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Abstract. Da Costa's C systems are surveyed and motivated, and significant failings of the 
systems are indicated. Variations are then made on these systems in an attempt to surmount their 
defects and limitations. The main system to emerge from this effort, system CC,~, is investigated in 
some detail, and "dual-intuitionistic" semaantical analyses are developed for it and surrounding 
systems. These semantics are then adapted for the original C systems, first in a rather 
unilluminating relational fashion, subsequently in a more illuminating way through the introduc- 
tion of impossible situations where and and or change roles. Finally other attempts to break out of 
impasses for the original and expanded C systems, by going inside them, are looked at, and further 
research directions suggested. 

Newton da Costa will occupy a significant position in the future annals of 
logic as one of the founders, promoters, and chief early innovators of 
paraconsistent logic, the new logical paradigm that displaced classical logic. 
The main - by no means the only - paraconsistent logics proposed by 
da Costa, the C sYstems, offer elementary replacements for classical and 
intuitionistic systems where the data .goes "bad", i.e. inconsistent. Unfor- 
tunately, for other purposes, the C systems have se~rious drawbacks, both 
philosophical and technical. 1 One of the aims of the present contribution is to 
indicate ways of overcoming some of these deficiencies, of improving the 
C systems. 

Among the technological shortcomings of the C systems are these: First, the 
systems do not conform to the conditions of adequacy proposed for them; in 
particular, they do not meet the condition (IV of da Costa [6] p. 498) that they 
should contain principles of classical [or intuitionist] logic so far as these do 
not interfere with other conditions of adequacy, specifically requirements of 

* I have been much helped through comments and corrections, criticism and proofs, 
generously offered by Newton da Costa, Chris Mortensen, John Slaney and Igor Urbas. 
A part of my role is no more than that, not of under-iabourer, but of organiser of their 
results. 

The paper, still incomplete at the edges, has been a good while in the making. It was first 
drafted in around 1980 for a Festschrift for Newton da Costa; hence the introductory remarks, 
which it has since seemed should stand. More recent literature on the C systems will be taken in 
account in a sequel. 

1 These are considered in detail in [15] and [16], and additional criticism may be found in 
[19]. The C systems are presented in several publications of da Costa, e.g. the basic survey 
paper [6]. 
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paraconsistency. Secondly, the systems do not contain a proper primitive 
negation connective, the primitive "negation" -7, failing requirements for 
a negation determinable (so at least Priest and Routley argue in [15]). Thirdly, 
the systems appear to lack natural "and elegant algebraic and semantical 
formulations, largely because they fail to guarantee intersubstitutivity of 
equivalents (see Mortensen [13]). In some cases, notably that of system Co,, 
these drawbacks could be avoided, or mitigated in the c~tse of the first 
objection, by strengthening the SYstems. As a separate issue, there are powerful 
reasons (again advanced in [15]) for weakening the positive basis - Hilbert's 
positive logic (positive intuitionism) - on which the dual-intuitionistic 
C systems are based. 

Allowing for both types of variations, weaking of the underlying positive 
logic and strengthening of the negation superstructures, gives the general 
da Costa logics, some of which are here investigated by semantical means. In 
due course, some of the original C systems, ~ind direct variations upon them, 
will also be considered and new and neater analyses provided. 

1. The C systems and some variations on C themes 

The basic C system Co, simply adds to positive (intuitionistic) logic, H, with 
primitive connectives {~,  &, v }, and perhaps 7 ,  two axioms concerning 
negation -I; namely, Excluded Middle, EM, A v .3 A and Dialectic Double 
negation DDN, .3-1A ~ A. That is, Cs has the following postulates: 

A - .  B ~  A A - ~ B ~ . A  ~ ( B ~ C ) ~ . A  ~ C  
A & B - ~ A  A & B - ~ B  
A ~ . B ~ ( A & B )  A ~ A  v B 
B ~ A  v B A ~ C - ~ . B ~ C ~ . A  v B ~ C  
A v . 3 A  . 3 ~ A ~ A  
A, A ~ B / B  (i.e. Modus Ponens is the sole rule). 

The system Co, was apparently obtained by the very simple strategy of deleting 
the (allegedly) paraconsistent trouble-making scheme, of Reductio, A ~ B -*. A 

--1B-+. 7 A, from Kleene's list of postulates for propositional calculus 
S ([11] p. 82). In Brasil there were thought to be two main faults in classical 
logic from a paraconsistent stance, that it contained Reductio and that 
it included Non-Contradiction, 7 ( A &  ~ A). But, conveniently, the latter 
was derived from the former in Kleene, so it sufficed to remove just 
Reductio. 2 

Co, is, in certain respects the dual of intuitionistic sentential logic I (of 
Heyting [10]). Both extend positive logic H (i.e. CO,--{A v .3 A, .3 -3 A ~ A } ) .  
But whereas intuitionism rejects Excluded Middle and asserts Non-Contra- 

2 On  this historical note  to Co see Asenjo [-2]. 
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diction, 7 (A & 7 A), system Co and the da Costa C systems generally assert 
Excluded Middle and reject Non-Contradiction (the latter as a requirement of 
adequacy); and whereas intuitionism asserts A ~ 7 7 A and rejects DDN, the 
C systems do the reverse. 3 This duality also takes semantical shape: whereas 
intuitionism is essentially focussed on evidentially incomplete situations 
excluding inconsistent situations, the C systems admit inconsistent situations 
but remove incomplete situations (hence the semantics of da Costa and Alves 
[7-1 for Cn, 1 ~< n < ~0, in terms of maximal non-trivial, but possibly inconsis- 
tent, theories). Should not an adequate logical theory allow both, 
both inconsistent situation arid evidentially incomplete situations? This in- 
dicates the route through weakened positive logic to relevant logics (see [15-1 
Chapter 3). 

