest–stimu-
lus interaction. Th is in turn allows the resulting 
stimulus-induced activity to suffi  ciently dif-
fer from the resting-state activity (that is in its 
power, timing, and level) and thus to “bring out” 
the distinct behavioral (and phenomenal) eff ects 
of the stimulus. I henceforth suggest the distinc-
tion between rest and stimulus to be based on 
GABA and its modulation of the degree of spatial 

 

Degree of spatial and
temporal differences
as encoded during
rest-stimulus interaction

Degree of neuonal distinction
of stimulus-induced activity
from the level, power, and
timing of the resting state activityHS
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Degree of GABA-ergic
mediated non-linearity
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   Figure 12.3b     GABA, glutamate, and rest–stimulus interaction.  ( b ) Th e fi gure illustrates the relation-
ship between the degree of GABA-ergic-mediated nonlinearity (y-axis) and the degree of the encoded 
spatial and temporal diff erences during rest–stimulus interaction (x-axis):  the higher the degree of 
GABA-ergic-mediated nonlinearity during rest–stimulus interaction, the larger the encoded spatial 
and temporal diff erences during rest–stimulus interaction, and the larger the degree of neuronal dis-
tinction between stimulus-induced activity and resting-state activity (its level, timing, and power). 
Abbreviations: VS = vegetative state, HS = healthy subjects.   
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and temporal diff erences that are encoded into 
neural activity during rest–stimulus interaction.  

    NEURONAL HYPOTHESIS IVD: 
GABA-MEDIATED NONLINEARITY AND 
CONSCIOUSNESS   

 What though happens if the degree of 
GABA-ergic mediated non-linearity is rather 
low? If the degree of GABA-ergic-mediated 
nonlinearity during rest–stimulus interaction is 
rather low, there will at best be linear (i.e., merely 
additive or summative) but no longer nonlinear 
diff erences between stimulus-induced activity 
and resting-state activity. I  consequently sug-
gest that the degree of GABA-ergic-mediated 
nonlinearity during rest–stimulus interaction 
is neuronally relevant, in that it determines the 
degree of stimulus-induced activity and thus 
its relative diff erence from the resting-state 
activity. 

 In addition to such neuronal relevance, I sug-
gest that GABA-ergic-mediated nonlinearity is 
also highly relevant for consciousness; that is, 
phenomenally relevant. In order to associate a 
phenomenal state, consciousness, with the purely 
neuronal stimulus-induced activity, the stimulus 
must interact with the resting-state activity in a 
nonlinear way to yield suffi  ciently large diff er-
ences in stimulus-induced activity when com-
pared to the resting-state activity level. 

 If, in contrast, there is only linear interaction 
between stimulus and resting-state activity, the 
probability that the resulting stimulus-induced 
activity will be associated with a phenomenal 
state and thus consciousness is rather low. Th at 
may, for instance, be the case in patients with 
vegetative state, whose loss of consciousness may 
be related to their loss of GABA-ergic-mediated 
nonlinearity during rest–stimulus interaction 
(see Chapters 28 and 29 for details). 

 Due to their lack of GABA-ergic mediated 
non-linearity during rest-stimulus interac-
tion, these patients may no longer be able to 
“bring out” the neuronal, behavioral and phe-
nomenal features associated with the stimulus. 
Th is example demonstrates tentative support 
to the hypothesis that GABA-ergic-mediated 
nonlinearity during rest–stimulus interaction 

is not only neuronally but also phenomenally 
relevant.  

    NEURONAL HYPOTHESIS VA: GABA 
MEDIATES SPARSE CODING DURING 
REST–STIMULUS INTERACTION   

 Where are we now? I  demonstrated various 
empirical fi ndings that show how the resting state 
concentrations of GABA and glutamate predict 
the degree of subsequent intra- or trans-regional 
stimulus-induced activity. Th is, as I  supposed, 
is possible only by assuming diff erence-based 
coding. Only diff erence-based coding (as dis-
tinct from stimulus-based coding) allows for the 
encoding of spatial and temporal diff erences by 
GABA and glutamate into neural inhibition and 
excitation whose relative diff erence constitutes 
the excitation-inhibition balance. 

 How can we now further characterize the 
resulting stimulus-induced activity? We saw in 
Chapter  2 that GABA-ergic-mediated neural 
inhibition was closely related to sparse coding 
on a cellular level of neural activity:  the stron-
ger the GABA-ergic-mediated neural inhibition, 
the higher the degree of temporal and spatial 
sparsening of the subsequent stimulus-induced 
activity. Aft er showing that sparse coding also 
holds on the regional level of neural activity (see 
Chapter 3), we then demonstrated that the rest-
ing state and its spatiotemporal activity pattern 
can also be characterized by sparse coding and 
GABA-ergic-mediated neural inhibition (see 
Chapter 6). 

 Th is left  open whether GABA-ergic-mediated 
neural inhibition also drives the temporal 
and spatial sparsening of neural activity dur-
ing rest–stimulus interaction and the resulting 
stimulus-induced activity on a regional level. 
Th e earlier suggested diff erence-based coding 
of GABA and glutamate during rest–stimu-
lus interaction may consequently entail sparse 
coding of stimulus-induced activity. Th erefore, 
stimulus-induced activity can be characterized 
by temporal (lifetime sparseness) and spatial 
(population sparseness) sparsening, with only a 
few regions being active in a short time window 
(see   Fig. 12-4a  ).      
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 More specifi cally, I  hypothesize that 
GABA-ergic-mediated neural inhibition and 
its nonlinearity are central in the temporal 
and spatial sparsening of neural activity dur-
ing rest–stimulus interaction:  the higher the 
degree of GABA-ergic-mediated nonlinearity 
during rest–stimulus interaction, the higher the 

degree to which the resulting stimulus-induced 
activity will be spatially (“population sparse-
ness”) and temporally (“lifetime sparse-
ness”) sparsened. In short, I  propose that 
GABA-ergic-mediated nonlinearity drives the 
sparsening of stimulus-induced activity (see 
  Fig. 12-4b  ).       
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   Figure 12-4a     Sparse coding and GABA.  Th e fi gure illustrates the sparse coding on a regional level ( a ) 
and how it relates to GABA-ergic-mediated nonlinearity ( b ). ( a ) Th e fi gure illustrates how sparse cod-
ing operates on the regional level in both temporal ( upper part ) and spatial ( lower part ) regard. If one 
stimulus occurs several times across time (small horizontal lines), the region c will show activity (bar 
diagram) at only one discrete point in physical time, thereby integrating the several occurrences of the 
stimulus across time. Hence, there is what can be described as “temporal sparsening.” Th e same holds 
for the spatial domain, where diff erent stimulus types occurring at diff erent positions in space (small 
horizontal lines) do not elicit neural activity in diff erent regions (a, b, c) but only in one of the regions 
(bar diagram). Th is amounts to what can be described as “spatial sparsening.”   
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   Figure  12-4b     Sparse coding and GABA.  ( b ) Th e fi gure illustrates the presumed dependence of 
the degree of temporal and spatial sparsening of stimulus-induced activity (x-axis) on the degree 
of GABA-ergic-mediated nonlinearity during rest–stimulus interaction (y-axis). Th e higher the degree 
of GABA-ergic-mediated nonlinearity during rest–stimulus interaction, the higher the degree of tem-
poral and spatial sparsening in the resulting stimulus-induced activity.   
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    NEURONAL HYPOTHESIS VB: 
SPARSE CODING OF 
STIMULUS-INDUCED ACTIVITY   

 If my hypothesis is correct, one would expect 
that stimulus-induced activity goes along with 
higher degrees of temporal and spatial sparse-
ness when compared to the resting-state activity. 
Why is this so? Due to the increased degree of 
stimulus-induced glutamatergic-mediated neural 
excitation, the stimulus leads to increased recruit-
ment of GABA-ergic neural inhibition; this in turn 
increases the likelihood of nonlinearity and conse-
quently the degree of temporal and spatial spars-
ening in the subsequent stimulus-induced activity. 

 Is there any empirical support for higher 
degrees of sparseness during stimulus-induced 
activity when compared to resting-state activ-
ity? Let us recall the investigation by Dan Lloyd 
(2011) on sparse coding in music, language, and 
the brain, described in Chapter  6. He applied 
quantitative measures of sparseness with regard 
to the number of elements and their combina-
tions actually used. 

 Th ereby, the brain’s resting-state activity 
(with spatiotemporal activity patterns defi ned 
at each point in time during scanning/fMRI) 
showed a degree of sparseness that is com-
parable to the one in music rather than to the 
much lower degree of sparseness in language 
(see Chapter  6 for details). Interestingly, Lloyd 
included not only resting-state data but also 
some stimulus-induced data that were acquired 
during an auditory oddball paradigm in both 
healthy and schizophrenic subjects. 

 Th is showed higher degree of sparseness dur-
ing stimulus-induced activity when compared 
to resting-state activity. Lloyd consequently 
proposes that the stimulus or the task increases 
the degree of sparse coding in the brain. Th at is 
a tentative hypothesis, however, due to the low 
number of cases included (see also Lee et al. 2011 
for further support of increased sparseness dur-
ing stimulus-induced activity). 

 What do these fi ndings imply? Th ey pro-
vide tentative evidence for the assumption 
that stimulus-induced activity shows higher 
degrees of sparseness than resting-state activ-
ity. Together with the fi ndings described here, 

that lends some indirect empirical support to 
the central role of GABA-ergic-mediated neu-
ral inhibition and nonlinearity in increasing the 
degrees of temporal and spatial sparsening dur-
ing stimulus-induced activity.  

    NEURONAL HYPOTHESIS VC: 
STIMULUS-INDUCED ACTIVITY IS 
“HYBRID” AND DIFFERENCE- AND 
STATISTICALLY BASED   

 Put slightly diff erently, the encounter with the 
stimulus provides the brain’s resting-state activ-
ity with the “opportunity to recruit” higher 
degrees of GABA-ergic-mediated nonlinearity 
and to spatially and temporally sparsen its neu-
ral activity. Such increased spatial and temporal 
sparsening is possible only by increased encod-
ing of spatial and temporal diff erences into 
neural activity and thus by higher degrees of 
diff erence-based coding. 

 What does such increase in the degree of 
diff erence-based coding entail for the diff erent 
stimuli? Th e diff erent stimuli—the exterocep-
tive stimuli from the environment, the intero-
ceptive stimuli from the body, and the neuronal 
stimuli from the brain itself—have a higher, 
purely statistically based, chance of getting linked 
and integrated with each other which makes 
more likely their encoding in term of spatial and 
temporal diff erences. Th e increase in the encod-
ing of spatial and temporal diff erences increases, 
in turn, the degree of temporal and spatial spars-
ening of the resulting stimulus-induced activity 
at only a couple of regions at a few points in time. 
We can thus see a regionally (spatially) and tem-
porally sparse activation pattern which is exactly 
what we can observe in our results from both 
EEG and fMRI. 

 Let us consider the same phenomenon on a 
slightly more general level. Th e diff erent stimuli’s 
statistical frequency distributions, their social 
(exteroceptive stimuli), vegetative (interocep-
tive stimuli), and neuronal (neuronal stimuli) 
statistics (see Chapter  8 and 9 for details), are 
matched and linked and integrated with each 
other during rest–stimulus interaction when 
being encoded into neural activity in terms of 
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spatial and temporal diff erences. Th e resulting 
stimulus-induced activity can consequently no 
longer be said to exclusively originate from either 
exteroceptive, interoceptive, or neuronal stimuli 
and thus from either social, vegetative, or neu-
ronal origins. Accordingly, the simulus-induced 
activity can no longer be associated exclusively 
with one particular stimulus and its vegetative, 
social, or neuronal origin. 

 What does this imply for the characteriza-
tion of the stimulus-induced activity in positive 
terms? Instead of being based on the origin of 
the stimuli; that is, origin- and stimulus-based, 
the resulting stimulus-induced activity may 
rather be characterized as statistically and 
diff erence-based (see Chapter  25 for extensive 
discussion of such origin- and stimulus-based 
coding). Th e stimulus-induced activity must 
consequently be regarded rather a statistically 
and diff erence-based as well as hybrid where the 
diff erent stimuli and their respective statistics, 
social, vegetative, and neuronal, are intrinsically 
intertwined and indistinguishable. 

 Accordingly, there is thus no “pure” 
stimulus-induced activity that refl ects one par-
ticular stimulus exclusively and by itself. Instead, 
any stimulus-induced activity must be consid-
ered a “hybrid” of neuronal, interoceptive, and 
exteroceptive stimuli which are always already 
linked by our brain and its particular encoding 
strategy.  

    NEURONAL HYPOTHESIS VD: SPARSE 
CODING AND CONSCIOUSNESS   

 Why is the hybrid characterization of 
stimulus-induced activity as diff erence- and 
statistically based so important? First and fore-
most it is neuronally relevant, since it lets us bet-
ter understand what stimulus-induced activity 
is about. 

 It may explain many fi ndings showing that 
exteroceptively-related stimulus-induced activ-
ity and the associated sensory, motor, or cog-
nitive functions are dependent on both the 
interoceptive stimuli from the own body, its veg-
etative state, and the brain’s resting-state activ-
ity level, its neuronal stimuli (and vice versa) 
(see Chapter 8). Many of the fi ndings that show 

context-dependence, as discussed especially 
in Chapters  8 and 9, may well be explained 
on a neuronal level by the characterization of 
stimulus-induced as “hybrid” as well as statisti-
cally and diff erence-based. 

 Beyond its neuronal relevance, I  postulate 
that the diff erence- and statistically based as well 
as hybrid nature of stimulus-induced activity is 
also behaviorally and especially phenomenally 
relevant. As will become clear in Volume II, the 
intrinsic integration and linkage between extero-
ceptive, interoceptive, and neuronal stimuli and 
their respective social, vegetative, and neuronal 
statistics is essential in making possible the asso-
ciation of consciousness and its phenomenal fea-
tures with the purely neuronal stimulus-induced 
activity. 

 What does the relationship between sparse 
coding and consciousness look like? Th e better 
the diff erent stimuli and their respective statis-
tics are linked and integrated and thus encoded 
into neural activity in terms of spatial and tem-
poral diff erence, the more hybrid and sparse 
the resulting purely neuronal stimulus-induced 
activity, and the higher the likelihood that the 
latter will be associated with consciousness (see 
Chapters  28–30). Th is is well refl ected in our 
subjective experience of consciousness, which 
can indeed be characterized as a state wherein 
all three, brain, body, and environment, are inte-
grated in an intrinsic and (more or less) indis-
tinguishable way (see especially Chapter 30) (see 
  Fig. 12-4c  ).      

 If, in contrast, the diff erent stimuli are not 
well integrated and encoded into neural activity 
in terms of spatial and temporal diff erences, the 
resulting stimulus-induced activity will be less 
hybrid and sparse, which decreases the likeli-
hood of its association with a phenomenal state 
that is consciousness. Th is may be the case in 
vegetative state, where the patients seem to show 
a less hybrid stimulus-induced activity, which 
therefore, I would postulate, is no longer associ-
ated with the phenomenal features of conscious-
ness (see Chapters 28 and 29). 

 In that case, brain, body, and environment can 
no longer be intrinsically linked and integrated; 
which, I postulate, makes their association with 
subjective experience and thus consciousness 
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impossible (see Chapters 28–32). Consciousness 
must therefore be characterized as intrinsically 
relational, relating brain, body, and environment 
in a yet-unclear though intrinsic way. Why is 
that so, and how does it work? For the answers 
to these questions, I  ask the reader to turn his 
consciousness to Volume II.  

    OPEN QUESTIONS   

 I claim that GABA-ergic-mediated neural inhi-
bition and nonlinearity are central in mediating 
the degree of sparse coding on a regional level 
of neural activity. However, there is currently 
(to my knowledge) no direct empirical support 
at this point for linking GABA-ergic-mediated 
neural inhibition and nonlinearity to the degree 
of sparse coding during rest–stimulus interaction 
on a regional level of neural activity. My hypoth-
esis must therefore be regarded as tentative. 
 While there is much support for the hypoth-
esis on the cellular and population level (see 
Chapter 2), empirical evidence is lacking almost 
completely on the regional level. Based on the 
fi ndings described here and in Part I of this vol-
ume, one may suggest that the temporal and spa-
tial sparsening of neural activity may be central 

in bridging the gap from the cellular over the 
population to the regional level of neural activity. 
Th is, however, is a hypothesis that remains to be 
explored. 
 Second, one may raise the question of the behav-
ioral, psychological, and phenomenal eff ects of 
sparse coding. I  focused here on the neuronal 
eff ects of sparse coding during diff erent kinds 
of neural activity; that is, rest–rest and rest– 
stimulus interaction. But I  neglected to explain 
how such sparse coding impacts behavioral, psy-
chological, and phenomenal functions. One may, 
for instance, hypothesize that diff erent degrees of 
sparse coding may go along with diff erences in 
the degree of consciousness, as will be discussed 
in further detail in Chapters 28 and 29. 
 I am even inclined to go one step further and 
argue that sparse coding may be central and thus 
indispensable for predisposing and making pos-
sible the constitution of consciousness. If there 
were no sparse coding, consciousness would 
remain impossible. Th is goes beyond the purely 
neuronal account of the brain as it was the focus 
of this Volume. I therefore delegate this and the 
question of its neural predisposition and corre-
lates to Volume II, which concerns conscious-
ness and also focuses on sparse coding (see 
Chapters 28 and 29).                       