The basic system C o does not enable the classical behaviour of apparently 
classical wff to be derived. The presumption (based on now questioned 
consistency assumptions, which are rejected in leading relevant paraconsistent 
systems) is that wff divide into two classes: nonclassical wff, requiring 
paraconsistent treatment, which are such that both they and their negations 
hold, and classical Wff that are not like this and so conform to Non-Contra- 
diction. That is, A is class ical  (in one obvious sense) if not both A and 7 A; in 
symbols A ~ = 7 (A & 7 A). 

System C~ adds to Co, the theses that "classical wiT' do behave classically, in 
conforming to the omitted Reductio postulate, and that formation conditions 
are respected classically, that is, that compounds of classical wff are classicid. 
So it is that C~ results from Co, by addition of these postulates: 

B~ - * . A  -* B - ~ . A  ~ 7 B ~ .  T A 

A ~ 1 7 6  v B) ~ 

A ~ 1 7 6  + ( A & B )  ~ 

A ~ 1 7 6  + ( A - - , B )  ~ 

The remaining compounding principle A ~ --, ( 7 A) ~ a postulate of an earlier 
formulation of C 1, proved derivable (see da Costa [6] p. 500, n, 2). 

C I exhibits some anomalies; for example, the intuitionistically invalid (and 
unjustifiable) Peirce's "law", ((A---, B)--* A)---, A, is provable, with the result that 
the positive logic of C1 turns out to be just positive classical logic, and 
whatever A, A& 7 A is classical, i.e. (A& 7 A) ~ holds, defeating certain 
paraconsistent objectives. Da Costa found a sequence of systems which 
progressively mitigate such anomalies. The point is that the "classical" 
operation can be iterated without collapse. Define An= a A ~ "n ''~ times, for 

3 There are deeper grounds for adopting the dual forms tied to the 'laws' of dialectic, 
especially the law of the negation of negation. Given the enriching role of negation, A ~ 7 7 A 
appears to fail, but DDN stands: see further [18] and I-8]. 

The duality and possibility of dual-intuitionistic logics, connected with dialetic, was the first 
noted by Popper [14]; but he developed no logics of the type, and indeed erroneously concluded 
that only extraordinarily weak logics of the type were possible. 

4 - S tud ia  Logica,  l /90  
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n ~< 1; and to collect together all iterated forms up to n, define A" = d f A  1 • . . .  
... & A". System C,,, for 1 ~< n <~o, simply replaces super ~ in the post.ulates for 
C1 by super ("). That is, C,, results from C~ by addition of the following: 

B(n )~ .A~B- -* .A~  T B ~ . T A  A(n)&B(n)~(A&B)(n) 
A (n) & B (n) -~ (A v B) (') A (') & B (') ~ (A ~ B) ('). 

Illuminating motivation for the higher C, systems has, however, yet 
to be produced. Moreover there is nothing sacrosanct about the C, way 
of constructing the hierarchy, as Bunder's alternative hierarchies (in I-5]) 
help to show. So there remains a real point in casting about in different 
directions for motivated enlargements on Co, and interpretationally satisfactory 
dual-intuitionistic systems. 

A fundamental principle missing from the C systems, So algebraic and 
semantic investigations soon disclose, is that of (implication-guaranteeing) 4 
intersubstitutivity of complication, i.e. 

SE. A ~ B, B ~  A/D(A)-~ D(B), 

where D(A) is some wff containing A and D(B) results from D(A) by replacing 
one (derivatively, zero or more) occurrence of A by B. It is this omission that 
renders algebraic analyses, of C systems, while not impossible, so problematic 
(see further Mortensen [-13]). Yet the apparatus for an inductive proof of SE is 
available in C systems, except for negation. One  obvious initial addition is 
accordingly of Rule Contraposition. 

RC. A ~ B / T B ~  T A  

Call the resulting systems CC systems, i.e. CC, = C,+RC,  for 1 ~< n < c0. 

Addition of RC, a main strategy in what follows, also makes it a straight- 
forward matter to obtain an elegant semantics, extending that for positive 
logic, for systems such as CC~. In fact, the semantics works by providing 
conditions for the more basic system CC, i.e. H + RC, and indeed works, with 
adjustments to the implicational evaluation rule, for extensions by  RC of 
positive logics much weaker that I, including weaker positive strict and 
positive relevant logics (see also Basic Contraposition Logic, BCL~ in [20] 
Chapter 2). This indicates a main semantical route taken in subsequent 
sections. 

However the approach comes to grief with CC~, which collapses to 
classical logic S i.e. (C in da Costa's notation). There is the further point 

4 In modal terms, this is an $2 form of substitutivity, which contrasts with the weaker SI 
form: A ~ B, B--~.A, D(A)/D(B). The weaker form has hitherto rendered semantical and algebraic 
investigation less tractable. Modal analogies (of 7 with []) in fact provide a main semantical key 
in what follows. 
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in casting about for other variations on those C~ systems stronger than C,o 
and CC,,. 

PARTIAL SEPARATION THEOREM. Though CCo~ ~ S, C C ,  = S for 1 ~ n 
<0 3 .  

PROOF. 5 The following matrices, for C~, but with sole designated value 1, 
satisfy all principles of CC~ but not further theorems of S such as 
7A--* .A  ~ B: 

*1 
2 
0 

1 2 

1 2 
1 1 
1 1 

0 7 

0 0 
0 1 
1 1 

& 1 2 0 

" 1 1 2 0  
2 2 2 0  
0 0 0 0  

v 1 2 3  

* 1 2 1 1 1  
1 2 2  

0 1 2 0  

Thus vaiuations of & and v are simply given by meet and join respectively on 
the augmented classical lattice 0-2-1; and ---, and 7 are assessed classically on 
classical values { 1,0}. To falsify 7 A --, .A ~ .2, assign A value 2 and B value O. 
To validate RC suppose 7 B--, 7 A is undesignated and so takes valueO. It 
cannot take value 2 since then 7 A would have value 2 which is impossible. 
Then since 7 B never takes value 2, 7 B has value I and 7 A value O; so A has 
value 1 and B value 2 or O. Bu( then in either case A ~ B  has an undesignated 
value. 

The following sequence of theorems is derivable in CC,~: ( A &  7 A ) ~ A  
(from Co), 7 A ~ 7 (A & 7 A) (by applying RC), 7 A --, A ~ (by definition), 
A & T A - ~ A & ( - T A & A  ~ (applying Co~), A & T A ~ A & 7 * A ;  where 7~,  
defined 7 * B  =dr 7 B & B  ~ is the so-cailed strong negation of C a. But in C 1, 
7 *  has all properties o f  classical negation (see [6] p. 500, Theorem 5). 
Hence in C C  1, 7*(A & 7*A) ,  whence bydef ini t ion of 7 " ,  7 ( A &  7*A).  
But applying RC to the end member of the theorem sequence above, 
7 (A & 7 * A ) ~  7 (A & 7 A); so detaching 7 (A & 7 A). But the addition of 
this principle of Non-Contradiction to C 1 results in S, since it restores 
Reductio, A ~ B ~ .A ~ 7 B ~ .  7 A, and so Kleene's full list of postulates for 
S (see [6] p. 499). Hence CC 1 = S. 

A similar result, CC, = S, extends to C n systems with 1 < n < 03. As da 
Costa observes ([6] p. 501), "in general, the results valid for C~ can be adapted 
to a?ply to C,, 2 ~< n < 03". For the adaption here, it is enough to define 
a strong negation, 7 ("), thus 7 t")A = af 7 A & A t"), and to show 7 A ~ A (n) in 
CC,. For 7t") has the properties of classical negation ([6] p. 503), so the 
remainder of the argument is as before for CC1. Proof  of 7 A ~ A  t"), i.e. 
7 A --* A s &A 2 &. . .  & A", is by induction. It.is shown, given 7 A ~ A  " - t ,  that 
7 A ~ Am; from which the result can be assembled. Suppose then 7 A --, A " - ~. 

5 .Leading details of the proof were indicated by Loparic and da Costa. 
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By RC, 7 A ' -  1 ~ 7 7 A. But 7 7 A --+ A; so 7 A " -  a ~ A. Hence A m- 1 
& 7 A " -  1 ~ A, whence by RC again, 7 A ~ 7 (A"- ~ & 7 m- 1A), i.e. 7 A ~ Am. 

Despite its initial appeal, CCO, fails to meet one of da Costa's, requirements 
of adequacy. As Urbas's investigations have shown, Non-Contradiction 
7 (A & 7 A) is a theorem of CCO,, and so of all its extensions. Proof is simply as 
follows: 7 A ~ 7 (A & 7 A), upon contraposing A & 7 A ~ A. Similarly, 
7 7 A ~ 7 (A & 7 A), whence by disjunction composition, 7 A v 7 7 A 

-3 (A & -3 A). Hence, by Excluded Middle (or by the weaker K principle 
7 A v  7 - 3 A ) ;  7 ( A & - 3 A ) .  

NC LEMMA. 7 (A & 7 A) is a theorem of  CCO,. 

Hence again, CCx = S. More generally, in the presence of RC and 
basic principles for & and v ,  the two traditional "laws of thought", 
Non-Contradiction and Excluded Middle hang out-together. For example, 
given CC + { 7 7  A ~ A} ,  if follows in dual fashion, 7 (A & 7 A) .~  A v 7 A. 
For A - * ( A v  7 A ) ,  whence 7 ( A v  7 A ) ~ T A ;  analogously 7 ( A v  7 A )  
- ~ 7 7 A ,  whence by D D N  7 ( A v  7 A ) ~ A ;  so composing 7 ( A v  7 A )  
~ A  & 7 A. Then contraposing and D D N  yield the result. 

The NC lemma also indicates that other rule-weakening ~outes with appeal 
in varying C systems are blocked. Observe that the strengthening of RC to 
theorem-status, viz A ~ B ~ .  7 B ~ 7 A (equivalently in the context its adop- 
tion as a s t rong  rule, A ~ B ~  7 B ~  7 A), would collapse Co, to S again; 
that is, Co, + A ~ B ~ .  7 B -~ 7 A = S. For firstly then, A ~ B, A ~ 7 B F- A 

7 A ,  since from A ~ B ,  A ~ T B  it follows 7 B ~ T A ,  A ~ T B ,  whence 
A ~ T A .  But ( A ~ T A ) ~ T A  in Cn for l~<n~<c0. For ( A ~ T A ) ~ , ( - q A  
~ T A ) ~ . A v  7 A ~ . T A ;  than permute out theorems of C,i So A ~ B ,  
A ~ 7 B ~  7 A, whence results by the Deduction Theorem full Reductio, and 
~so Kleene's axiomatisation of S again. Such a collapse is avoided in CCO, 
because Contraposition applies only in rule form. 