 

Degree of hybrid nature and
sparsity during stimulus-induced
activity

Likelihood of consciousness as
the association of phenomenal
features with the otherwise
purely neuronal stimulus-induced activity

HS

VS

Degree of difference-based
coding as the encoding of
spatial and tmeporal differences
during rest-stimulus interaction

(c)

   Figure  12-4c     Sparse coding and GABA.  ( c ) Th e fi gure illustrates the presumed dependence of the 
degree of consciousness on the relationship between the degree of diff erence-based coding during 
rest–stimulus interaction (y-axis) and the degree of hybrid nature and sparsity of stimulus-induced 
activity. Th e higher the degree of diff erence-based coding during rest–stimulus interaction, the higher 
the degree of hybridity and sparsity of stimulus-induced activity, and the higher the likelihood that 
a phenomenal state will be associated with the otherwise purely neuronal stimulus-induced activity. 
Abbreviations: VS = vegetative state, HS = healthy subjects.   





 Unlocking the brain? Th is is the title of this book. 
I supposed that the brain’s neural code, the way it 
encodes its neural activity, may unlock the brain. 
“Unlocking” means that the door opens and 
reveals something like another room that was 
not visible before. What does this new room look 
like, which the concept of diff erence-based cod-
ing as the brain’s encoding strategy has opened 
for us? 

 I postulate that the “new room” puts the 
brain in the biological context of the rest of 
the body and the world. In the same way that 
each organ of the body, like the heart, kidney, 
or stomach, can be characterized by specifi c 
actions and mechanisms, the brain’s encoding 
strategy may reveal its biological role. Th at is 
the focus in this short epilogue, which aims to 
provide a fi rst tentative and rather sketchy out-
line of a quick guide to a future “theory of brain 
activity” (see Introduction for the distinction 
between “theory of brain activity” and “theory 
of brain function”).  

    WHAT DOES THE BRAIN DO?   

 Th is question pertains to the kind of action the 
brain does. Let us fi rst answer this question 
for other organs of the body, like the stomach, 
heart, and kidney. What do they do? Th e stom-
ach segregates the diff erent chemicals from 
our food by dissociating and extracting them. 
Th e heart pumps blood, while the kidneys fi l-
ter (and detoxify and clean) the blood. Th ese 

actions—segregating, dissociating, pumping, 
and fi ltering—characterize these organs. 

 What does the brain do? Which kind of 
action characterizes the brain? I  postulate that 
the brain’s action can be characterized by “spa-
tializing” and “temporalizing.” “Spatializing” and 
“temporalizing” describe that extrinsic stimuli 
and intrinsic activity changes are put into their 
respective spatial and temporal context. 

 In the same way that the blood is pumped by 
the heart and cleaned by the kidney, the extrin-
sic stimuli are spatialized and temporalized 
by the brain that is its neural code and intrin-
sic activity. Accordingly, the brain is a “spatial-
izing” and “temporalizing” organ in very much 
the same way as the heart is a pumping organ, 
the kidney a fi ltering organ, and the stomach a 
segregating organ. 

 What do I  mean by the terms “spatial con-
text” and “temporal context”? Th e concept of the 
spatial context refers here to the co-occurrence 
of either the same or other stimuli in other 
neighboring points in space. By putting the sin-
gle stimulus into its particular spatial context, 
the stimulus becomes linked and related to other 
stimuli across diff erent their discrete points in 
physical space. Applied to all stimuli, this will 
yield a spatial matrix, grid, or structure that, as 
statistically based (see later), operates across and 
supersedes the distinct discrete points in physi-
cal space (see Chapter 4). 

 How about the “temporal context”? Th e 
concept of the temporal context describes the 

          EPILOGUE:           A QUICK GUIDE TO A FUTURE 
“THEORY OF BRAIN ACTIVITY”   



EPILOGUE: A FUTURE “THEORY OF BRAIN ACTIVITY“290

occurrence of either the same or other stim-
uli across diff erent discrete points in physical 
time. Putting the single stimulus into its par-
ticular temporal context makes it possible for 
the stimulus to becomes linked and related 
to other stimuli across their diff erent discrete 
points in physical time. Th is will ultimately 
result in the constitution of a temporal matrix, 
grid, or structure that, as statistically based 
(see later), operates across and supersedes the 
distinct discrete points in physical time (see 
Chapter 5). 

 Both spatializing and temporalizing result in 
the constitution of a virtual statistically-based 
spatial and temporal matrix. Such spatial and 
temporal matrices are based on the statistical 
frequency distribution and thus the statistics of 
the diff erent stimuli, Th e resulting spatial and 
temporal matrices are thus statistically based 
rather than physically based as related to the 
physical features of the stimuli. 

 How can the brain construct such statistically 
based spatial and temporal matrices? I propose 
that functional connectivity between diff erent 
regions and thus spaces of the brain is essential; 
that is, functional connectivity predisposes, or, 
more technically put, is a necessary and there-
fore unavoidable condition for, the possible con-
stitution of such spatial matrix. On the temporal 
side, I hypothesize the brain’s frequency fl uctua-
tions to be the predisposing or necessary condi-
tion for the possible constitution of its temporal 
counterpart, the temporal matrix. 

 Neither spatial nor temporal matrix is seg-
regated and processed diff erently, however. 
Instead, they are integrated and intrinsically 
linked to each other. Frequency fl uctuations, for 
example, are supposed to be dependent upon the 
functional connectivity and vice versa: the lower 
the frequency ranges of the neuronal fl uctua-
tions, the more spatially distant regions can be 
functionally connected with each other. 

 Conversely, functional connectivity between 
spatially closer regions may go along with higher 
frequency ranges of the neuronal fl uctuations. 
Accordingly, the brain, and especially its intrin-
sic activity, construct a unifi ed spatiotemporal 
matrix rather than parallel and separately operat-
ing spatial and temporal structures. One should 

thus better speak of “spatio-temporalizing” 
rather than “spatializing” and “temporalizing.”  

    WHERE DOES THE BRAIN OPERATE?   

 Th is is the question for the “location” of the 
brain’s action and operation. Let us fi rst answer 
this question for other organs of the body, like 
stomach, heart, and kidney. 

 Where do they operate? Th e stomach oper-
ates in the gastrointestinal tract, which it is part 
of. Since it supplies energy, though, it acts within 
the whole body. Th e same holds for the heart, 
which acts beyond its own boundaries across 
the whole body through its pumping of blood. 
Finally, the kidney also does not limit its action 
to its own confi nes but aff ects the whole body. 

 Where does the brain act and operate? First 
and foremost one would say that it acts in the 
skull where the brain is physically located. 
However, like the other organs, its actions are 
not limited to the boundaries of the skull but 
reach far beyond. Th is is, as I will argue, is closely 
related to its action of “spatiotemporalizing.” 

 How does “spatiotemporalizing” relate to 
the brain’s processing of stimuli from diff er-
ent origins as from environment and body? 
“Spatiotemporalizing” applies to all stimuli, 
irrespective of their origin. Stimuli originating 
from the environment, or exteroceptive; from 
the body, or interoceptive; and from the brain 
itself, or neuronal, do all become spatiotempo-
ralized:  independent of their diff erent origins, 
they are all put into their respective spatial and 
temporal context when they are encoded and 
processed by the brain. 

 Th is means that the spatiotemporal matrix 
is not restricted to the space and time within the 
brain itself. Instead, it spans in a statistically based 
and therefore virtual way across the boundaries 
between brain, body, and environment and their 
respectively associated (physically based) spatial 
and temporal frameworks (see Chapters  4, 5, 8, 
and 9 in Volume I, as well as especially 20 and 21 
in Volume II). In the same way, the actions of heart, 
stomach, and kidney show eff ects beyond the 
respective organ itself, in the whole body, the brain’s 
“spatiotemporalizing” reaches even further beyond 
the skull and its own body to the environment. 
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 Metaphorically, one may want to compare 
the statistically based spatiotemporal matrix to a 
hammock in a forest that hangs between diff er-
ent trees called brain, body, and environment. In 
the same way that a hammock can be abnormally 
tilted toward any one of these trees, the spatio-
temporal matrix can also be abnormally shift ed 
toward either brain, body, or environment. 

 For instance, psychiatric disorders like 
depression and schizophrenia show altered 
“spatializing” and “temporalizing” by the brain. 
Th is leads to an abnormal spatiotemporal matrix 
with abnormal shift s in the relationship between 
brain, body, and environment, which are mani-
fested in rather bizarre behavioral and phenom-
enal abnormalities (see Chapters 17, 22, and 27). 

 Apart from its psychiatric relevance, we 
will see that the spatiotemporal matrix also 
provides the “hammock” for consciousness. 
Consciousness is about our experience of our-
selves, others, and events in the environment. 
Th at is possible only when there is some kind 
of basic or prior linkage with the environment. 
Th is is provided by the spatiotemporal matrix 
that links brain, body, and environment in a 
statistically based way in the same way a ham-
mock in a forest links diff erent trees. Changes 
in the hammock go along with shift s in your 
position. Analogously, changes in the spatiotem-
poral matrix lead to changes and shift s in your 
consciousness.  

    HOW DOES THE BRAIN OPERATE?   

 Th is is the question of what kinds of mecha-
nisms enable the brain to perform the kinds of 
actions it does. Let us fi rst answer this question 
for other organs of the body like stomach, heart, 
and kidney. 

 How do they operate? Th e stomach operates 
on the basis of enzymatic reactions to dissociate, 
segregate, and extract the diff erent chemicals 
from our food. Th e heart relies on the mecha-
nism of muscle contraction to pump blood, 
while the kidneys use an elaborate fi lter system 
to fi lter the blood. Th ese mechanisms—enzy-
matic reactions, muscle contraction, and fi lter-
ing system—characterize these organs since they 
allow them to do their specifi c action. 

 How does the brain operate? Which neuronal 
mechanisms characterize the brain  as  brain such 
that it allows the brain to do its specifi c action, 
the “spatializing” and “temporalizing”? I  pro-
pose that the central neuronal mechanism here 
is the kind of coding strategy the brain applies to 
encode all extrinsic stimuli and intrinsic activity 
changes into neural activity. 

 Th e brain encodes all extrinsic stimuli and 
intrinsic activity changes in terms of spatial 
and temporal diff erences that span across the 
stimuli’s diff erent single discrete points in physi-
cal time and space. Rather than encoding the 
stimuli themselves as in stimulus-based coding, 
the brain therefore encodes diff erences between 
diff erent stimuli into neural activity. Th is entails 
what I describe as diff erence-based coding (see 
Chapters 1–6). 

 Th e encoding of temporal and spatial dif-
ferences makes possible the encoding of the 
stimuli’s statistical frequency distribution:  their 
statistics. Diff erence-based coding can thus be 
described as a statistically based encoding strat-
egy. As such, it proves central for making possible 
the construction of the statistically based virtual 
spatiotemporal matrix between brain, body, and 
environment. Th is, in contrast, would be impos-
sible in the case of stimulus-based coding. 

 What do I  mean by the concept of “diff er-
ence”? Th e concept of diff erence describes a 
purely formal metric or measure that applies to 
distinct levels, functions, and stimuli processed 
in the brain (see Introduction and Appendix 3 
for a more refi ned conceptual description of the 
concepts of “diff erence” and “code”). Taken in 
this sense, the concept of “diff erence” remains 
independent of any concrete feature, content, or 
function associated with the stimuli that are to 
be encoded into neural activity. 

 Nothing is absolute, though, as we all know 
only too well. Th is pertains to diff erence-based 
coding, too. Th e brain and its neural processing 
seem to be characterized by a fi ne-tuned and fl ex-
ible balance between the degrees of diff erence- 
and stimulus-based coding, with usually the 
degree of diff erence-based coding being much 
higher than the one of stimulus-based coding. 
I postulate that the brain’s intrinsic activity and 
more specifi cally its level of resting state activity 
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provides the threshold for the balance between 
diff erence- and stimulus-based coding. 

 Th at balance, however, as we will see in 
Volume II, can change in disorders of conscious-
ness like the vegetative state, where the degree of 
stimulus-based coding increases at the expense 
of diff erence-based coding (see Chapter  29). 
Th is, as I postulate, may be related to abnormal 
changes in the resting state which no longer pro-
vides the proper threshold. Diff erence-based 
coding and its balance to stimulus-based may 
thus be not only neuronally relevant but also 
phenomenally; that is, for consciousness. 

 How does the brain operate? Based on my 
assumption of diff erence-based coding, I postu-
late that the currency or language of the brain 
consists of spatiotemporal diff erences between 
diff erent stimuli rather than of single stimuli 
themselves and their discrete point in time and 
space. Th e brain’s general encoding strategy, 
diff erence-based coding, is thus the neuro-
nal mechanism that makes possible the brain’s 
action, its spatializing and temporalizing of both 
extrinsic stimuli and intrinsic activity changes. 

 How does that stand in relation to the other 
organs? Th e stomach’s enzymatic reactions, the 
heart’s muscle contractions, and the kidney’s 
fi lter system allow for their respective actions, 
that is, dissociation, pumping, and fi ltering. 
Analogously, I  postulate that diff erence-based 
coding allows the brain to “perform” the action 
that defi nes the brain as brain; namely, “spatial-
izing” and “temporalizing.”  

    WHAT PREDISPOSES THE BRAIN 
TO OPERATE IN THIS WAY?   

 Th is is the question of the predisposition or basis 
that makes possible the brain’s action and opera-
tion and thus its general encoding strategy by 
which it generates its own neural activity. 

 In the case of the heart, it is its nature as one 
big muscle and its supply of energy that as make 
it possible for the heart to contract and conse-
quently to pump blood throughout the whole 
body. For the stomach, it is the presence of the 
various enzymes that allow the enzymatic reac-
tions, which in turn make possible the extrac-
tion and segregation of the chemicals from our 

food. Finally, in the case of the kidney, its specifi c 
architectural design makes it possible for to fi lter 
and ultimately detoxify and clean the blood. 

 Where is the brain’s ability of spatializing and 
temporalizing stimuli via diff erence-based cod-
ing derived from and what is it based on? I pro-
pose that the brain’s architectonic and energetic 
design is a predisposing and thus necessary con-
dition of possible spatializing and temporalizing. 
Th e brain’s architectonic design consists of its 
anatomical structure that predisposes a particu-
lar encoding strategy; that is, diff erence-based 
coding. 

 Let us describe the brain’s anatomical struc-
ture in both spatial and temporal terms. Th e 
brain’s anatomical structure can be character-
ized by mutual and reciprocal structural con-
nections between almost all regions, with the 
connections being either direct or indirect. Such 
a structural connectivity pattern predisposes the 
constitution of functional connectivity between 
close and distant regions (see Part III). Th is, in 
turn, makes possible the encoding of spatial rela-
tionships between the diff erent regions’ neural 
activities with the consequent constitution of a 
statistically based virtual spatial structure (see 
Chapter 4). 

 Temporally, the brain itself (its intrinsic activ-
ity) can be characterized by low-frequency fl uc-
tuations; these are supposed to be segregated and 
chopped up into higher frequency fl uctuations 
by stimuli arriving at particular time points (see 
Chapter 5). As in the spatial domain, this leads 
a particular temporal organization of the neu-
ral activity and its constitution of a statistically 
based virtual temporal structure. Any stimulus, 
if “it wants to be processed in the brain,” must 
encounter the brain’s intrinsic activity and its 
spatiotemporal structure. Th is, as I claim, makes 
possible by default the aforementioned “spa-
tializing” and “temporalizing” of the stimulus, 
which is thereby put into the spatial and tem-
poral context of the brain itself and its intrinsic 
activity that is, its spatiotemporal matrix. 

 In addition to the brain’s architectonic design 
and its spatial and temporal predispositions, we 
also need to consider the energetic design of the 
brain. Th e maintenance of the brain’s resting-state 
activity and its spatiotemporal structure is 
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energetically highly demanding, which resem-
bles the situation in the heart, whose continuous 
pumping via muscle contractions also requires 
high levels of energy. To get a suffi  cient energy 
supply from the rest of the body, the brain devel-
oped a specifi c way of extracting energy from the 
blood, the neurometabolic coupling. 

 Th e brain’s strategy of neurometabolic cou-
pling is refl ected in the glutamate-glutamine 
cycling and the subsequent utilization of glucose 
and other metabolic processes for generating its 
own neural activity. Th is makes it possible for 
the brain to extract a high level of energy, which 
in turn predisposes it to encode its own neural 
activity in terms of diff erence-based coding and 
the consecutive “spatializing” and “temporaliz-
ing.” Th e brain must thus be considered a neu-
rometabolic rather than purely neuronal device. 

 Th is is relevant not only energetically and 
neuronally but also phenomenally; that is, for 
consciousness. We will see in Volume II that dis-
ruption of the metabolic-energetic supply of the 
brain can lead to loss of consciousness, as in the 
vegetative state (see Chapters 28 and 29). 

 Where can we fi nd the basis of the brain’s 
action? I  postulate that the basis can be found 
in the brain’s architectonic design and its neuro-
metabolic coupling. Both architectonic design 
and neurometabolic coupling predispose the 
brain to encode its neural activity in terms of 
diff erence-based coding. Th is in turn makes 
possible the action of the brain; namely, “spatial-
izing” and “temporalizing.” Accordingly, in the 
same way that the muscle structure of the heart 
and its energetic supply predispose the heart to 
contract and pump blood, the brain’s architec-
tonic and neurometabolic design predispose the 
brain to spatialize and temporalize both extrinsic 
stimuli and intrinsic activity.  

    WHAT IS THE PURPOSE OF THE 
BRAIN’S OPERATION?   

 What is the purpose of the brain for the organ-
ism? Th is is easy to answer for the other organs 
of the body, while it remains elusive in the case of 
the brain. Let’s start with the easy part, the other 
organs. Th e heart’s purpose is to distribute oxy-
gen throughout the whole body and its various 

organs, since otherwise the latter could not sur-
vive. Th e purpose of the stomach is to digest 
food by means of which the rest of the body is 
provided with resources for energy. Finally, the 
purpose of the kidney is to detoxify (and clean) 
blood, without which the rest of the body would 
be intoxicated. 

 What, however, is the brain and what purpose 
does it serve? As the philosopher John Searle 
(1992) noted, we currently lack a theory of brain 
function, meaning we do not yet know what the 
purpose of the brain is. I here postulated that the 
brain itself can be characterized by resting-state 
activity which shows continuous dynamic 
changes (see Part II). Th e brain requires a lot 
of energy to build and maintain its resting-state 
activity and to continuously change and adapt 
its spatiotemporal structure to the respective 
spatial and temporal contexts; namely, body and 
environment. 

 Why, though, does the body invest so much 
energy, 20  percent of its total energy budget, 
into the brain and its resting state activity? To 
address this question, we need to characterize 
the resting-state activity itself in further detail. 
As detailed in Part II, the brain’s resting state 
activity constitutes a statistically based, virtual, 
spatiotemporal structure by means of spatial and 
temporal neuronal measures like functional con-
nectivity and low frequency fl uctuations. 

 Th is spatiotemporal structure of the brain’s 
intrinsic activity serves as spatiotemporal matrix 
to process extrinsic stimuli from outside the brain, 
interoceptive stimuli from the body, and extero-
ceptive stimuli from the environment. By aligning 
the extrinsic intero- and/or exteroceptive stimuli 
to its own intrinsic spatial and temporal neuronal 
measures; that is, functional connectivity and low 
frequency fl uctuations, the brain’s spatiotempo-
ral structure can extend beyond itself and reach 
out to body and environment. Accordingly, the 
brain’s spatiotemporal matrix makes it possible to 
link and relate brain, body, and environment in a 
statistically based and virtual way (see Chapter 20 
for more details on that). 

 Why is it important for the organism to 
develop such a statistically based spatiotemporal 
matrix on the basis of its brain? Th e importance 
is further underlined by the fact that the body 
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invests 20 percent of its energy resources into an 
organ that makes up only 2 percent of the total 
body weight. 

 As discussed earlier and in full detail in 
Chapters 4–6, 8, and 9, the spatiotemporal struc-
ture is based on the encoding of the statistical 
frequency distributions of the diff erent stimuli 
from body and environment: the stimuli’s “veg-
etative, natural, and social statistics” are encoded 
in relation to the brain’s intrinsic activity and its 
“neuronal statistics” (see Chapters 8 and 9). 

 What does such statistically based encoding 
imply for the organism? Th e brain encodes the 
stimuli’s natural, vegetative, and social statistics in 
relation to its own neuronal statistics. Th is makes 
it possible for the organism to continuously update 
and adapt its own state in relation to the continu-
ously changing spatial and temporal contexts in 
both its own body and its environment. 

 Why is such updating and adapting impor-
tant for the organism? Such relating, updating, 
and adapting is important for the organism to 
sustain and maintain its homeostasis and ulti-
mately to survive. Accordingly, the purpose of 
the brain may consist in homeostatic regulation 
of the organism in relation to the continuous 
changes in its own body and the respective envi-
ronment. Th e heart provides the rest of the body 
with oxygen, the stomach extracts energy for the 
body, and the kidney cleans and detoxifi es the 
blood and thus the body. Th is list can now be 
complemented. Th e brain relates, updates, and 
adapts the body to the environment and its con-
tinuously changing circumstances.  

    WHY DO WE HAVE A BRAIN 
OPERATING IN THIS WAY?   

 Taken on a most general level, the brain’s purpose 
is the body’s survival. Th e heart’s pumping, the 
kidney’s fi ltering, and the stomach’s dissociating 
each serve the survival of the organism. Th ough 
serving distinct purposes and performing dif-
ferent actions, ultimately each organ serves the 
survival of the organism. 

 How does the brain’s action serve the sur-
vival of the organism? Th e brain’s spatial-
izing and temporalizing and the subsequent 
construction of a statistically based virtual 

spatiotemporal structure are essential for the 
organism. Why? Th e particular encoding strat-
egy, diff erence-based coding, allows the brain 
to relate, update, and adapt the organism to the 
continuously changing spatial and temporal 
contexts in body and environment. 

 Without the heart’s pumping, the organism 
dies of heart failure; without the kidney’s fi lter-
ing, the organism dies of blood poisoning; and 
without the stomach’s dissociation, the organism 
dies of hunger. Th e same applies in the case of the 
brain. Without the brain’s spatializing and tem-
poralizing during its encoding of neural activity, 
the organism dies from lacking a relationship to 
both its own body and its environment. Th is is 
exactly what can be observed in minimally con-
scious state (MCS), vegetative state (VS), coma, 
and brain death, which refl ect greatly decreased 
if not absent degrees in the organism’s relation 
to its body and environment (see Chapters  28 
and 29). 

 Why is there a brain? Th e organism needs to 
detect those events in its body and environment 
are relevant for it and distinguish them from 
the ones that remain irrelevant. Only those that 
are relevant are worth subsequent updating and 
adapting. In the same way the heart distributes 
oxygen by pumping, the kidney detoxifi es blood, 
and the stomach digests and extracts, the brain 
relates to and adapts/updates the organism about 
and to its actual environment. Since such encod-
ing and therefore relating and adapting/updat-
ing are essential for the organism to survive, the 
brain may be essential for the organism to navi-
gate in its environment. 

 How is our ability to navigate in the envi-
ronment manifested in the functions we asso-
ciate with the brain? Th is is the point where 
one would usually discuss the various sensory, 
motor, aff ective, cognitive, and social functions 
of the brain, as investigated these days in the 
diff erent branches of neuroscience. One would 
then extend the here-sketched “theory of brain 
activity” to a “theory of brain function” (see the 
Introduction for their distinction). 

 Th at, however, is to neglect one even more 
basic function of the brain, one that is sandwiched 
right in-between the brain’s encoding of neural 
activity on one hand, and the various contents 
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and their related functions, sensory, motor, aff ec-
tive, cognitive, and social on the other. 

 What is this more basic function? I  argue 
that this is the phenomenal (taken in both 
a literal and fi gurative way) function of the 
brain; that is, consciousness in the sense of 

phenomenal consciousness. Th is however 
extends the purely neuronal focus in this vol-
ume. Th erefore I  refer the reader to the sub-
sequent Volume II. Th at, as I  claim, will not 
only unlock the secrets of the brain but also the 
mystery of consciousness.      





  I attach three appendices to the main parts of 
this book. Th ese appendices are proposed to 
complement the empirical hypotheses by dis-
cussing some theoretical issues. 

 Th e fi rst appendix discusses how resting-state 
activity and stimulus-induced activity are related 
to each other, whether they are principally dif-
ferent or rather refl ect distinct points on a 
commonly underlying continuum of neuronal 
activity. As suggested by what I describe as the 
“continuity hypothesis,” I opt for the latter. 

 Th e second appendix picks up the issue of 
localization versus holism of functions and their 
relationship to the brain. I argue that the intro-
duction of the brain’s resting-state activity sheds 
a new light on this long-discussed issue of local-
ization versus holism by rendering both com-
patible and complementary rather than being 
incompatible and contradictory. 

 Finally, the third appendix discusses some 
epistemological issues:  how we as observers 
can and cannot investigate the brain. More 
specifically, the question is raised regarding 
what the brain itself may allow us as observ-
ers of the brain to know in principle about it 
and how it operates. Even more important, by 
applying difference-based coding and its own 
intrinsic activity, the brain may also prevent 
us as observers from accessing and know-
ing the brain, as it is by itself independent of 
our brains, on which our own observation of 
the brain is based. Our brain and its specific 
encoding strategy, that is, difference-based 
coding, and its intrinsic activity may thus pose 
some basic experimental and epistemological 
constraints on our investigation and knowl-
edge of the brain.   

         APPENDICES   





    Summary   

 I discussed the neuronal and biochemical 
mechanisms underlying the transition from 
resting-state to stimulus-induced activity in Part 
IV. Th is showed that the very same neuronal and 
biochemical mechanisms operating in the resting 
state are also at work during the transition from 
resting-state to stimulus-induced activity; that 
is, rest–stimulus interaction. Th is leads me on a 
theoretical level to describe what I call the “con-
tinuity hypothesis.” Th e continuity hypothesis 
is a hypothesis about the relationship between 
resting-state and stimulus-induced activity. 
I postulate neuronal continuity between resting 
state and stimulus-induced activity, with both 
being continuous and discontinuous in their neu-
ral activities at the same time. Th e co-occurrence 
of both neuronal continuum and discontinuum 
between resting-state and stimulus-induced 
activity is supposed to be made possible by 
diff erence-based coding, which in turn is 
regarded as essential for enabling and predispos-
ing consciousness. Th e “continuity hypothesis” 
bridges the oft en-presupposed divide between 
intrinsic and extrinsic characterizations of the 
brain as put forward in the Introduction:  both 
views are no longer considered opposite and con-
tradictory, but rather, two extremes of an under-
lying continuum of neural activity amounting to 
an intrinsic-extrinsic view of the brain.    

    Key Concepts and Topics Covered   

 Resting-state activity, stimulus-induced activ-
ity, neuronal continuum and discontinuum, 
diff erence-based versus stimulus-based coding, 

degree versus origin, neural predisposition ver-
sus neural correlate, consciousness    

    NEUROEMPIRICAL REMARK IA: 
DIFFERENCE-BASED CODING AS UNIFYING 
CODE BETWEEN RESTING STATE AND 
STIMULUS-INDUCED ACTIVITY   

 Th e brain is oft en considered an either purely extrin-
sic or intrinsic organ (see also Introduction). In the 
case of an extrinsic characterization, the brain is 
supposed to be characterized by stimulus-induced 
activity as it is related exclusively to the stimulus 
itself. In contrast, an intrinsic view proposes intrin-
sic activity in the brain, that is, resting-state activity, 
with its function remaining unclear. 

 How do intrinsic and extrinsic views of the 
brain stand in relation to each other? Are they 
mutually exclusive and thus incompatible? Or, 
rather, are they compatible and complementary? 
Th is is the topic here, and it will be discussed in the 
framework of what I describe as the “continuity 
hypothesis.” Th e “continuity” hypothesis implies 
complementarity and compatibility between 
resting-state activity and stimulus-induced activ-
ity rather than incompatibility and opposition. 

 Let me now sketch the “continuity hypoth-
esis” in more detail. I  argued that stimuli of 
diff erent origins, intero- and exteroceptive 
and neural, are encoded into neural activity in 
the same way; namely, in terms of spatial and 
temporal diff erences. Th is implies that both 
resting-state activity (see Chapters  4–6) and 

     APPENDIX 1 
NEUROEMPIRICAL REMARK: RESTING-STATE 
ACTIVITY VERSUS STIMULUS-INDUCED 
ACTIVITY—CONTINUITY HYPOTHESIS      
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stimulus-induced activity (see Chapters  10–12) 
are based on diff erence-based coding rather than 
stimulus-based coding. 

 Th at also entails that the various interactions 
between diff erent stimuli, that is, stimulus–
stimulus interaction (see Chapter  10); between 
stimuli and resting state, that is rest–stimulus 
interaction (see Chapter  11); and the interac-
tions within the resting state itself, that is, rest–
rest interaction (see Chapter  4 and 5), were 
encoded in terms of one and the same code; 
namely, diff erence-based coding. 

 What does this tell us about the role of 
diff erence-based coding in the brain? I postulate 
diff erence-based coding to be the general coding 
strategy of the brain’s neural activity during its 
diff erent kinds of interactions: that is, rest–rest, 
rest–stimulus, stimulus–stimulus, and stimulus–
rest. Since all neural activity is supposed to arise 
from these interactions, diff erence-based coding 
must be considered  the  neural code of the brain. 

 Th is means that rest–rest, rest–stimulus, 
stimulus– stimulus, and stimulus–rest inter-
actions are linked and united by one coding 
strategy—diff erence-based coding. I  thus pro-
pose that the application of that code to both 
resting-state and stimulus-induced activity 
makes their direct interaction possible.  

    NEUROEMPIRICAL REMARK IB: “CONTINUITY 
HYPOTHESIS” ABOUT THE NEURONAL 
RELATIONSHIP BETWEEN RESTING STATE AND 
STIMULUS-INDUCED ACTIVITY   

 How can we further specify the relationship 
between the brain’s resting-state activity and 
its stimulus-induced activity? Due to the fact 
that resting-state and stimulus-induced activity 
operate on the basis of one and the same neural 
code, there must be neuronal continuity between 
them: that is, between and across rest–rest, rest–
stimulus, stimulus–stimulus, and stimulus–rest 
interaction. 

 Empirically, such assumption is, for example, 
supported by the observations showing the rest-
ing state’s strong low-frequency fl uctuations and 
functional connectivity to be carried forth into 
stimulus-induced activity via rest–stimulus inter-
action (see Chapters  4, 5, and 11). Conversely, 

the data also show that the stimulus-induced 
activity resurfaces in the neural pattern of the 
subsequent resting-state activity, which is sup-
ported by the data on stimulus–rest interaction 
(see Chapter 11). 

 I consequently postulate what I  describe as 
a “continuity hypothesis” between resting-state 
activity and stimulus-induced activity. Th e conti-
nuity hypothesis describes that neuronal activity 
is continuously carried back and forth between 
resting-state and stimulus-induced activity (via 
rest–stimulus and stimulus–rest interaction), 
resulting in neuronal continuity between both 
forms of neural activity. 

 Th e “continuity hypothesis” is a purely neu-
ronal hypothesis that pertains to the neuronal 
features and characterization of resting state 
and stimulus-induced activity. In contrast to the 
neuronal states of the brain during resting state 
and stimulus-induced activity, the “continu-
ity hypothesis” does not make any assumptions 
about the behavioral, psychological, and phe-
nomenal states that are associated with the rest-
ing state and stimulus-induced activity. Hence, 
the neuronal continuity between resting state 
and stimulus-induced activity does not imply 
behavioral, psychological, or even phenomenal 
continuity. 

 Th is, however, does not mean that the con-
tinuity hypothesis does not carry important 
implications for behavioral, psychological, and 
phenomenal states. We will see in Volume II that 
the neuronal continuity between resting state and 
stimulus-induced activity is essential in making 
possible the association of a phenomenal state—
consciousness—with the otherwise purely neu-
ronal resting state or stimulus-induced activity 
(see especially Chapter 30).  

    NEUROEMPIRICAL REMARK IC: NEURONAL 
CONTINUITY BETWEEN RESTING STATE 
AND STIMULUS-INDUCED ACTIVITY   

 Th e “continuity hypothesis” must be further 
specifi ed by two aspects, “neuronal continuum” 
and “neuronal discontinuum.” “Neuronal con-
tinuum” describes that neural activity in resting 
state and stimulus-induced activity show similar 
features, accounting for a neuronal continuum 
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between them. Th e concept of “neuronal dis-
continuum” refers to the diff erences between 
resting-state and stimulus-induced activity oper-
ating across and thus superseding their underly-
ing neuronal continuum. 