A similar rule amendment may appear to be what is required in properly 
formulating the theme that classical wff behave classically: It is clear that 
the postulates of C1 concerning super-zeroed wff (i.e. the postulates that 
distinguish C 1 from Co,), especially the first, could be pulled back to rule 
connections. And certainly it suffices, more drastically, to excise the first 
postulate, to remove Reductio. For it is this postulate, B ~  

7 B ~ . T A ,  tha t  can be singled out as producing the collapses of 
CC~ to S. 

LEMMA.. C C  1 - -  (B ~ ~ . A ~  B ~ .A ~ 7 B ~ .  7 A) c S. 

PROOF. It is certainly contained in S since the addition of full RetJuctio 
takes it to S. To show containment is proper 'extend the first part of the 
previous theorem. The matrices introduced there satisfy all the classical 
compounding principles, since A ~ always takes the designated value 1. But 
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they falsify B~ --,.A ~ B--* .A ~ 7 B ~ .  7 A, for the following assignments: 
A = I, B = 2. It is appealing then to consider the systems resulting from CCO, 
by addition of the same postulates as C, adds to Co, except that in place of the 
first, qualified Reductio, appears the rule. 

QR. B~")/A ~ B ~ .A ~ 7 B ~ 7 A. 

But the argument to the NC lemma shows in effect that this route goes 
nowhere of paraconsistent interest. Because the premisses of the rule are 
delivered, the systems collapse again to S. 

There are three ways to go, given that we are not interfering with 
fundamental & and v principles: abandonment of Excluded Middle, abandon- 
ment of da Costa's requirement of adequacy, or abandonment of RC and 
therewith the duality of inconsistency with incompleteness. We have elsewhere 
argued in favour of the removal of da Costa's requirement of adequacy, a main 
reason being that the investigation of inconsistency does not require the 

remova l  of Non-Contradiction (see [15] and [18]). We turn to semantical 
investigations of the first two options. 

2. Semantics for CC and for extensions such as CCO, 

The duality with respect to intuitionism may be suggestively extended to 
the semantical analysis. Whereas negation in intuitionism is assessed from 
a modal perspective in terms of impossibility, as ~ 0 ,  a dual role would 
analyse it through nonnecessity, as ~ D, i.e. equivalently 0 " .  In terms of 
a more fashionable analogy, whereas intuitionistic negation is failure, more 
precisely what leads to or implies failure (i.e. 7 A iff A ---, F), da Costa negation 
is instead what success dorsn't lead to (i.e. 7 A iff T-~ A; as the charac- 
terisation already involves a negation, elimination in favour of a constant T is 
not preshadowed). The modal analogy suggests an evaluation rule for 7 of the 
form: 

I ( T A ,  a) = 1 iff, for some b e K ,  Sab and I (A,  b) = 0 ,  

with S a two-place relation on world set K satisfying conditions as yet to be 
determined. In fact such a negation rule emerges on an alternative trans- 
lation-based semantics for intuitionistic logic, so there is little doubt but that is 
represents a negation (determinable). 

There is a ready-made semantics to hand for positive logic, H, namely, in 
the form given by Beth [13], or more conveniently Kripke [12], through world 
structures of the form M = (G, K ,  R) where G e K  and R is an ordering 
relation on K. For the basic system CC (i.e. H + R C ) ,  this semantics can simply 
be built upon (at the same time, anticipating subsequent developments, the 
notation is adapted to that of [20]). 

A CC model structure (m.s.) M is a structure (T, K, ~<, S), where T e K  and 
~< and S are two-place relations on K such that the ordering relation ~< is 
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reflexive and transitive (and optionally antisymmetric), and the further relation 
S satisfies universally the following c,~ndition: 

si) where a ~ c and Sab then Scb. 

I t  is because of this latter condition, required for hereditariness below, that 
S must be distinguished from the ordering relation ~<. Only under restrictive 
paraconsistency-upsetting conditions can S be equated with ~<. For  nega- 
tion-free extensions of H,  S simply drops out. 

A valuation v in M is a function v on initial wff and worlds with values in 
{1, 0}, such that 

vi) where a ~< b and v(p, a) = ! then v(p, b) = I, for every a, b e K and every 
initial wff p. 

I.nterpretations effectively extend valuations to all wff, inductively as follows: 

I(p, a) = v(p, a); 
I&) I ( A & B ,  a) = 1 iff I(A, a) = 1 = I(B, a); 
Iv) l (A v B, a) = l iff I (A ,a)  = 1 or l(B, a)= l; 
I ~ )  I(A ---, B, a) = I iff for every b in K such that a ~< b and I(A, b) = 1 then 

I(B, b) = l; 
I-1) I ( - ~ A , a ) =  1 i f f for  some b in K such that S a b I ( A , b ) = O  

Remaining definitions, of truth, validity and so forth, are standard (see e.g. [20] 
p. 302). Preliminaries to the soundness theorem for CC are a simplification of 
those for relevant logics (as in [20]:). 

HEREDITARINESS LEMMA. For every a, b s K and every wff A, where a <~ b 
and I(A, a) = 1 then I(A, b) = 1. 