 How can we now describe both neuronal 
continuum and neuronal discontinuum in fur-
ther detail? Let me start with the neuronal con-
tinuum. Th e attentive reader may have noticed 
that I  focused on the same kind of neuronal 
measures when discussing resting-state activ-
ity (Part II) and stimulus-induced activity (Part 
IV). In both cases, I described spatial and tem-
poral measures of neural activity; more spe-
cifi cally, functional connectivity and low- and 
high-frequency fl uctuations. 

 Functional connectivity and frequency 
fl uctuations are central in constituting both 
resting-state and stimulus-induced activity; fur-
thermore, they mediate their direct interaction, 
that is, rest–stimulus and stimulus–rest, via the 
principles of spatial and temporal coincidence. 
As such, functional connectivity and frequency 
fl uctuations signify a neuronal continuum 
between both forms of neural activity. 

 However, the neuronal continuum went fur-
ther. Due to the reliance on the same spatial and 
temporal measures, that is, frequency fl uctuations 
and functional connectivity, both resting-state 
and stimulus-induced activity are supposed to be 
linked by a shared and common spatiotemporal 
structure (see Chapters 4 and 5). Such a spatio-
temporal structure operates across and super-
sedes the purely biophysical-computational 
features of the brain’s space and time in that it is 
statistically based rather than being exclusively 
determined by the biophysical-computational 
features of the brain’s neurons (and regions; see 
Chapters 1, 2, 6, and 11 for details). 

 Th e statistically based spatiotemporal struc-
ture of the brain’s resting state is carried forth 
to stimulus-induced activity (via rest–stimulus 
interaction), which in turn impacts the subse-
quent resting-state activity (via stimulus–rest 
interaction; see Chapter  11). Such circular 
movement between resting-state activity and 
stimulus-induced activity allows for main-
taining (and continuously rejuvenating and 
updating) the brain’s intrinsic spatiotemporal 

structure. One may consequently characterize 
the brain’s intrinsic spatiotemporal structure as 
the common fi nal functional pathway of both 
resting-state and stimulus-induced activity. As 
such, the spatiotemporal structure can provide a 
neuronal continuum between the two forms of 
neural activity (see Fig. A1-1a).       

    NEUROEMPIRICAL REMARK ID: 
NEURONAL DISCONTINUITY BETWEEN 
RESTING STATE AND STIMULUS-INDUCED 
ACTIVITY   

 So far, I  have focused on the similarities 
and thus the neuronal continuum between 
resting-state and stimulus-induced activity. 
Th is, however, should not incline us to brush 
over their considerable diff erences account-
ing for a neuronal discontinuum between the 
two forms of neural activity. Th is neuronal 
discontinuum shall now be further specifi ed. 
We recall from Chapter  11 that rest– stimulus 
(and also stimulus–rest) interactions were 
characterized by non-linearity; non-linearity 
describes that the resulting stimulus-induced 
activity does not result from mere linear addi-
tion or superposition of both forms of neural 
activity. Th e resulting stimulus-induced activ-
ity is consequently diff erent both spatially and 
temporally from the preceding resting-state 
activity. Hence, there is a neuronal discontin-
uum on the neuronal level between both forms 
of neural activity. 

 Th e neuronal discontinuum is also vis-
ible in the principle of inverse eff ectiveness (see 
 chapters  10 and 11). In a nutshell, the prin-
ciple of inverse eff ectiveness describes that a 
lower resting-state activity level may lead to 
stronger rest–stimulus interaction in the pres-
ence of a strong stimulus, compared to higher 
resting-state activity level in the presence of the 
same stimulus. While empirical support for this 
principle is mostly pending, it clearly signifi es a 
neuronal discontinuum. A  lower resting-state 
activity turns into a stronger stimulus-induced 
activity, thus making the latter more discontinu-
ous from the former. In contrast, there is a lower 
degree of the neuronal discontinuum when the 
resting-state activity is higher. 



 

Rest-Rest Rest-Stimulus Stimulus-Stimulus Stimulus-Rest

Neural continuum: Intrinsic activity

Non-linearity and
inverse effectiveness

Different degrees of
difference-based and
sparse coding

Same spatio-temporal
measures and structure

(a) Same difference-based and
sparse coding

Neural discontinuum: Extrinsic stimulus

 

Time

(b)

Space

Time

SpaceIn/Exteroceptive stimuli

Rest-Rest Interaction

Rest-Stimulus Stimulus-Stimulus

Stimulus-Rest Interaction

Spatiotemporal
structure of resting state

Neural predisposition
of consciousness (NPC)

Modification of
spatiotemporal structure

Neural correlate of
consciousness (NCC)

Spatiotemporal structure
of resting state activity

Spatiotemporal structure during
stimulus-induced activity

   Figure A1-1      “Continuity hypothesis” between resting state and stimulus-induced activity.  
 Th e fi gure depicts two central aspects of the continuity hypothesis, the conjunction of both neural con-
tinuum and neural discontinuum (a), and the central role of the resting state and its spatiotemporal 
structure as neural predisposition (b).
  ( a ) Th e fi gure shows the neural continuum (upper part) and discontinuum (lower part) between 
resting-state activity and stimulus-induced activity. Both resting-state activity and stimulus-induced 
activity are based on the same spatiotemporal measures (like functional connectivity and low-frequency 
fl uctuations) and apply the same neural code, diff erence-based coding and sparse coding (upper part). 
At the same time, though, there is also neural discontinuum (lower part) between resting-state activity 
and stimulus-induced activity in that there is non-linearity, inverse eff ectiveness, and variation in the 
degrees of diff erence-based coding and sparse coding.  
( b ) Th e fi gure depicts how the stimulus modifi es the resting state’s spatiotemporal structure, as indi-
cated in the upper part of the fi gure. However, the degree of modifi cation the stimulus can possibly 
elicit is predisposed by the resting state itself and its spatiotemporal structure. Th is means that the rest-
ing state provides a neural predisposition, a “spatiotemporal window of opportunity,” for the possible 
degree of subsequent stimulus-induced activity (lower part of the fi gure).   
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 How can gather further support for the neu-
ronal discontinuum between resting state and 
stimulus-induced activity? I  also demonstrated 
that the degree of both diff erence-based coding 
and sparse coding changes during the encoun-
ter with the stimulus. Rest–stimulus interaction 
may go along with a shift  in the balance between 
diff erence- and stimulus-based coding toward 
diff erence-based coding. Th ere is thus a neuro-
nal discontinuum with regard to the degrees of 
diff erence-based coding. 

 Th e same holds for the formatting. As ten-
tatively suggested, the degree of sparse coding 
may increase during stimulus-induced activ-
ity when compared to resting-state activity, 
thereby leading to a neuronal discontinuum 
on a formatting level (see Chapter  12). Finally, 
the neuronal discontinuum also extends to the 
biochemical level, with GABA and glutamate 
showing diff erent degrees of diff erence in the 
excitation-inhibition balance during resting state 
and stimulus-induced activity (see Chapters 2, 6, 
and 12).  

    NEUROEMPIRICAL REMARK IIA: CONTINUUM 
OF NEURONAL MEASURES   

 How are the neuronal continuum and neuronal 
discontinuum related to each other? I  postulate 
that the neuronal continuum provides the very 
basis upon which the neuronal discontinuum 
operates. More specifi cally, the degrees of the rest-
ing state’s functional connectivity and high-low 
frequency fl uctuations are varied during subse-
quent stimulus-induced activity (see Chapter 11). 

 Th e same holds for the changes in the degrees 
of diff erence-based coding and sparse coding 
as well as for the degrees of the spatiotemporal 
structure. As detailed in Chapters 11 and 12, the 
stimulus may introduce a novel degree of dis-
continuity into these neuronal measures of the 
brain’s resting-state activity: by varying the rest-
ing state’s diverse spatial and temporal neuronal 
measures in their degree, the stimulus introduces 
a much higher degree of discontinuity compared 
to the dynamic changes in the resting-state activ-
ity itself. 

 Th is means that the neuronal discontin-
uum and thus the neuronal diff erence between 

resting-state activity and stimulus-induced 
activity is a matter of degree. Th is implies 
that there is no principal diff erence between 
resting-state activity and stimulus-induced 
activity. Instead of being principally (and quali-
tatively) diff erent, the stimuli and their associ-
ated stimulus-induced activity operate across 
and supersede resting-state activity and modu-
late it quantitatively; the stimulus “uses” the 
resting state’s diverse neuronal measures as a 
starting point to modulate and vary them in 
their degrees. 

 Accordingly, the neuronal measures them-
selves, like functional connectivity and low 
frequency fl uctuations, thus provide the neu-
ronal continuum between resting state and 
stimulus-induced activity, while their degree 
signifi es neuronal discontinuity. Put diff erently, 
stimulus-induced activity can be regarded a 
discontinuous neuronal extension of the brain’s 
resting-state activity. 

 Th is suggests that resting-state and 
stimulus-induced activity diff er only in 
degree, not in principle. I therefore suggest 
that the distinction between resting-state and 
stimulus-induced activity is a matter of degree 
rather than a matter of principle.  

    NEUROEMPIRICAL REMARK IIB: “MATTER OF 
DEGREE” VERSUS “MATTER OF PRINCIPLE”   

 Based on the neuronal continuity, one would 
suggest that the same kind of neuronal eff ects 
that can be observed during stimulus-induced 
activity should also in principle be possible dur-
ing resting-state activity; this should be the case 
in those instances when rest–rest interaction 
exhibits the same degrees—that is, diff erences 
in the diverse measures—that are usually rather 
associated with rest–stimulus interaction. Let 
me specify this further in the following. 

 I demonstrated rest–stimulus interaction 
during visual or auditory perception to go along 
with strong activity changes in visual or auditory 
cortex (see Chapter 11). If the resting state itself, 
that is, rest–rest interaction, now shows equally 
strong activity changes in, for instance, auditory 
cortex, one would expect analogous behavioral 
and phenomenal states to occur. 
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 Th is is indeed supported by empirical evi-
dence. For instance, auditory hallucinations in 
schizophrenia can be characterized by abnor-
mally strong and large rest–rest interaction in 
auditory cortex, which is then associated with 
the same phenomenal-perceptual state, the per-
ception of voices, as the same degree of change 
induced by an external stimulus, a real voice. 
(see Chapter  22 for details, as well as Northoff  
and Qin 2011; and Northoff  2011). 

 Another instance may be dreams. We perceive 
an external world in our dreams despite the fact 
that we sleep. And, as in the awake state, we expe-
rience emotions and a sense of self. One may con-
sequently propose that the rest–rest interactions 
in the dreaming state show as strong degrees as 
the ones during rest–stimulus interaction in the 
awake state; the rest–rest interaction, then, no 
longer functions as mere rest–rest interaction 
but rather as “rest–as-if stimulus interaction” (see 
Chapter 25 and especially Chapter 26 for details, 
as well as Northoff  2011). Th is reaches deeply into 
the realm of consciousness and is therefore del-
egated to Volume II (see Part VII in Volume II). 

 Th ese and various other examples (see 
Chapters  25 and 26 in Volume II for more 
details) support my assumption of resting-state 
and stimulus-induced activity not being princi-
pally diff erent. If they were principally diff erent, 
neither of the behavioral and phenomenal states 
associated with stimulus-induced activity could 
possibly be elicited in the resting state itself; that 
is, during rest–rest interaction. If so, the neuro-
nal diff erence between resting-state activity and 
stimulus-induced activity cannot be a principal 
diff erence:  it is not a “matter of principle” but 
rather a “matter of degree.”  

    NEUROEMPIRICAL REMARK IIC: “PRIORITY 
OF DEGREE AND DIFFERENCE” VERSUS 
“PRIORITY OF ORIGIN AND STIMULUS”   

 How can we further specify the concept of 
“matter of degree”? Th e concept of “matter of 
degree” describes mere statistical diff erences, 
for example, the statistical frequency distribu-
tion of neural activity changes across diff er-
ent discrete points in physical time and space. 
Stronger activity changes are usually associated 

with rest–stimulus interaction as the interaction 
between the stimuli’s natural statistics and the 
resting state’s neuronal statistics, whereas weaker 
activity changes occur normally during rest–rest 
interaction and thus within the resting state’s 
neuronal statistics itself. Accordingly, resting 
state and stimulus-induced activity are distin-
guished on the basis of mere statistical diff er-
ences signifying a “matter of degree” between the 
resting state’s neuronal statistics and the stimuli’s 
natural statistics. 

 Reliance on mere statistical diff erences 
implies that the origin of the stimuli, intero- or 
exteroceptive or neural, is secondary in deter-
mining the associated neuronal, behavioral, and 
phenomenal states. Any stimulus of whatever 
origin, whether interoceptive, exteroceptive, or 
neuronal, can in principle induce and elicit the 
kind of strong neural activity changes that are 
usually associated with exteroceptive stimuli. 
Th is is so because the resulting neural activity is 
not primarily based on the origin of the stimulus 
(see Chapter 12 herein and especially Chapter 25 
in Volume II for more details on this point). 

 Instead, neural activity is based on the degree 
of the statistically based spatial and temporal dif-
ferences the stimulus introduces (relative) to the 
brain’s ongoing resting-state activity. If the dif-
ference is large, indicating strong rest–stimulus 
interaction, large neural activity changes will be 
elicited and accompanied by strong behavioral 
and phenomenal eff ects. If, in contrast, the dif-
ference is rather small, indicating weak rest–
stimulus interaction, the stimulus’ eff ects will be 
small, too. 

 Since neural activity is encoded and deter-
mined on the basis of statistically based spatial 
and temporal diff erences, any stimulus of what-
ever origin can in principle elicit any kind of 
stimulus-induced activity, including its associ-
ated behavioral and phenomenal (and psycho-
logical and mental) eff ects. 

 One may consequently speak of “priority of 
degree” as a “priority of diff erences” to charac-
terize the relationship between resting-state and 
stimulus-induced activity. In contrast to the 
degree of diff erence, the origin of the stimulus 
remains secondary:  the origin of the stimu-
lus only matters if it leads to statistically based 
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spatial and temporal diff erences, whereas the 
origin itself, independent of associated statistical 
diff erences, does not matter for determining the 
degree of neural activity. Th ere is thus no “pri-
ority of origin” as a “priority of stimuli” in the 
brain’s resting-state and stimulus-induced activ-
ity. Th ere is “priority of diff erence and degree” 
rather than “priority of stimulus and origin” in 
rest–stimulus interaction.  

    NEUROEMPIRICAL REMARK IID: 
RESTING-STATE ACTIVITY AS NEURAL 
PREDISPOSITION OF STIMULUS-INDUCED 
ACTIVITY   

 I demonstrated that stimulus-induced activ-
ity is dependent upon the resting-state activ-
ity, as is well refl ected in the assumption of a 
neuronal continuum. However, the neuronal 
continuum goes hand in hand with a neuronal 
discontinuum. Th is means that the resting-state 
activity is not suffi  cient but only necessary for 
stimulus-induced activity. 

 Th e resting-state activity is therefore what 
I describe as the “neural predisposition” for sub-
sequent stimulus-induced activity. Within the 
present context, the term “neural predisposition” 
refers to the necessary but not suffi  cient neuro-
nal conditions of stimulus-induced activity (see 
Introduction in Volume II for further discussion 
of the concept of “neural predisposition,” as well 
as Northoff  2013). 

 As a neural predisposition, the resting-state 
activity determines the possible and thus 
available ranges of the degree of subse-
quent stimulus-induced activity. Th is was, for 
instance, indicated in that the resting-state 
activity sets the ranges for the possible degrees 
of diff erence-based coding during subsequent 
stimulus-induced activity (see Chapter  11). By 
showing, for instance, strong degrees of func-
tional connectivity in the resting state, the abil-
ity of the subsequent stimulus to further increase 
the degree of functional connectivity is limited, 
whereas the opposite is the case if the resting 
state’s functional connectivity is rather weak. Th e 
resting state thus predisposes the range of possi-
ble options that the subsequent stimulus-induced 
activity can possibly take (see Fig. A1-1b). 

      NEUROMETAPHORICAL EXCURSION IA: 
BRAIN AND SUPERMARKET    

Let us illustrate the relationship between resting 
state and stimulus-induced activity by the analo-
gous and metaphorical example of shopping in a 
supermarket. Th e supermarket displays various 
products. What you actually buy depends very 
much on your own budget and your mood and 
how that meshes with the products displayed. 
If you have plenty of money, you may go to 
the more expensive products. If your mood is 
gloomy, you may avoid the colorful and shiny 
products; and so forth. What you actually buy 
can thus be traced back to what one may want 
to call “supermarket–customer interaction.” 
Needless to say, that corresponds very well to 
what I described as rest–stimulus interaction in 
the brain. 

 Now, let us assume that the supermarket 
happens to be in a neighborhood that recently 
changed considerably, with many rich people 
moving in. Naturally, these people look for 
more high-quality high-priced products. Th e 
supermarket’s previous strategy of off ering more 
low-quality and low-priced products may need 
to change, considering the neighborhood’s infl ux 
of rich people. Hence, the supermarket may shift  
its focus and adapt its products to the new clients 
by displaying more high-quality and high-priced 
products. Th ere is thus what can be described as 
“customer–supermarket interaction.” Needless 
to say, this corresponds well to stimulus–rest 
interaction in the case of the brain. 

 Where, though, does the resting state’s neural 
predisposition fi nd its analogue in our example 
of the supermarket? Th e supermarket is charac-
terized by certain spatial and temporal features; 
its building is rather small, and everything is 
extremely tight. Th ese are the constraints within 
which the shift  in focus, from low-quality to 
high-quality products, can take place. Beyond 
that, nothing is possible. 

 Th is means that, due to the smallness of its 
boards, shelves, and display tables in the overall 
extremely tight space, big high-priced products 
cannot be displayed, meaning that custom-
ers interested in these will not fi nd anything 
in the supermarket. Th e supermarket’s spatial 
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and temporal structure (its shelves, boards, and 
tables) thus provides the ground upon which the 
products can be selected and the customers that 
can possibly be attracted. In other words, the 
supermarket’s spatial and temporal features pro-
vide the predisposition for the range of possible 
options for subsequent products and customers.  

    NEUROMETAPHORICAL EXCURSION IB: 
SUPERMARKETS AND CONSCIOUSNESS   

 Needless to say, the supermarket’s spatiotempo-
ral predisposition for certain types of products 
and customers corresponds to the resting state’s 
spatiotemporal structure, as it predisposes the 
resting state to process (weaker or stronger) par-
ticular stimuli. As the supermarket’s spatiotem-
poral structure allows for certain opportunities 
and prevents others by means of its spatiotem-
poral features, so does the brain’s resting state 
and its spatiotemporal structure provide what 
I described as “spatiotemporal window of oppor-
tunity” (see Chapter 11). 

 Th e resting state’s “spatiotemporal window of 
opportunity” can thus be characterized as a neu-
ral predisposition; that is, a necessary but not suf-
fi cient condition, of possible stimulus-induced 
activity. In addition to its central importance for 

subsequent stimulus-induced activity, I propose 
that the resting state’s “spatiotemporal window 
of opportunity” also provides the neural pre-
disposition for the behavioral and phenomenal 
states associated with the stimulus-induced 
activity. 

 More specifi cally, this means that I consider 
the resting state and its spatiotemporal structure 
to be a neural predisposition of possible con-
sciousness (NPC) (which as such must be dis-
tinguished from what is currently discussed as 
neural correlates of consciousness [NCC]). Th is 
reaches deeply into the realm of consciousness 
and will therefore be delegated to Volume II. 

 How does the brain’s predisposition for con-
sciousness relate to our example of the super-
market? Th is is the point where my analogy 
fi nally breaks down, with brain and supermar-
ket parting from each other. In contrast to the 
brain, supermarkets will never be able to provide 
a predisposition for consciousness. Accordingly, 
to put it succinctly, brain is not supermarket 
and supermarket is not brain. Aren’t we lucky 
that we are owners of a brain that allows us to 
create supermarkets (on the basis of our con-
sciousness) rather than being owners of a super-
market that (can only) create(s) brains (without 
consciousness)?    



    Summary   

 Th e assumption of sparse coding holding on 
the regional level of the brain raises the ques-
tion of how functions and regions are related 
to each other. Historically, a one-to-one rela-
tionship between function and region has oft en 
been assumed, amounting to what is called 
“localizationism.” Alternatively, others have 
suggested that more than one region or net-
work is recruited during one particular func-
tion, and that diff erent functions may recruit 
the same or at least overlapping regions and 
network—this has been subsumed under the 
concept of “holism.” I  here hypothesize that 
localizationism and holism are not contra-
dictory but rather complementary. Holism 
concerns the process level that can be charac-
terized by diff erence-based coding, while local-
izationism refers to the outcome or result of 
the neural processing in terms of diff erences as 
described by sparse coding. Since they concern 
distinct aspects, processes, and the outcome 
of those processes, holism and localization-
ism must be regarded as complementary rather 
than contradictory.    

    Key Concepts and Topics Covered   

 Localization, holism, history of neurosci-
ence, overlap of diff erent functions in the 
same regions/neural networks, sparse coding, 
diff erence-based coding, process and outcome, 
complementarity   

    NEUROHISTORICAL REMARK IA: 
“LOCALIZATIONISM” IN PAST 
AND PRESENT NEUROSCIENCE    

One of the main methodological approaches in 
neuroscience at the beginning of the twentieth 
century was the investigation of patients with 
brain lesions. Th ese patients could reveal how 
their higher-order cognitive functions like con-
sciousness, memory, attention, learning, and so 
on, were aff ected by lesions in particular regions. 

 Th is was the way that early neurologist Paul 
Broca found out about a specifi c region in the brain 
being in charge of comprehending  language—the 
Broca region. He observed that patients with a 
lesion in the left  lateral prefrontal cortex showed 
major defi cits in uttering words and language, a 
so-called  aphasia . From his clinical observations 
Broca inferred that this region must be in charge 
of producing words, thus localizing language in 
the Broca area, as it is called these days. 

 Observation of patients with lesions and their 
corresponding mental disturbances has since 
been a major tool of insight into the function of 
the brain. From the exact localization of the lesion 
and the corresponding mental disturbances, one 
may infer which region in the brain mediates 
the respectively underlying higher-order cogni-
tive function. Many other higher-order cognitive 
functions, including consciousness and self, are 
currently investigated in this way in neurologi-
cal patients who suff er from specifi cally localized 
lesions in the brain (see, for instance, Feinberg 

     APPENDIX 2  
NEUROTHEORETICAL REMARK: 
LOCALIZATIONISM VERSUS HOLISM     
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2009; as well as Feinberg and Keenan 2005). Th is 
entails what I  describe as a “localization-based 
approach” to the brain. 

 Th e concept of the “localization-based 
approach” can be defi ned in two ways. First, it 
implies the neuropsychological assumption that 
a particular function can be related to the neural 
activity in a specifi c brain region, meaning that 
the former can be localized precisely in the latter. 
Th is is a neuronal (or better, neuropsychological) 
meaning of the concept of “localization-based 
approach” that pertains to a hypothesis about 
how the brain’s regions are related to psychologi-
cal functions. 

 In addition to such neuropsychological 
meaning, the concept of the “localization-based 
approach” can also refer to an investigator’s par-
ticular methodological strategy for approaching 
the brain. Th e brain here is approached in terms 
of regions rather than in terms of, say, processes 
or codes (see Introduction for such code-based 
approach to the brain). Th e methodological 
approach to the brain in terms of regions is not 
restricted to the investigation of patients with 
local brain lesions. It may also extend to the 
healthy subjects, such as, for instance, those inves-
tigated in functional magnetic resonance imaging 
(fMRI). Th e use of techniques like fMRI is indeed 
guided by the search for the localization of par-
ticular functions in specifi c regions of the brain, 
which it therefore approaches in terms of regions 
(as distinguished from processes or codes). 

 Finally, the search for localization of higher- 
order cognitive functions in patients with brain 
lesions and functional brain imaging converges 
with the assumption of modules in cognitive 
psychology. Cognitive psychology proposed 
specifi c functional unities that are in charge of 
processing and operating such specifi c cognitive 
content as attentional content, working memory 
content, conscious content, self-specifi c content, 
and so on. When cognitive psychology entered 
neuroscience and they were amalgamated into 
“cognitive neuroscience,” the concept of modules 
was combined with the concept of localization in 
the brain (see van Eijsden et al. 2009 for a nice 
description). 

 What were described as “modules” in cogni-
tive psychology could then be easily transferred 

to the brain and more specifi cally to particular 
brain regions and their connections. Hence, the 
localization-based view of brain function seems 
to be intimately coupled with the module-based 
view of psychological functioning. Th is resulted 
in the assumption of the localization of specifi c 
cognitive modules in particular regions (or net-
works of regions) in the brain. 

 Th is is still the implicit or explicit presup-
position in current neuroscience and especially 
in cognitive neuroscience (see, for instance, 
Logothetis 2008), which is oft en extended to 
the more recent branches of aff ective and social 
neuroscience:  “I take the modular organization 
of many brain systems as a well-established fact, 
and discuss only how far fMRI can go in reveal-
ing the neuronal mechanisms of behavior by 
mapping diff erent systems modules and their 
dynamic interrelationships” (Logothetis 2008).  

    NEUROHISTORICAL REMARK IB: HOLISM IN 
PAST AND PRESENT NEUROSCIENCE    

However, nothing in the science of the brain 
goes without the opposite suggestion. A strictly 
localization-based approach was put into 
doubt early on by another neurologist, Hughlin 
Jackson, who suggested a more complex and sys-
tematic neural organization with multiple inter-
dependencies between diff erent regions. Th is 
paved the way for a more holistic view of brain 
function, one that relates higher-order cognitive 
functions to the neural operations in the whole 
brain and its multiple regions. 

 Interestingly, Sigmund Freud, the founder 
of psychoanalysis, who initially was a neuro-
anatomist, also rejected a localization-based 
approach to the brain. His reason was that more 
complex psychological disorders like hysteria or 
depression could not be confi ned to alterations 
in specifi c brain regions. He instead regarded 
these disorders as more complex systems dis-
orders where the organization of the “psychic 
apparatus,” as he called it, is abnormal, which is 
manifested throughout the whole brain and its 
diff erent regions. One may therefore consider 
Freud a forerunner of a more holistic view of 
brain function (see Northoff  2011 and 2012 for 
details). 
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 Later, neuroscientist Karl Lashley (1943, 
1950)  observed in his postmortem dissections 
that the extent of a brain lesion predicts the 
degree to which higher-order cognitive func-
tions and mental states are disturbed. Th is 
let him develop what he called the “Law of 
Equipotentiality” and the “Law of Mass Action.” 

 Both laws describe the distribution of neu-
ral processing across the whole brain during 
higher-order cognitive functions like conscious-
ness and memory. Diff erent regions were pro-
posed to contribute equally to the generation of 
complex functions that therefore must be con-
sidered the result of “mass action” in the brain. 
Th is means that higher-order cognitive functions 
like memory and consciousness were assumed to 
result from the neural processing throughout the 
whole brain, rather than being localized in par-
ticular regions or modules within the brain (see 
also other authors like Koehler and Goldstein as 
cited in the Introduction). 

 Analogous observations were made by Russian 
neuropsychologist A. R. Lurija (1962, 973). 

 Based on his lesion patients, he suggested 
that one region in the brain can be involved 
in various higher-order cognitive functions. 
Conversely, he postulated that higher-order 
cognitive functions are mediated not only by 
one or two regions but by various regions in the 
brain. Most important, the same higher-order 
cognitive function may even recruit diff erent 
regions in diff erent instances, depending on the 
respective psychological and neuronal contexts. 
Th ere is thus what Lurija described as “dynamic 
localization.” 

 Th is led Lurija to formulate his hypothesis 
of functional systems as the operating systems 
of the brain that describe the actual constella-
tion of diff erent regions that mediate a particular 
function:

  According to this view a function is, in fact, a 
functional system ( . . . ) directed towards the 
performance of a particular biological task and 
consisted of a group of interconnected acts that 
produce the corresponding biological eff ect. 
Th e most signifi cant feature of a functional sys-
tem is that, as a rule, it is based on a complex 
dynamic “constellation” of connections, situated 
at diff erent levels of the nervous system, that in 

the performance of the adaptive task, may be 
changed with the task itself may be unchanged. 
(Lurija 1962)   

 How about holism in the neuroscience of our 
days? Th e earlier-described metabolic approach 
to the brain by Shulman (van Eijsden et  al. 
2009)  presupposes a more holistic approach to 
the brain (see Chapter  6). By considering the 
global metabolic-energetic supply and distribu-
tion to the brain as a whole as central for any 
subsequent neural activity, a holistic, and thus 
global, component is introduced. 

 Such a more-holistic view is also promoted 
in parts of functional brain imaging that focus 
much more on neural networks spanning 
across diff erent regions rather than on single 
regions. Th is is especially apparent in the func-
tional brain imaging of the resting-state activity 
(see Chapter 4 for details). However, as we will 
see  further down, even the characterization of 
the brain by diff erent networks may still presup-
pose too localizationism. 

 Finally, the holistic view of the brain also 
surfaces in the debate about consciousness. As 
we will see in Volume II, a global workspace of 
neural activity and information spread is oft en 
considered central in constituting conscious-
ness; since such a global workspace allows for 
global extension and distribution, it implies the 
involvement of diff erent regions and networks 
throughout the whole brain (see Introduction 
and Chapters 18 and 19 in Volume II for details).  

    NEUROHISTORICAL REMARK IC: 
PROBLEMS OF LOCALIZATIONISM 
IN PRESENT NEUROSCIENCE    

What is the standing of such a holistic view of 
brain function these days? Th e introduction of 
functional brain imaging has shift ed the pendu-
lum back again toward the localization-based 
view with the assignment of specifi c regions or 
networks to particular functions like attention, 
working memory, and so on (see van Eijsden 
et al. 2009 for a nice description). 

 In addition to the various regions and neu-
ral networks supposedly serving specifi c psy-
chological functions, a network particularly 
involved in mediating resting-state activity, the 
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default-mode network (DMN), has been dis-
tinguished in regional and connectional terms. 
Th e DMN seems oft en (though implicitly) to be 
regarded as the module for the resting state that 
therefore stands side by side with other networks 
that function as modules for specifi c functions 
such as, for instance, executive functions or 
salience (see, for instance, Menon 2011). 

 However, recent imaging studies shed some 
doubt on the proclaimed localization of specifi c 
psychological functions in particular regions 
or neural networks. Th e various regions of the 
DMN, like the anterior and posterior cingu-
late cortex and the medial prefrontal and pari-
etal cortex, are supposed to serve psychological 
and mental activity, specifi cally in the resting 
state (see especially Chapter  26 for details on 
that). Th e same regions are also recruited dur-
ing a variety of psychological tasks or functions, 
including contextual association, navigation 
and spatial processing, episodic memory, deci-
sion making, execution errors, self-related pro-
cessing, mind-reading, emotional processing, 
and social interaction (see Bar et al. 2007, 2009; 
Spreng et al. 2009). 

 Th is sheds some doubt on the regional or 
network specifi city of the DMN; more spe-
cifi cally, on its specifi c association with par-
ticular psychological functions during either 
resting-state activity or stimulus-induced activ-
ity. Conversely, these observations also argue 
against region-specifi c (or network-specifi c) 
localization of the various functions themselves, 
which seem to recruit more or less the same 
regions and networks. 

 Th is situation with the recruitment of the 
same regions and network by diff erent functions 
is not peculiar to the DMN. Th e same pattern 
can be observed in the case of another neu-
ral network that includes the bilateral anterior 
insula, the dorsal anterior cingulate cortex, and 
the thalamus as its core regions (these regions 
are also subsumed under what is described as 
the “salience network”; see Menon 2011). Th ese 
regions are active during functions as diverse 
as interoceptive awareness (Critchley et al. 2004; 
Wiebking et  al. 2010), empathy (Yan  et  al. 
2011),  anticipation of emotions (Bermpohl 
et al. 2006), and aversion (see Hayes and Northoff  

2011). Th e list of regions that are recruited by 
diff erent functions can easily be extended. 

 In sum, the observation of the same region 
and network mediating a variety of diff er-
ent functions sheds some doubt upon the 
localization-based approach and its attempts 
to establish a specifi c one-to-one relationship 
between regions/networks and functions. 

 Does this mean that we have to revert to 
a more holistic view of the brain and its dif-
ferent regions? Based on their data, some 
 neuroscientists—doing either lesion-based stud-
ies (Feinberg 2009) or functional imaging using 
electroencephalography (EEG; John 2006), posi-
tron emission tomography (PET; van Eijnsden 
et  al. 2009), or functional magnetic resonance 
imaging (fMRI; Northoff  2008)—do indeed 
advocate a more holistic view of brain function. 
Th is is further corroborated by neuroanatomy, 
which considers single regions as hubs or nodes 
within the neural network of the whole brain 
rather than as centers or modules by themselves 
(see Hagmann et al. 2008, Sporns 2011). 

 Where does this leave us? Do we have to 
follow the swings between localizationism and 
holism? My aim in the following discussion is to 
show how both are very compatible and comple-
mentary, rather than being contradictory.  