PRoov. The induction steps for connectives & and v are immediate and 
use no conditions on 4 ;  that for ---, uses however transitivity of ~<. 

ad-1. Suppose a<~b and I ( -~A,  a ) =  1; to show I ( -TA,  b ) =  1, i.e. for 
some c, Sbc and I ( A , c ) = O .  But as I ( -1A,  a)---1, for some c, Sac and 
I(A, c ) =  0, and by si) Sbc. 

SOUNDN~S THEOREM. Where A is a theorem of L then A is L-valid, for 
L either CC or H. 

PROOF is by the usual induction. A couple of illustrative cases are given to 
indicate the machinery at work. 

ad A--. .B ~ A. To show I(A-- , .B ~ A,  T) = 1 for arbitrary interpretation 
I in arbitrary m.s. M, suppose for arbitrary a in K, I(A, a) = 1 with T ~< a. 
Then to show, as required, I ( B - . A ,  a ) =  1, suppose further a ~< b and 
t(B, b) = 1. By the hereditariness lemma, I(A, b) = I establishing I ( B ~  A, a) 
= 1. (Note, by contrast with relevant logic, the extent of information 
not used.) 

ad A--* B/ -1B ~--1 A. Suppose --1 B-~-1 A is not CC valid. That is, on 
some interpretation I in some m.s. M = (T, K, <., S ) I ( B B - ~  -1A, T) r 1, i.e. 
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for some a with T <~ a, I(-qB, a) = 1 and I ( q A ,  a) # 1. Then for some b, Sab 
and I(B, b) # 1 and also I(A, b) = 1. Consider now the m.s. M' = (b, K, ~<, S) 
with base b in place of T. Since b<~b, I (A ,b )=  1 and I ( B , b ) # l ,  
I(A ~ B, b) # 1. Thus A ~ B is not CC-valid. (Note verification depends on 
reflexivity of <~.) 

For completeness, much labour can be saved by borrowing extensively 
from proofs of completeness for other negation extensions of H (such 
as those of Johansson and others, treated by Segerberg [21], or those of 
Fitch and Nelson, treatedAn [17].) 6. In particular, notice that the basic 
result in Segerberg (the optimistic Theorem 2.4) makes no essential use of 
negation, but holds equally well for H, and also for different negation 
extensions of system H than those extending J (where suitable model 
structures are defined). We outline the main elements of the argument for 
any such suitable logic L extending H, filling out requisite details for 
system CC. 

A set S of wff is L-full iff S is regular (i.e. all theorems of L are in S), 
nontrivial (i.e. not all wff are in S), prime (i.e. whenever A v B is in S either 
A is in S or. B is in S), ~and closed under modus ponens (i.e. whenever 
A and A --, B are in S so also is B), L-full sets (or, in RLR terms, full L-theories) 
provide the worlds of the canonical mode l  structure, now to be defined. 
A canonical L m.s. M L at L-full set TL is the structure (TL, KL, -----, SL), 
where  K L is set of L-full sets, c is set inclusion (defined on L-full sets), 
and S L is defined thus: For a, b in KL, S Lab  iff for every wff A if -1A 
is not in a then A is in b, i.e. iff (A)(-qA~a ~ Aeb) .  In place of c_, 4L 
may be defined as follows: for a, b e KL, a 4 L, b iff whenever A ~ B e a and 
A e b then B e b. For negation free systems such as negation unextended H, SL 
again simply drops out. 

it is immediate that  a canonical H m.s is an H m.s. Since a _  c and S Lab 
guarantee SLcb, a canonical CC m.s. is a CC m.s. A canonical valuation is 
defined: vL(A, a) = 1 iff A e a. Immediately, by properties of inclusion again, it 
is a valuation. The membership definition yields the inductive basis for the 
main lemma used in establishing completeness. .  

CANONICAL LEMMA. For every a e K  L and every wff A, I(A, a) = 1 iff Aea,  
where I is the canonical valuation extendin9 v L. 

PROOF is by induction on the structure of wff. The induction steps apply, 
and those for wff of the forms A & B and A v B follow directly from, the 
following properties of L-full sets. For any full L-theory S, A & B e S  iff 
A e S  and B eS,  A v B eS  iff A e S  or B eS, and further S is dosed u n d e r  

6 Strong completeness can also be proved by elaboration of these methods, or by the 
adaptation of 1-20] Chapter 4, to be applied subsequently to establish completeness of systems with 
relevant positive logics. 
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L-derivability, i.e, if S }--L A then A e S. Quite generally, set U is L-derivable 
from set S, written S ~ L U  iff, for some A 1 , . . . , A n e S  and B 1 , . . . , B  m 
in U, t - L A I & . , . & A n ~ B  1 v ... v Bm. By virtue of the portation principles 
of H, S ~ L B  iff for some A 1 . . . . .  A n in S, A I ~ . . . ~ . A n ~ B ~ L .  

To accomplish the induction steps for implicational and negated wff, the 
following extension lemma (Lemma 2.2 in [21]) is put to work: 

L-FULL EXTENSION LEMMA. For any wff A, A is L, derivable from nontrivial 
set S iff A is in all L-full extensions of  S, i.e. for every a ~ KL, if S c a then 
AEa.  7 

ad ~ . A  is of the form B ~ C. What is to be shown reduces, applying the 
induction hypothesis, to the biconditional: 

B--*C~a iff (b~Kl)(a ~ b & B e b  D Ceb).  

One half follows by induction and modus ponens closure. For  the con- 
verse, suppose B ~ C 6 a ,  and consider b 1 = a w { B } .  Then B e b l ,  a ~ b l ,  
b u t - C  is not L-derivable from b 1. F o r  suppose otherwise a u{B}I--LC. 
Then a ~--L B ~ C, whence B--, C ~ a, contradicting the initial supposition. 
By L-full extension then, there is some b ~ K L such that b 1 ___ b, whence A ~ b 
~nd a_~ b, but Cr That completes details of the interpretation lemma 
for H. 

ad 7 .  A is of the form -7B. What is to be shown reduces to the 
biconditional: 

- q B e a  iff, for some b in KL, SLab and Br  

i.e. i f f (PbeKL).  (C)(7 C6a  ~ C e b ) & B 6 b .  Suppose the latter holds. Then for 
some b, B 6 b and -7 B 6 a ~ B ~ b, whence -7 B e a. Conversely suppose -7 B e a, 
and define b i = {A" 7 A 6 b i } ,  so B is not L-derivable from b 1. By L-full 
extension there is a b in K L such that b 1 _ b but B6b.  Since b~ ~_ b, SLab. 

COMPLETENESS THEOREM. Where A is L-valid then A is a theorem of  L, for 
L either CC or H. 

PROOF. Suppose A is not a theorem of L. Then A is not L-derivable from 
L, so there is an Lffull set T L to which A does not belong. Form the canonical 
m.s. at T L and take the canonical valuation at it. By the canonical lemma, 
I(A, TL) # 1, whence A is not L-valid. 

Given semantics for CC, modelling changes can be wrung in the usual 
fashion. In particular, the further axiom schemes of CCo, have the following, 

7 The lemma can be strengthened, with set of wff U replacing A. This is one route to stronger 
completeness results. 
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independent, modelling conditions: 

DDN 7 7 A ~ A mDDN. 

EM[X]  A v 7 A .  mEM. 

whenever Sab there is some c such that 
Sbc and c ~< a; or better, where Sab then 
Sba. 
STT, or Saa. 

Proof of adequacy of the semantics reduces to these steps: 
ad DDN. Suppose, on the contrary, D D N  is invalid. Then for some world 

a in some model, I ( 7  7 A, a) = 1 but I(A, a) ~ 1. By the first, for some b, Sab 
and I (TA,  b)~ 1. Hence for every c such that SbcI(A,c)= 1. By the 
modelling condition, since Sab for some c 1, Sbc 1 and cl ~< a. Hence, as 
I(A, c~)= 1 by hereditariness I(A, a ) =  1, which is impossible. 

ad EM. Suppose otherwise I(A v 7 A, T) ~- 1. Then I(A, T) ~ 1 ~ I(7 A, T). 
So for every b such that STb I(A, b) = 1. Since STT, 1 ~ I(A, T) = 1 which is 
impossible. 

ad mEM. It suffices to show for arbitrary A such that 7 A ~ T, A e T. Since 
7 A v A e T ,  7 A c T  or AcT,  but 7 A S T ,  whence the resulL 

ad mDDN. Suppose STab , and further that 7 A $ b. As STab, whatever C, 
if 7 C ~ b then 7 7 C e a. Hence 7 7 A ~ a, whence by DDN, A e a. Reassemb- 
ling, STba, ~ 

In summary, a CC~ m.s. is a CC m.s. where S is reflexive and symmetric. 
CC,o has an unexpectedly elegant semantics. 

I t  would no doubt simplify these modellings if S could be removed. An 
obvious way to do this Would be to define Sab as b ~< a, which guarantees 
soundness (as also transitivity) at once since condition si) is immediate. 
Completeness would then require both EM and the negative paradox principle 
(ex falso quodlibet) 

EFQ. 7 B ~ . B ~  A~ ~ 

For consider a direct argument to establish the inductive step for 7 in the 
interpretation lemma (indirection using b _ a iff SLab yields the same .result). It 
has to be shown that 

7 B e a  iff (PbeKL)(b ~_ a&Bq~b). 
F 

The argument from right to left uses only LEM and so succeeds in 
CCX, i.e. C C + E M .  However the argument from left to right appears 
to require exclusion in worlds - a step from 7 B e a  to B~a and 
so EFQ. 

EFQ collapses CCX into classical logic S. By EFQ, B & 7 B ~  A & 7 A 
and conversely, so 3_ can be defined in a formula independent way, as B & 7 B. 
Hence, by EFQ again, 3_~A (Segerberg's postulate I for intuitio'nistic 
logic I). It remains to establish the inclusion of minimal logic Jr, for which 
the implications 7 A ~ . A  ~ 3_ (immediate by EFQ) and A ~ 3_ ~ .  7 A, 
defining 3_ in J, jointly suffice (cf. Segerberg's formulation of ./). Proof 
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of A ---, (A & 7 A)---,. 7 A results from Reductio, A ~ 7 A ~ .  7 A, which 
follows in turn from Summation, A--, 7 A ~ .A  v 7 A-~ 7 A, and E M .  

C 1 , 

Cn ~ 

C~ 

S(= IX 
CCn) 

H 

Figure 1. A map of systems, combining them with some main extensions 
of .f ~ttldied by Segerberg F21-1. 

Both the semantics so far provided for C C  o and other systems and those to 
come for C o and the C system, lend themselves to algebraic adaptation. The 
methods of analysis are those already displayed for modal and relevant logics 
(for which see [4]). As with these other logics, the algebraic analyses yield in 
turn matrices for the systems included, and thereby give an interpretation to 
the matrices generated. Alternatively, the matrices can be generated directly 
from f in i te  world modellings of the semantics. In this fashion, together with 
value truncation, main matrices deployed in the study of C systems can be 
semantically and algebraically explained. 