    NEUROTHEORETICAL REMARK IA: 
LOCALIZATION AND SPARSE CODING    

While the association of a specifi c region or 
network with a specifi c psychological function 
must be considered doubtful, the data never-
theless show that only a certain set of regions 
is recruited during the various tasks or func-
tions. Multiple functions seem to recruit the 
same set of regions or network entailing a many/
multiple-to-one/few relationship between func-
tions and regions. Th e function–region relation-
ship thus seems to obey the rules of sparseness, 
with sparse representation of the multiple func-
tions in a few regions/networks of the brain. 
I consequently hypothesize sparse coding rather 
than localization to operate and determine the 
function–region relationship. 

 Th e assumption of sparse coding is empiri-
cally supported by the data we discussed in 
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Chapter  3 and especially Chapter  6, which 
show the spatiotemporal activity pattern during 
resting-state and stimulus-induced activity to be 
rather sparse. While these purely neuronal data 
did not directly address the more neuropsycho-
logical relationship between region and function, 
they nevertheless provide some indirect support 
for a sparse encoding of functions into the diff er-
ent regions’ and networks’ neural activities. 

 More specifi cally, I propose that what is con-
sidered localization of a particular function in 
a specifi c region refl ects the sparse number of 
actually activated regions when compared to 
the total number of regions that could possibly 
be recruited. Th e fact that the other regions are 
not activated does not mean, however, that they 
do not participate in generating the function in 
question. 

 Th e inactive regions may nevertheless have 
an important role in that their baseline—that 
is, resting-state activity—may serve to generate 
and amplify neural diff erences (presupposing 
diff erence-based coding on a regional level; see 
Chapter 3). Th ese neural diff erences may in turn 
allow the brain to condense and sparsen neural 
activity in one or a few subsequent regions, yield-
ing those regions that we observe to be activated. 
Accordingly, sparse coding on a regional level 
seems to be nicely compatible with the localiza-
tion of particular functions in specifi c regions. 

 How does the assumption of such sparse 
coding stand in relation to the localization 
approach? To equate sparse coding with localiza-
tion is to confuse the underlying processes and 
their resulting outcomes. Th e localization-based 
approach focuses on the outcome while neglect-
ing the process itself; that is, how the apparent 
localization of a function in a particular region 
is generated. Instead of considering the pro-
cess of generating regional localization, the 
localization-based approach takes the localiza-
tion of a particular function in a specifi c region 
for granted. And it considers the psychological 
function to be intrinsic or innate to the region 
itself without further questioning the underlying 
processes how that function is generated by the 
region’s neural activity. 

 Such a localization-based approach is, how-
ever, to be distinguished from the approach 

sparse coding takes to the question of localiza-
tion. Here the focus shift s from the outcome, 
the observation of a regional localization, to the 
processes; that is, the rules and principles that 
generate what we observe as the specifi c linkage 
between function and region.  

    NEUROTHEORETICAL REMARK IB: 
DISTINCTION BETWEEN “ACTIVATED” 
AND “ACTIVE” REGIONS    

I discussed the processes underlying sparse 
coding on a regional level of neural activity in 
detail in Chapter  3. Briefl y, I  postulated that 
the activation of a specifi c region yields from 
the computing and comparing of neural dif-
ferences stemming from other regions. Th ese 
regions, which serve to yield and amplify neural 
diff erences, may by themselves either be acti-
vated or non-activated. Th is means that even 
non-activated or non-recruited regions partici-
pate in generating neural diff erences. 

 Conceptually, one may therefore want to 
distinguish between “activated” and “active” 
regions. “Activated regions” are those regions 
that show neural activity changes in response to 
the task we apply. We as observers associate the 
recruitment of these regions with the function in 
question and are consequently inclined to local-
ize the latter in the former. 

 Th is, however, neglects what I  describe as 
“active regions” that do not show changes in 
their activity level in response to the task. Th ese 
regions may nevertheless participate in gen-
erating the neural activity changes of the acti-
vated regions, more specifi cally in generating 
and amplifying neural diff erences (see what 
I  describe as an “amplifi cation hypothesis” in 
Chapter 3). Th ey are thus “active” but not “acti-
vated.” Th is, however, makes localization of the 
function in the activated regions impossible, 
since that would neglect the role of the active 
regions in generating the neural activity changes 
in the activated region. 

 As detailed in Chapter  3, the generation 
and amplifi cation of neural diff erences is cou-
pled to the condensation of neural activity (see 
what I  describe as a “condensation hypothesis” 
in Chapter 3). Rather than each of the original 
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lower order sensory regions’ activating a separate 
higher order cognitive region, the former’s neu-
ral activity converges in one common region, to 
which we then attribute localization. Th is, how-
ever, is a false-negative inference that focuses 
only on the outcome of localization in the 
higher-order cognitive region, while neglecting 
its underlying processes in which lower-order 
sensory regions participate. 

 More specifi cally, the outcome of sparse 
coding does indeed pertain to one particular 
region, the “activated” region or network as 
distinguished from all “non-activated” regions/
networks. However, the underlying process 
involves “active” regions/networks (as distin-
guished from non-active regions/networks) that 
are essential in yielding and amplifying neural 
diff erences. 

 Th is means that the function in question can-
not be localized exclusively and completely in 
the “activated” region/network itself. Instead, 
the function may be associated with both “acti-
vated” and “active” regions/networks as distin-
guished from “non-activated” and “non-active” 
ones. Accordingly, the regions/networks 
remaining silent in response to our task, that 
is, “non-activated,” may nevertheless be “active” 
(rather than “non-active”) and may therefore 
have an important role in processing the func-
tion in question (see Fig. A2-1; see also Hayes 
et al. 2013 for an example of where the density 
of GABA-A receptors [PET] in ventromedial 
prefrontal cortex, a non-activated region during 
an aversive task, modulates the degree of signal 
changes [fMRI] in an activated region, the senso-
rimotor cortex; see also Gonzales-Castillo et al. 

 

Stimulus: Sensory inputs

Primary sensory
cortical regions

Secondary and
tertiary sensory
cortical regions

Higher-order
cognitive regions

Sparse coding: Coding of the
stimuli’ natural statistics in sensory
cortex 

Holism: Amplification of neural
differences in subsequent regions

Localization: Condensation of
neural activity in a few sparse regions

   Figure A2-1      Complementarity between holism and localizationism.  
  Black:  Activated/recruited regions
   Gray:  Non-activated but active regions participating in yielding neural diff erences   
White:  Non-activated and non-active regions  
Th e fi gure depicts the diff erent stages of neural processing. Th e stimulus is encoded into the sensory 
cortex’s neural activity a sparse way; i.e., as based on its natural statistics as its statistical frequency 
distribution across diff erent discrete points in time and space. Th is is possible only if we presup-
pose diff erence- rather than stimulus-based coding (upper part). Even if regions are not activated or 
recruited by themselves, they may still participate in constituting neural diff erences; they are thus 
“non-activated” but nevertheless active. Th e initial neural diff erences in primary sensory cortex are 
supposed to be amplifi ed (“amplifi cation hypothesis”; see Chapter 3 in Part I) in subsequent regions, 
entailing holistic distribution of the initial neural activity changes across diff erent regions of the brain; 
i.e., holism (middle part). Th at in turn makes possible the condensation of neural diff erences (“conden-
sation hypothesis”; see Chapter 3 in Part I) in a few subsequent regions that then do show up as “acti-
vated” regions (lower part). Th ese diff erent stages of neural processing across the diff erent regions of the 
brain are well refl ected in changing ratios between “activated” (or recruited) regions, “non-activated” 
but “active” regions, and “non-activated and non-active” regions.   
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2012 for the support of active but non-activated 
regions).      

 In sum, one may postulate localization of 
neural activity in specifi c “activated” regions/
networks during particular function. Th is, 
as demonstrated, is the outcome of the pro-
cesses guiding sparse coding on a regional 
level. However, to infer from such localization 
(or better, condensation) of neural activity to 
the localization of the function in question 
in that particular region/network is to con-
fuse outcome and processes. Th e function in 
question must also be associated with regions 
(and networks) other than the “activated” ones 
like those that I  here described as “active”; 
that is, actively involved in amplifying neural 
diff erences.  

    NEUROTHEORETICAL REMARK IC: 
COMPLEMENTARITY BETWEEN HOLISM 
AND LOCALIZATIONISM    

We are confronted with two apparently con-
tradicting observations. On one hand, many 
regions, and ultimately, the whole brain, seem to 
be implicated in the neural processing of various 
psychological functions (see earlier). Th is sug-
gests holism holds true on a psychological level. 
On the other hand, there is regional sparseness 
in that diff erent psychological functions seem to 
recruit similar but at least strongly overlapping 
regions and networks. Th is observation, how-
ever, contradicts holism and would rather be 
compatible with localizationism holding true on 
a neuronal level. 

 How can we reconcile the contradictory 
assumptions of localizationism on the neuronal 
level and holism on the psychological level? Th e 
need to reconcile localizationism and holism was 
already recognized by K. Lashley, as is apparent 
in the following passage:

  Th e chief advantage of the strict theories of 
localization has been their defi niteness and 
comprehensibility. Th ose of us who have felt the 
inadequacy of such theories have had to fall back 
upon expressions like mass action, stress pat-
terns, dynamic eff ects, melodies of movement, 
vigilance or nervous energy; all metaphorical 

and highly unproductive of experimental prob-
lems. Yet the facts demand something of this 
sort. Th e evidence seems conclusive that in vari-
ous cortical functions there is every degree of 
specialization from a limited point-to-point cor-
respondence of cells to a condition of absolute 
non-specifi city. Not only is there diversity in the 
modes of action of diff erent parts of the cortex 
but a single area, highly specialized and diff er-
entiated for one activity may be wholly undiff er-
entiated for another in which it also participates. 
We have not a choice between a theory of local-
ization and a theory of decentralization, but 
must develop a wider view which recognizes the 
importance and interdependence of both modes 
of integration. (Lashley 1931, 254)   

 I hypothesize that we need to set the alter-
native of localizationism versus holism into the 
context of sparse coding and diff erence-based 
coding in order to reconcile both. Th ere is 
holism on the process level. As described earlier, 
even presumably silent, that is, “non-activated” 
but “active,” regions/networks are neverthe-
less actively participating in generating and 
amplifying neural diff erences, thus allowing for 
diff erence-based coding. Such diff erence-based 
coding is in turn central in condensing and thus 
sparsening neural activity in a particular region, 
the “activated” or recruited region, as the mani-
festation of sparse coding on a regional level. 

 Many regions, if not (indirectly via the con-
stitution of diff erences) the whole brain, actively 
participate in constituting neural diff erences. 
One may consequently suggest holism on the 
level of neuronal processes, whereas the very 
same neuronal processes, operating through-
out diff erent regions, allow and, even stronger, 
predispose the temporal and spatial sparsening 
of subsequent neural activity changes in a few 
highly localized regions as their outcome. Th e 
outcome, that is, the changes in the neural activ-
ity in a few localized regions, may thus be more 
localized when compared to the rather holisti-
cally operating processes. 

 What does this entail for the relationship 
between localizationism and holism? Th is means 
that the concepts of localizationism and holism 
are not opposite and contradictory to each other 
but rather mutually dependent on each other: As 



THEORETICAL REFLECTIONS314

there would be no outcome without a preceding 
process, localizationism would remain impos-
sible without holism. 

 Even stronger, the more holistically pro-
cesses that allow for the amplifi cation of neural 
diff erences throughout the whole brain make 
a more localized outcome, that is, spatial and 

temporal sparsening of neural activity and the 
number of “activated” regions, almost neces-
sary. Accordingly, localizationism and holism 
are bound together as tightly as process and 
outcome; they remain consequently as insepa-
rable and complementary as yin and yang in the 
Chinese tradition.    



    Summary   

 How are the brain and our observation of it in 
neuroscientifi c investigation related to each 
other? I  here distinguish between brain-based 
and observer-based concepts. “Brain-based 
concepts” are very much in accordance with 
the way the brain functions and processes neu-
ral activity independently of our observation 
of it. “Observer-based concepts,” in contrast, 
refer to the dependence of our observations on 
the observer himself and his particular experi-
mental (and technological and other) require-
ments. Since in observer-based concepts the 
observer intrudes into the observations and 
ultimately into the brain itself, I  also speak 
of “observer-related intrusions.” I  distinguish 
between extrinsic and intrinsic observer-related 
intrusions:  extrinsic observer-related intru-
sions can in principle be avoided and mini-
mized, while intrinsic ones cannot in principle 
be overcome. Intrinsic observer-related intru-
sions concern, I claim, intrinsic design features 
of the brain like its neural code and intrinsic 
activity that defi ne the brain  qua  brain; since 
our observation of the brain is necessarily 
based on both the brain’s intrinsic activity and 
its neural code, we cannot avoid their interfer-
ing with and thus confounding and intruding 
on our observations. Th erefore, I conclude that 
the intrinsic observer-related intrusions pose 
“neuroexperimental and neuroepistemologi-
cal constraints” to our possible knowledge of 
the brain.    

    Key Concepts and Topics Covered   

 Brain-based versus observer-based concepts, 
intrinsic and extrinsic observer-related intru-
sions, neuroexperimental and neuroepistemo-
logical constraints   

    NEUROEPISTEMOLOGICAL REMARK IA: 
RELATIONSHIP BETWEEN DATA/FACTS AND 
CONCEPTS   

 Neuroscience acquires data and ultimately facts to 
describe the brain (the distinction between data 
and facts may by itself be worth discussing from 
a philosophical point of view; see also Northoff  
2011). Th ese data and facts are described by con-
cepts that one usually expects to correspond to 
and thus match the data and facts. In such a case, 
there is a one-to-one relationship between the 
data/facts and the contents the concepts describe. 

 Life is not that easy, though, especially the life 
of a neuroscientist. Concepts are usually more 
general and vague than particular data and facts. 
Th is means that concepts usually include more 
than one particular content, thus being more 
general. Th at, in turn, makes them more vague 
and thus less specifi c when compared to data and 
facts. Th e concepts the neuroscientist (and any 
scientist) uses (or must use) therefore remain 
unable to completely, 100 percent, match and cor-
respond to the data and facts in a one-to-one way. 

     APPENDIX 3  
NEUROEPISTEMOLOGICAL REMARK: 
BRAIN VERSUS OBSERVER     
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 Instead, the concepts may also refer to con-
tents other than the ones associated with the par-
ticular data and facts in question. Th is implies 
a one-to-many relationship where one concept 
stands for (or “codes”) many data/facts. Let us 
put the relationship between data/facts and con-
cepts in terms of coding, with the former being 
encoded into the latter. Rather than encoding 
data and facts in a local (that is one-to-one) (or 
even sparse in a many-to-one) way, concepts 
seem to encode data and facts in a rather dense 
way, with one concept providing the umbrella 
for diff erent possible data/facts entailing one-to-
many relationship. Th is means that there is 
almost certainly a certain degree of mismatch 
between concepts and data/facts, with the for-
mer being too unspecifi c for the single datum/
factum. 

 Th is all sounds very philosophical, the neu-
roscientist may want to say. Let the philosophers 
discuss this, but leave me alone in doing my 
experiments to generate better data and facts. 
As I said, life is not that easy. Due to the almost 
certainly necessary or unavoidable mismatch 
between concepts and data/facts due to rather 
dense encoding of the latter by the former, we 
are prone to confusion. 

 More specifi cally, we can never be completely 
sure (or “know,” as the epistemologist may prefer 
to say) and we thus remain uncertain whether 
the concept we use to describe our data and 
facts really matches and corresponds completely 
and exclusively to the latter. Hence, the possible 
mismatch between data/facts and concepts goes 
along with uncertainty in our knowledge about 
the brain, and therefore is prone to possible 
confusion.  

    NEUROEPISTEMOLOGICAL REMARK IB: 
DISTINCTION BETWEEN BRAIN-BASED 
VERSUS OBSERVER-BASED CONCEPTS   

 How can we now describe in more detail and 
thus alleviate this possible confusion between 
concepts and data/facts? Concepts are generated 
by the observer. Th e very same observer who 
conducts the experiments also needs to use con-
cepts to describe his data/facts and to formulate 

his hypothesis. Yielding hypotheses and data/
facts is possible only when considering certain 
requirements that need to be fulfi lled within the 
experimental context. 

 One such experimental requirement is the 
careful distinction between diff erent experi-
mental variables that need to be treated in a 
segregated and independent way. Th is makes 
necessary the introduction of concepts describ-
ing these segregated and independent variables. 
Th e problem starts, however, once the very same 
concepts that describe the segregated and inde-
pendent experimental variables are also sup-
posed to describe the brain itself. 

 More specifi cally, based on the experimental 
data/facts, the concepts referring to the respec-
tive experimental variables are assumed to 
describe one to one the processes and mecha-
nisms in the brain itself. Th ereby the concept is 
supposed to match and correspond to the brain’s 
neuronal processes as they are independent of 
the observer’s observation; the concept is thus 
supposed to refer to the brain as it is by itself. 