3. No-fail semantics "for C o and extensions, and much improved semantics 

In the absence of appropriate equivalence substitution rules, more elegant 
first order semantics may appear to fail for C,o. But workable, if postula- 
te-mirroring, neighbourhood-style semantics are not far to seek. 
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Relation S on worlds is "superseded" for the present by relations S on 
worlds and sets of worlds, i.e. on KXP(K), with S subject to the condition 

Sii) where a ~< b and Saa than Sb~, for every a, b in K and a in P(K). 

Otherwise model structures are as before. Only the evaluation rule for negation 
is varied, to the following: 

I ( 7  A, a) = 1 iff Sa[A], 

where [A] = {b: I(A,b)= 1} is the range of A. 

Then system H; now formulated with connective set { ~ ,  &, v ,  7 } but no 
nega t ive  postulates, is sound and complete with respect to the semantics 
outlined. For  soundness, only hereditariness, immediate from Sii), requires 
attention, as all  else is as before. For completeness, it suffices to define S and 
establish the induction step for negation in the canonical lemma and the 
modelling conditions. For  the first, define Saa iff (PB)(7 B e a & ]B[ = a), where 

]B[={cEK: Bec}. Then the induction step, transforms to 7 A e a  iff 
(PB)(7 B Ea & IBI = IAI), which is immediate. Condit ion Sii) follows from the 
inclusion a ~_ b, 

Adequate modelling conditions for the negation postulates of C~, are then 
as follows: 

DDN. 7 T A R A  
EM. A v  7 A  

ADEQUACY THEOREM. 
semantics given. 

,DDN. when Sa{b: Sba} then a e a  
,EM. T e a  or ST~ (or, a e ~  or Saa). 

C,o is sound and complete w.r.t, the neighbourhood 

PROOF. Given the details for H, it remains to verify specific modelling 
conditions for Co,. 

ad D D N  and EM. The modelling conditions simply mirror the axioms, 
e.g. , D D N  is what is required to ensure that when I ( 7  7 A, a ) =  1 then 
I(A, a) = 1. 

ad ,DDN.  Suppose Sa{b: Sb,} and let ~ = {a: A ca}.  then Sa{b: (PB)(7 B 
Ea&IBI=[A])}, i.e. Sa{b: 7 A e a } .  That  is, (PC)(TCEa&{b: 7 A e a }  
= [CI), whence 7 7 A e a .  Then by DDN, Aea, i.e. a ea .  

adEM. As A v  7 A e a ,  Aea or 7 A e a ,  i.e. a e a  o r S a a ,  where a = { A :  
Aea}. 

Similar neighbourhood semantics can be supplied for all C, systems 
(1 ~< n < c0). It is a matter  of mirroring the further postulates in corresponding 
modelling conditions. The results are hardly perspicuous; indeed thecondi t ions  
are for the most part less informative than the postulates they correctly mirror. 
So there is a real point in beginning again with C,o. 

The way to improved semantics is shown by picking up the modal  analogy 
again. The Becker rule for D~distribution which appears guaranteed by modal  
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semantics, such as that for $2, is neatly removed in semantics for systems like 
S0.5 by introducing nonnormal  worlds. Why not remove RC, which is exactly 
the same form as a Becker rule for impossibility, in the same sort of way? 
A mark-1 H ( 7 )  m.s M is a structure (T, K, N, <<., S) with T e N  ~ K, and 
otherwise like a CC m.s. (though si) could be restricted to N, normal worlds). 
The important  difference from CC models comes with the rule for 7 ,  namely 

17 ' )  For  a e N, I ( 7  A, a) = 1 iff for some b in K such that Sab I(A, b) = 0; 
otherwise I ( 7  A, a) is assigned arbitrarily so long as hereditariness 
is respected. 

That  is, for (negation) normal  worlds the rule is as before; for abnormal worlds 
c, 1 ( 7  A, c) = I or I ( 7  A, c) = 0, as for v, with the analogue of vi) respected. 
(Then validation of RC fails because there is no guarantee that world b is 
normal.) I n  fact it is easiest to let v do the work of assigning for negated wff at 
abnormal  worlds; and this we shall suppose done. A first deficiency in these 
semantics, deriving from from hereditariness connections, is that v (7  A, c), for 
c~ N, cannot  be determined at the outset; its specification may depend upon 
the evaluation for I( 7 A, b) for some b e N. However effectiveness is not lost; it 
simply means that recursive specification of I is intertwined with v. 

A typical example will illustrate the po in t  and effect of introducing N. The 
contrapositives of lattice requirements are theorems of CC and CCO,, but not of 
H ( 7 )  and Co,, a conspicuous defect of these latter systems. Consider, for 
instance, 7 A ~ 7 (A&B);  and try to fashion a countermodel.  Then for some 
a, I ( T A ,  a) = 1 ~ I ( 7 ( A & B ) ,  a). If a e N ,  as it must  in CC, then for some b, 
Sab & I(A, b) ~ 1 and further I(A & B, b) = 1 whence I(A, b) = 1, which is 
impossible. But .if a~N,  then a model can be designed where the countering 
assignments are satisfied. 

Although, following recent tradition, the worlds of N and its complement  
are called respectively normal  and abnormal,  it is worth noticing that the 
normal  worlds are non-classical, and in some respects Hegelian, while the 
abnormal  worlds could, in further elaboration of strong C systems, be 
considered potentially classical. 