 One such example is the concept of func-
tional connectivity (see later for further exam-
ples). It describes an experimental variable, the 
statistically based correlation between the signal 
changes in diff erent regions across time amount-
ing to a correlation between two diff erent time 
series of signals. So far, so good. However, at 
the same time, the same concept of functional 
connectivity is also used to describe the neuro-
nal relationship between two (or more) regions’ 
neural activities, thus referring to a purely neu-
ronal feature of the brain independent of our 
observation. 

 Does the concept of functional connectivity 
as an experimental variable match and corre-
spond to the concept as a neuronal feature of the 
brain itself? As discussed in Chapter  4, we are 
sure that we can observe statistical correlations 
between diff erent regions’ neural activities and 
thus functional connectivity in an experimental 
sense, whereas we are currently unclear about 
the neuronal features underlying such statisti-
cal correlations; i.e., functional connectivity in a 
neuronal sense. 

 Let’s return to a more general level. One 
could imagine instances where the concept in 
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an experimental context does not match or cor-
respond to the use of the same concept in the 
context of the brain’s neuronal processes and 
mechanisms as they are by themselves. In that 
case, the concept is more related to the observer 
and her experimental requirements than to the 
brain itself and its neuronal processes and mech-
anisms as they are by themselves, independent 
of our observation. Th is means the concept is 
more observer-based than brain-based. I there-
fore distinguish between what I  describe as 
“observer-based and brain-based concepts” in 
the following remarks. 

 The distinction between observer-based and 
brain-based concepts is not an all-or-nothing 
distinction but rather a more-or-less distinc-
tion. This means a particular concept may be 
based on both the observer’s experimental 
requirements and the brain’s neuronal pro-
cesses. It may thus be just a matter of degree 
and balance between the two ingredients, 
observer and brain, that determines the con-
cept in question. A concept is thus either more 
or less strongly based on either the observer 
and her experimental demands, or the brain’s 
neuronal processes. 

 Accordingly, there is thus a continuum with 
various shadings and diff erent balances between 
brain and observer in our concepts is therefore, 
in the usual case, more or less hybrid. Th at is to 
be distinguished from the concepts that refl ect 
the extremes at either end of the continuum 
between brain and observer that describe purely 
observer-based and brain-based concepts. Like 
any scientist, the neuroscientist seeks, of course, 
concepts where the balance is tilted strongly 
toward the brain-based end of the continuum 
and away from the observer-based pole (see 
Fig. A3-1a).       

    NEUROEPISTEMOLOGICAL REMARK IC: 
EXAMPLES OF OBSERVER-BASED VERSUS 
BRAIN-BASED CONCEPTS—GABA 
AND GLUTAMATE   

 Th roughout this volume, we have encountered 
several examples of suspicious concepts whose 
balance seemed to be more strongly tilted 
toward the observer than the brain itself. In the 

following remarks, I  want to briefl y mention 
some of them. 

 One central issue throughout the whole book 
was the role of glutamate and GABA in deter-
mining the degree of sparse coding (Chapter 2), 
intrinsic activity (Chapter 6), and rest–stimulus 
interaction (Chapter  12). Experimentally, we 
need to segregate glutamate and GABA and cor-
respondingly, neural excitation and inhibition, 
from each other. For instance, to measure glu-
tamate and neural excitation, we need to experi-
mentally parse both variables from any traces 
of GABA and neural inhibition. Otherwise, we 
cannot be sure whether our data really tell us 
about glutamate and neural excitation them-
selves. Th is means ultimately that GABA and 
glutamate and hence neural inhibition and exci-
tation are treated as segregated and independent 
experimental variables. 

 Th e designation of GABA and glutamate as 
segregated and independent variables occurs 
on purely experimental grounds and is there-
fore strongly observer-based. Based on the data 
whose acquisition presupposes such experimen-
tal segregation and independence, one would 
suggest GABA and glutamate to also act seg-
regated and independently in the brain itself. 
One consequently postulates that certain levels 
of GABA and neural inhibition are necessary 
for specifi c kinds of neuronal processes. While 
these levels may be open to (secondary) modu-
lation by glutamate and neural excitation, they 
are considered (primarily) as independent and 
segregated (in a constitutive rather than merely 
modulatory sense). 

 What does this assumption imply for 
our distinction between brain-based and 
observer-based concepts? Th is means that now 
the observer’s concepts are transferred to the 
brain itself. Th e initially observer-based charac-
terization of GABA and glutamate as indepen-
dent and segregated experimental variables is 
now projected onto the brain itself and assumed 
to describe its neuronal processes. In short, it is 
no longer treated as observer-based but rather as 
brain-based. 

 Does such experimentally based segregation 
and independence between GABA/neural inhi-
bition and glutamate/neural excitation really 



 

Experimental (and
technological)
requirements

(a)

Description:
Concepts

Neuronal processes
independent of any
observation 

Experiments: 
Data and Facts

Observer-based
concepts 

Brain-based
concepts 

Design features
of the brain

Neuro-experimental and
epistemological constraints

Observer-and brain-
based concepts

(b)

Data and Facts as
result of observation

Intrinsic observer-related
intrusion: Non-avoidable
intrusions of the observer onto
his own observation of the brain

Extrinsic observer-related 
intrusion: Avoidable intrusions
of the observer into his own
observation of the brain

   Figure A3-1a and b     Brain, concepts, and observer.  
 Th e fi gure depicts two key features in the relationship between brain and observer:  the continuum 
between brain-based and observer-based concepts (a), and the distinction between intrinsic and extrin-
sic observer-related intrusions (b).  
( a ): Observer-based concepts are concepts that describe the brain but rely on us as observers and our 
abilities to observe the brain. Th erefore, we cannot be fully sure whether these concepts are related more 
to us as observers or to the brain itself, independent of our observation of it. In contrast, “brain-based 
concepts” are concepts of the brain as it is by itself, independent of our observation of it. Th is means that 
our data and facts refl ect the brain itself rather than us as observers. I propose a continuum between 
brain-based and observer-based concepts (lower part), with both being extreme cases in their pure 
forms on either end of a continuum.  
( b ): Extrinsic observer-related intrusions (upper part) are intrusions of the observer into his/her own 
observation of the brain’s neural activity that can in principle be minimized or even avoided by better 
experiments, etc. In contrast, intrinsic observer-related intrusions (lower part) are those that cannot in 
principle be minimized or avoided, because observation is by itself supposed to be possible only on the 
basis of the brain’s intrinsic features, without which observation would remain impossible. Hence, the 
brain and its intrinsic design features cannot help but intrude in our observation, because otherwise 
any kind of observation would be impossible.   
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correspond to the empirical data? I denied that. 
Instead, I  postulated that both GABA and glu-
tamate can be characterized by diff erence-based 
coding, with each coding the relative rela-
tional diff erence between the two, rather 
than their absolute value independent of each 
other. Th is was empirically manifested in the 
excitation-inhibition balance (EIB) that is sup-
posed to provide the measure for the subsequent 
generation of neural activity. 

 Such encoding of the diff erence between 
GABA and glutamate, rather than encoding 
both as separate and distinct variables, puts the 
assumption of (primary and constitutive) seg-
regation and independence between glutamate 
and GABA in the purely neuronal context (as 
distinguished from the experimental context) 
into doubt. 

 Th e characterization of GABA and gluta-
mate by (primary and constitutive) segregation 
and independence may be relevant (and even 
required) for the observer (and his experimen-
tal approach). In contrast, such segregation and 
independence of GABA and glutamate may as 
such not apply to the brain as it is by itself, inde-
pendent of the observer. 

 Th is means that such a characterization is 
more strongly related to the observer and his 
experimental requirements than to the brain’s 
neuronal processes as they are by themselves 
independent of the observer’s observation. In 
other words, assuming segregation and indepen-
dence between GABA and glutamate may turn 
out to be more observer-based than brain-based.  

    NEUROEPISTEMOLOGICAL REMARK ID: 
EXAMPLES OF OBSERVER-BASED VERSUS 
BRAIN-BASED CONCEPTS—STIMULI VERSUS 
DIFFERENCES    

Another example is the distinction between 
diff erent types of stimuli according to their ori-
gin in the brain (neuronal stimuli), the body 
(interoceptive stimuli), or the world (extero-
ceptive stimuli). Based on these distinct origins, 
diff erent anatomical structures and pathways 
have been proposed, as is well refl ected in 
the radial-concentric threefold anatomical 
organization (see Chapter  1). However, on a 

functional level, the distinction between the 
diff erent origins of the stimuli and their respec-
tive anatomical structures seems to be blurred. 
Th is was, for instance, quite apparent in the 
observed neural activity, or functional connec-
tivity and low-high frequency fl uctuations, and 
the coding strategy, or diff erence- rather than 
stimulus-based coding, that operated across 
and superseded the underlying anatomical 
structure and its diff erent stimuli’s inputs (see 
Chapters 4 and 5). 

 Th is means, however, that the distinction of 
stimuli according to their origin, or matter of ori-
gin, may be not as relevant for the brain itself and 
its neuronal processes as it is for us as observers 
and our experimental requirements. Th e experi-
mental requirement is not to confuse stimuli of 
diff erent origins. Otherwise, we cannot say any-
thing about, for instance, exteroceptive stimuli 
and their underlying neuronal processes and 
how they are distinguished from the ones related 
to interoceptive stimuli. 

 However, as relevant as the distinction of 
the diff erent stimuli’s origins may be for us as 
observers, it does not seem to be as relevant 
for the brain itself. Th e brain seems to be more 
“interested” in diff erent, more specifi cally, in dif-
ferent  degrees  of statistically based spatial and 
temporal diff erences among diff erent stimuli 
rather than in the stimuli themselves and their 
respective origins (see Chapters  2, 6, and 12). 
Hence, my characterization of the brain’s neural 
activity and its processing by “matter of degrees 
and diff erences” rather than as a “matter of its 
origins and stimuli” (see Appendix 1). 

 In sum, this means that the characterization 
of the brain’s neural processing by “origin and 
stimuli” may be more strongly related to the 
observer himself than the brain itself. In other 
words, the determination of the brain and its 
neural activity by the diff erent stimuli and their 
respective origins—“a matter of origins and 
stimuli”—may turn out to be observer-based 
rather than brain-based. Th is contrast with the 
characterization of the brain’s neural activity as 
a “matter of degrees and diff erences” that seems 
to be tilted more toward the brain-based pole in 
the continuum between the extremes of purely 
observer- and brain-based concepts.  
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    NEUROEPISTEMOLOGICAL REMARK IE: 
EXAMPLES OF OBSERVER- VERSUS 
BRAIN-BASED CONCEPTS—RESTING STATE 
VERSUS STIMULUS-INDUCED ACTIVITY

    Let us provide a fi nal example where brain-based 
and observer-based concepts may be con-
fused: the distinction between resting-state and 
stimulus-induced activity. Experimentally, we 
clearly need to segregate and delineate both, 
since otherwise we will never be able to know 
the contributions of the stimulus and those of 
the brain itself in stimulus-induced activity. 

 One may therefore postulate segregation 
between resting-state and stimulus-induced 
activity. However, as the empirical data sug-
gest (see Chapters 11 and 12), these two cannot 
principally be distinguished from each other, 
let  alone segregated. Instead of by principal 
diff erence and segregation, resting-state activ-
ity and stimulus-induced activity can only be 
distinguished from each other on the basis of 
degrees. Th is means, however, that the prin-
cipal distinction between resting-state and 
stimulus-induced activity is more strongly based 
on the observer than on the brain itself. I  thus 
formulated what I  describe as the “continuity 
hypothesis,” which includes both neuronal con-
tinuum and discontinuum between resting-state 
and stimulus-induced activity (see Appendix 1). 

 How can we escape the possible confu-
sion between brain-based and observer-based 
concepts? To shift  concepts away from the 
observer-based pole toward the brain-based 
pole, we will need to also shift  our perspective. 
More specifi cally, we will need to abandon our 
observer-based perspective and imagine how it 
is for the brain itself, independent of our obser-
vation, to generate the kind of neuronal pro-
cesses we observe. 

 We should at least aim to move from the 
observer’s perspective to the ideal (though fi c-
tive) case of being able to take the “brain’s per-
spective” (used in a fi gurative sense, because the 
brain itself has no “perspective”). Metaphorically, 
one may therefore say that we need to replace the 
question of “What it is like for the observer” by 
the question of “What it is like for the brain.” 

 I have here demonstrated various examples 
of concepts that seem to be more strongly based 
on the observer himself and his experimen-
tal requirements than on the brain’s neuronal 
processes independent of our observation of 
them. Th ereby, diagnosis of the more strongly 
observer-based component in these concepts led 
me to search for other concepts that are presum-
ably more brain-based. Th is, in turn, was accom-
panied by a suggestions for future experimental 
variables and hypotheses in order to test these 
more brain-based concepts experimentally and 
lend empirical support to them.  

    NEUROEPISTEMOLOGICAL REMARK IIA: 
OBSERVER-RELATED INTRUSION    

How can we be sure and thus know that 
the concepts we apply are more brain- than 
observer-based? Th e only way for us to know is 
to develop corresponding hypotheses and con-
duct the appropriate experiments. If the data are 
in accordance with the characterization implied 
by these concepts, the assumption of their being 
more brain-based than observer-based may be 
justifi ed. If, in contrast, the data do not support 
my concepts like diff erence-based coding, they 
may turn out to be as observer-based as the ones 
I replaced. 

 If the data are in accordance with the con-
cepts, the latter are empirically plausible. Th ey 
are thus to a higher degree based on the brain 
than on the observer; while the opposite case of 
no empirical support suggests that they are more 
based on the observer than on the brain. Hence, 
the degree of empirical plausibility—the degree 
of correspondence or matching of the concept 
with the empirical data—may be regarded as a 
measure of the degree to which the concept is 
brain- or observer-based. 

 To further test the empirical plausibility and 
thus the predominantly brain-based nature of 
our concepts, alternative experimental designs 
should also be applied using diff erent experi-
mental variables. If they yield the same or anal-
ogous results, the likelihood of both data sets 
being confounded by the experimental require-
ments of segregation and independence (of 



NEUROEPISTEMOLOGICAL REMARK 321

experimental variables) is rather low. Th e data 
may then provide an excellent basis for being 
associated with a particular concept that shows 
a high probability of being brain-based rather 
than observer-based. 

 How about the opposite case, with a concept 
showing low empirical plausibility, which then is 
more strongly observer-based than brain-based? 
In that case, the observer and her experimen-
tal (and technological and other) requirements 
seem to intrude too much into the concept and 
the subsequent experimental design as to yield 
brain- rather than observer-based concepts. 
Th e observer thus intrudes into the brain and 
imposes herself, thereby manipulating and con-
founding what she herself can observe from the 
brain’s neuronal processes by her own stance and 
experimental and technological needs. In short, 
the observer confounds and intrudes into her 
own observations, for which reason I  speak of 
“observer-related intrusion.” 

 Th e concept of “observer-related intru-
sion” refers to the intrusion or imposition 
of the observer himself into or onto his own 
observation of the brain’s neuronal processes. 
Accordingly, observer-related intrusions 
describe that the observer himself confounds his 
own observations. Observer-related intrusions 
do consequently lead to low degrees of empiri-
cal plausibility of the respective concepts that are 
then more observer- than brain-based.  

    NEUROEPISTEMOLOGICAL REMARK IIB: 
 EXTRINSIC  OBSERVER-RELATED INTRUSIONS    

How can we deal with observer-related intru-
sions? We can try out alternative concepts and 
conduct the respective experimental designs. 
Th en we can compare the results from both 
experimental lines to see how much they accord 
with the respectively presupposed concept:  the 
experimental line with the higher degree of cor-
respondence between concept and data/facts 
(empirical plausibility) may then be the line 
where the concept is less observer- and more 
brain-based compared to the other line. In other 
words, we have to try out diff erent alternative 
concepts and subject them to rigorous experi-
mental testing (see Chapter 3 in Northoff  2011 

for a discussion of such methodology, which 
I describe as “concept-fact iterativity”). 

 Th is means that we are not completely at the 
mercy of ourselves and our observer-related intru-
sions. Instead, we can develop some (method-
ological) tools to minimize and ultimately avoid 
them. Th is means that we can at least minimize 
the degrees to which an observer intrudes and 
imposes himself onto his own concepts. In the 
best case, we can avoid observer-related intrusions 
altogether—in that case the respective concepts 
would be strongly brain-based, approaching one 
extreme of the continuum between brain-based 
and observer-based concepts. 

 Since we are in principle able to minimize the 
degree of observer-related intrusions, I  charac-
terize them as  extrinsic . Th e concept of “extrin-
sic observer-related intrusions” means that the 
observer’s intrusion and imposition can in prin-
ciple be minimized, and ideally, be corrected or 
even avoided altogether; the intrusion remains 
therefore extrinsic to both the observation itself 
and the concepts we use to describe our own 
observation (see Fig. A3-1b). 

      NEUROEPISTEMOLOGICAL REMARK IIC: 
 INTRINSIC  OBSERVER-RELATED INTRUSION    

I propose that extrinsic observer-related intru-
sions can in principle be minimized, and in the 
best-designed investigations, can be avoided 
altogether. Th is is made possible by refi ning our 
concepts, as described, and developing better 
and more precise technological tools for measur-
ing and acquiring data (such as higher-resolution 
brain scanning). Th ere may be instances, how-
ever, where we remain in principle unable to 
minimize observer-related intrusion. Th is, to 
clarify, does not concern the individual observer 
as distinct from other individual observers; it 
rather pertains to all possible observers indepen-
dent of the individual ones. 

 Let me start with Buzsaki and his emphasis 
on rhythms and oscillations. He argues in his 
excellent book  Rhythms of the Brain  (Buzsaki 
2006)  that rhythms and oscillations are a hall-
mark feature of the brain. To prove his point 
of the causal nature of oscillations for certain 
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processes, he would ultimately need to experi-
mentally investigate a brain  without  oscillations 
and see whether it lacks the kind of eff ects for 
which he considers oscillations to be necessary. 
Th at remains impossible, however, since we can-
not even imagine a brain without oscillations, 
let alone test it experimentally, as Buzsaki him-
self remarks (see Buzsaki 2006, 360). 

 Even pathological cases like schizophrenia, 
depression, or vegetative states, which may help 
in overcoming extrinsic observer-related intru-
sions, do not provide an option in this case. Why 
is this so? Because even they still show rhythms 
and oscillations that, despite being distorted, are 
still present and thus not completely absent as 
experimentally required. Th ere is thus a princi-
pal limit in the possible experimental testing that 
cannot be overcome and avoided. 

 How can we describe such a principal limi-
tation in further detail? Th e limitations consist 
of the fact that we remain in principle unable to 
prove whether our concepts, like rhythms and 
oscillations, are ultimately based on the brain 
itself and independent of us as observers. Or 
whether they are more related to us as observ-
ers and our ways in which we can (and cannot) 
observe and experimentally test the brain. We 
are thus stuck in our own observation, which 
remains principally unable to tease apart vari-
ables that are related to the brain itself from 
those that are more associated with our observa-
tion and its methodological, experimental, and 
technological demands. 

 Unlike in the case of extrinsic observer-related 
intrusion, we here remain principally unable 
to minimize or even avoid the intrusion by (for 
instance) the oscillations, without eliminating the 
observation itself that, as it is brain-based, may 
require the presence of oscillations (see later). Th is 
means that the intrusion is an integral and thus 
intrinsic feature to the observation, without which 
the latter would remain impossible. I  therefore 
speak of “intrinsic observer-related intrusion.”  

    NEUROEPISTEMOLOGICAL REMARK IIIA: 
“INTRINSIC DESIGN FEATURES” 
OF THE BRAIN    

How is it possible that observer-related intrusions 
are intrinsic rather than extrinsic? Th is amounts 

to the question for the diff erent concepts dealt 
with in intrinsic and extrinsic observer-related 
intrusions. Th e concepts of rhythms and oscil-
lations refer to a feature that characterizes the 
brain’s designs and, even more strongly, defi nes 
the brain as brain. 

 Buzsaki for instance cannot even imagine a 
brain without oscillations, because otherwise he 
would no longer be talking about a brain (at least 
not of a human brain), which would be sense-
less and meaningless. He thus considers rhythms 
and oscillations to be what I describe as “intrin-
sic design features” of the brain that defi ne the 
brain as brain. What are other “intrinsic design 
features” of the brain besides rhythms and oscil-
lations? Th roughout this book, we have already 
encountered several such “intrinsic design 
features.” 

 I postulated that diff erence-based coding, 
as distinguished from stimulus-based cod-
ing, defi nes the brain’s neural code. Since the 
code very much defi nes what and how the 
brain can encode its own activity and stimuli 
into neural activity, the neural code and thus 
diff erence-based coding as suggested here also 
defi nes the brain as brain. Since diff erence-based 
coding described a coding strategy that results 
in temporal and spatial sparsening of neural 
activity, sparse coding must also be regarded 
as a design feature (see Chapters  1–3). Th e 
same holds true for predictive coding, which 
also seems to be unavoidable once one assumes 
the presence of diff erence-based coding (see 
Chapters 7–9). 

 Besides the encoding strategy, other, more 
specifi c, design features concerned the high- 
and low-frequency fl uctuations of neural activ-
ity in both resting-state and stimulus-induced 
activity, thus mirroring Buzsaki’s assumption of 
rhythms and oscillations. Functional connectiv-
ity between diff erent regions during both forms 
of neural activity was yet another design feature. 

 Finally, and most important, the brain’s 
intrinsic activity, its resting-state activity, and 
its consequent constitution of a spatiotemporal 
structure must also be regarded a design feature 
of the brain without which the brain would not 
be a brain (at least not a human brain). Th ough 
rather diff erent, all these features share the fact 
that their absence could not even be imagined 
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without abandoning the ground of the brain. 
Th ey must therefore be defi ne the brain as (at 
least a human) brain and are thus what I call the 
brain’s “intrinsic design features.”  

    NEUROEPISTEMOLOGICAL REMARK IIIB: 
“NEURO EXPERIMENTAL AND NEURO-
EPISTEMOLOGICAL CONSTRAINTS” IN OUR 
INVESTIGATION AND KNOWLEDGE OF 
THE BRAIN

    We now face a serious problem. Th e whole book 
has focused on these “intrinsic design features.” 
And it has aimed to make a case for them, mean-
ing that I proposed them to be more brain-based 
than other rival concepts that I regarded as more 
observer-based. To show that these concepts are 
brain-based, I will need to put them to experi-
mental testing. 

 Th at means that I will need to show, not only 
that the presence of the intrinsic design features 
induces the kinds of neuronal (see Volume I) and 
phenomenal (see Volume II) eff ects I  describe, 
but also that their absence makes the neuronal 
and phenomenal eff ects impossible. If I  were 
able to show the latter, I could demonstrate that 
the brain’s “intrinsic design features” are a nec-
essary and henceforth unavoidable condition of 
the kind of neuronal states we described here in 
Volume I and also of phenomenal states; that is, 
of consciousness (see Volume II). 

 Th is is the point, however, where the prob-
lems start. While I can test the eff ects of the pres-
ence of the brain’s “intrinsic design features,” the 
experimental testing of their absence remains in 
principle impossible. 

 In the same way Buzsaki cannot even imag-
ine a brain without oscillations, let alone experi-
mentally test its eff ects, we cannot imagine at all 
a brain without (for instance) diff erence-based 
and sparse coding, a brain without functional 
connectivity, a brain without intrinsic activity, 
and a brain without spatiotemporal structure. 
Why? Because these are design features of the 
brain that defi ne the brain as (at least human) 
brain and are therefore intrinsic rather than 
extrinsic to the brain. 

 Th ere are principal constraints (and ulti-
mately limits) to how far we can go experi-
mentally. Since these principal constraints (and 

ultimately limits) can ultimately be traced back 
to the brain itself and its particular design fea-
tures, I  here speak of “neuroexperimental con-
straints.” Th e concept of “neuroexperimental 
constraints” means that we remain principally 
unable to experimentally manipulate certain 
neuronal features of the brain like rhythms and 
oscillations (see later for more examples) with-
out losing the brain as brain. 

 Th ese neuroexperimental constraints also put 
some limits on our possible knowledge of the 
brain; these epistemological constraints— the lim-
its in our possible knowledge of the brain and its 
empirical function—may therefore be described as 
“neuroepistemological constraints.” Th e concept 
of “neuroepistemological  constraints” describes 
principal borders and limits in our  possible knowl-
edge of the brain that we cannot pass without los-
ing our own brain as the basis of all our possible 
knowledge (see later for more detail on the last 
point, the loss of one’s own brain).  

    NEUROEPISTEMOLOGICAL REMARK IIIC: 
“INDIVIDUAL VERSUS GENERAL 
DETACHMENT” OF OUR OBSERVATION 
FROM THE BRAIN    

Let me illustrate this by distinguishing between 
what I describe as “individual detachment” and 
“general detachment.” “Detachment” means that 
we as observers are able to distance and thus 
detach ourselves from the eff ects of our own 
brain’s operations by means of which the obser-
vation of the brain is possible. In other words, 
the concept of detachment describes the oppo-
site of intrusion; namely, that we are able to pull 
ourselves, including the eff ects of our own brain, 
out of our own observation. 

 One may now distinguish between two dif-
ferent forms of detachment; namely, “indi-
vidual detachment” and “general detachment.” 
“Individual detachment” is when we detach 
ourselves from our own brain and its specifi c 
individual level of resting-state activity and its 
highly specifi c and individual degree of spatial 
and temporal diff erences that are encoded into 
our brain’s stimulus-induced activity. 

 Th e detachment here is  individual  because it 
concerns the level of resting-state activity specifi c 
to the particular individual person and the level 
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of the resting-state activity that again is a feature 
of that individual person. How is such individual 
detachment possible? Th is can be done in an 
 inter -individual way, with the correction of the 
individual’s observation by another individual 
with a diff erent level of resting-state activity and 
diff erent degrees of encoded spatial and tem-
poral diff erences. Or it can be done in a more 
 intra -individual way, by undergoing psycho-
therapy or real-time fMRI, wherein one receives 
feedback about one’s own neuronal activity level, 
which then one can modulate by oneself. 

 Being the positive mirror image of intrusion, 
such “individual detachment” down-modulates 
the eff ects of extrinsic observer-related intru-
sions, those that can in principle be mini-
mized and avoided. How about intrinsic 
observer-related intrusion? For that, a diff er-
ent kind of detachment, a more radical one, is 
needed, which I call “general detachment.” 

 Th e concept of “general detachment” means 
that we not only need to detach ourselves from 
our individual level of resting-state activity, but, 
more basically, from any kind of resting-state 
activity itself. One would thus need to achieve 
a brain without any kind of resting-state activ-
ity. Analogously, we would not only need to 
detach ourselves from the degree of the encoded 
spatial and temporal diff erences but, more radi-
cally, from the encoding of spatial and tempo-
ral diff erences altogether. One would thus need 
a brain that applies (for example) 100  percent 
of stimulus-based coding and zero percent of 
diff erence-based coding. Since it applies to 
the brain in general, I  here speak of “general 
detachment.”  

    NEUROEPISTEMOLOGICAL REMARK IIID: 
CONCEPTUAL-LOGICAL AND EMPIRICAL 
IMPLAUSIBILITY OF “GENERAL DETACHMENT” 
OF OUR OBSERVATION 
FROM THE BRAIN    

Is such a “general detachment” plausible and 
feasible beyond the merely fi ctive thought 
experiment? No:  Since both resting-state activ-
ity and diff erence-based coding are supposed 
to be intrinsic features that defi ne the brain as 
(at least a human) brain, we would no longer 

speak of “a brain” in the case of their absence. 
Th e case of “general detachment” is thus incon-
sistent and therefore logically (and conceptually) 
implausible. 

 Even worse: Both resting-state activity and 
difference-based coding may be necessary 
conditions and thus unavoidable features in 
making possible observation in general; this 
means that having a brain without resting-state 
activity and difference-based coding would 
make it impossible for the observer to observe 
anything at all. In other words, “general 
detachment” implies, not only detachment 
from one’s own brain’s resting-state activ-
ity and its difference-based coding, but also 
detachment from observation altogether. 
Maintaining observation while undergoing 
“general detachment” remains consequently 
impossible and therefore logically and empiri-
cally implausible. 

 What does the logical and empirical implau-
sibility of “general detachment” imply for 
“intrinsic observer-related intrusion”? Th e 
impossibility and implausibility of “general 
detachment” refl ects the border that is described 
by “intrinsic observer-related intrusion”; namely 
that, by default, we cannot in principle avoid or 
minimize the possible impact and eff ects of our 
brain’s resting-state activity and diff erence-based 
coding on our observations. 

 To put it diff erently, we are caught between 
Scylla and Charybdis. On one side, we can 
keep our brain’s resting-state activity and its 
diff erence-based coding and consequently our 
ability of observation. Th is, however, makes it 
impossible for us as observers to exclude our 
brain’s possible eff ects on our observation, which 
makes us prone to intrinsic observer-related 
intrusion. 

 Or, on the other side, we can exclude 
and detach ourselves from both our brain’s 
resting-state activity and its diff erence-based 
coding. Since our observation is very much 
based on our brain’s resting-state activity and 
diff erence-based coding, however, we are then 
left  without any capacity of observation. Th is 
though makes the elimination of the intrinsic 
observer-related intrusion futile; senseless and 
meaningless. 
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 We therefore have no choice other than to 
accept the intrinsic observer-related intrusion 
as the border of our possible knowledge of the 
brain—unless we prefer to eliminate our obser-
vation altogether, in which case we would no lon-
ger be able to observe and thus enjoy the absence 
of our intrinsic observer-related intrusions.  

    NEUROEPISTEMOLOGICAL REMARK IIIE: 
PROBABILITY VERSUS KNOWLEDGE    

How can I  prove my hypothesis of diff erence-
based coding and our necessary predisposition 
to intrinsic observer-related intrusion? General 
detachment from the brain’s resting-state activity 
and its diff erence-based coding would ultimately 
be necessary to experimentally prove or disprove 
(verify or falsify) my hypothesis of diff erence-
based coding. Due the brain-based nature of 
observation, which any such experimental dem-
onstration has to rely on, such “general detach-
ment” remains impossible. Th is, however, as 
discussed earlier, makes diff erence-based coding 
immune to either experimental falsifi cation or 
verifi cation. All we can say on the basis of our 
very human brain is that diff erence-based cod-
ing is either more or less likely; thus being a mat-
ter of probability. 

 Th is is exactly what I have done in this vol-
ume. I  have provided empirical evidence that 
makes the assumption of diff erence-based cod-
ing empirically more plausible than the alterna-
tive hypothesis of stimulus-based coding. On the 
basis of that, I hypothesize that diff erence-based 
coding has a higher probability of being a 
brain-based rather than an observer-based 
concept, compared to stimulus-based coding 
as the empirical alternative. I  thus consider 
the assumption of diff erence-based coding an 
empirically plausible hypothesis whose ulti-
mate proof or falsifi cation remains principally 
impossible for us, being beyond our brain-based 
epistemic scope. 

 More generally, this means that our empiri-
cal assumptions about the brain ultimately 
have to rely on empirical plausibility and 
probability rather than on knowledge (in a 
philosophical-epistemological sense). Th is 
means that, in the case of the brain, our empirical 

approach is epistemologically constrained by a 
border—the border of intrinsic observer-related 
intrusion, which we remain in principle unable 
to transgress with our scientifi c-empirical means 
and methods. As demonstrated earlier, our 
brain sets these very epistemological boundar-
ies by itself; this, however, needs to be defi ned 
and determined in a more detailed way in future 
neuroepistemological investigation. 

 Do we need to be concerned about these 
principal epistemological borders in our pos-
sible knowledge about the brain? No, because 
empirical plausibility and ultimately statistical 
probability are all that is needed to gain suf-
fi cient empirical-experimental insight into 
the brain. Aft er all, this is exactly the way the 
brain itself operates. As demonstrated here, the 
brain’s function itself is ultimately based on 
empirical plausibility and statistical probabil-
ity; this is, for instance, well manifested when 
it encodes the statistical frequency distribu-
tion of diff erent stimuli in terms of their spatial 
and temporal diff erences into its own neural 
activity. 

 Most important, one cannot deny that our 
brain usually works quite well by encoding the 
diff erent stimuli’s spatial and temporal diff er-
ences in a statistically based way. And what is 
seemingly suffi  cient for the brain should also 
work well for us in our quest for understanding 
and knowing the brain and its neural mecha-
nisms and coding strategy. At least in our daily 
and scientifi c world that is the natural world 
we live in, the plausibility and probability of 
our insights into the brain should be suffi  cient 
to survive in our respective environmental con-
texts. Th at is, aft er all, exactly the way brain 
itself works! 

 Even if the philosopher still claims there are 
principal epistemological limits to our possible 
knowledge of the brain, we may not need to be 
too concerned about it for our survival. Why? 
Th e alleged epistemological limitation can only 
be revealed by contrasting our natural world of 
daily life and science with the logical world of the 
philosopher. But why shall we and our brain “be 
concerned too much with something,” that is like 
the logical world far beyond the brain’s and our 
own scope, that is, the natural world?           
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