The appeal of the mark-1 improved semantics begin to fade quickly when 
we come to Co, (our present goal: who needs further semantics for H(7)!) .  For  
if we are to validate D D N  and EM then special stipulation corresponding just 
to them is required in abnormal worlds, namely for a~ N. 

7 )  when. I ( ~ l , a ) ~  1 then I ( T A ,  a ) = l  and I ( 7 7 A ,  a ) ~ l .  

But that  is not  all: there are fresh problems in validating D D N  in normal  
worlds, and problems in keeping EM in while keeping LNC (i.e. A ~ out. 
Thus, one might almost as well abandon the negation S rule, and rely 
upon pure stipulation for negation. The procedure will indeed provide 
a stipulation semantics for Co,, readily extended to C n sygems; it resembles 
Brasilian semantics for these systems (as e.g. in [7]), except that it is based 
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on pleasant positive logic semantics. For  such a stipulative semantics, N is 
dropped again and S is dropped: "7 l) is required for all a in K; and it is also 
required that --12) where a ~ b and l ( - q A ,  a) = 1 then l ( - q B ,  a) = 1. How- 
ever, we can do better than such stipulative postulate-copying semantics, 

The mark-2 approach borrows another old idea from modal semantics 
(from those proposed by Routley for certain interesting strengthenings of S0.5,  
namely S0.9 and $1). The idea is that instead of negation-arbitrary worlds, 
certain better controlled impossible worlds are included in K, specifically 
worlds where & behaves like v and v like &. Then stipulation can be 
avoided; negation behaves according to the S rule everywhere. 

An improved Co, m.s. is a structure (T, K,  N, ~<, S) with T e N  ~_ K, <<. a 
reflexive and transitive relation on K such that ri) where b ~ N and a ~< b then 
a ~ N, and where b ~ J (with J = K- :  N) and a ~< b then b ~ J, and S a reflexive 
and symmetric relation on N such that si). Thus Co, m.s. extend CC~ m.s. by 
adding further worlds, worlds possibly accessible through S relations. Valua- 
tion and interpretat ions are characterised exactly as for CCo,, except for 
evaluation rules for & and v .  These rules are as normal for every a ~ N, but for 
aq~N, i.e. for aGJ, they dualise as follows: I ( A & B ,  a) = 1 iff I(A, a) = 1 or 
I(B, a) = 1; I(A v B, a) = 1 iff I(A, a) = 1 :=,l(b, a). 

ADEQUACY THEOREM FOR Co,. Co, is sound and complete w.r.t, to the 
improved semantics. 

PROOF varies that for CCO,. For soundness, the hereditariness lemma has to 
be elaborated. The further steps for & and v in J worlds use ri) also; for if 
~< leads from T in N to a J world, & and v postulates would be swiftly 
invalidated. But in virtue of ri), verification is as for CC. Both D D N  and EM 
are as for CCO,. 

Completeness requires much new detail. In particular, much use is made of 
transforms of wff and of sets of wff. The transform A ~ of A is the wff obtained 
from A by uniformly replacing (in left to right order) each occurrence of '&' in 
A by ' v '  and each occurrence of '  v '  by '&'. The transform V t of set V is the set 
of transforms of V. 

TRANSFORM LEMMA. 

(i) A ~ V  iff A~eV  ' 
J 

(ii) (A0 = 
(iii) (VS' = V 
(iv) ( -7-4)  = 7 (A') 
(v) (A~B) t  = (A*--.B*); A ~ B G V  iff A ' ~ B ' ~ V '  

(vi) (B & C)' = B' v C' 
(vii) (B v C) t = B ~ & C '  

(viii) V ___ F iff V ~ ___ U. 
A canonical C~, m.s. varies and elaborates the canonical CC,, m.s. as follows: 
N is the class of C~,-full sets, J is the class of their transforms, and K is 
N u J .  The canonical Co, m.s. is a Co, m.s. Most  details are as for CCo,. For 
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ri) which is new, observe that theorems, such as A v -7 A, or their trnasforms, 
such as A & q A, belong to every d ~ K. Such wff serve to label sets in K, and 
given its definition guarantee ri). 

In the canonical lemma there are several new cases, involving worlds in J. 
The induction steps for ~ and ~ depend in one direction only on logical 
princip'les, and go through as before. The converse cases involve transforming 
shifts. Let a~J ,  whence at~N,  and suppose I ( B - , C ,  a) = 1, Then for every b, 
where a c b and B ~ b then C ~ b, whence by the lemma, wherever a ~ ~ b' and 
B ~ ~ b ~ then C ~ b ~. Hence by the argument for normal worlds B t -.+ C ~ ~ b t, i.e. 
(B --+ C)' ~ b t. Hence 'B --,,. C ~ b. Similarly, where a s J, suppose -1 B ~ a. Then 
-q(Bt)r  with a ~ in N. As before, there is some c such that Sate and B~r 
Since Sa'c, for every C, -1 C r a t ~ C ~ c, i.e. --1 C ~  a ~ C ~  c ~, i.e. Sa J. But as 
B~c,  Btr  t. So for some d in K, SLad and B~d,  as required. 

ad &. I ( B & C , a ) =  1 iff I ( B , a ) =  l = I ( C , a ) ,  i.e. iff B E a & C s a ,  by 
induction hypothesis, and hence, where a(~J, B & C ~ a. 
In contrast where a~d,  at~J, and by-lemmata etc., 

I ( B & C , a ) = i f f  I ( B , a ) =  l v I ( C , a ) =  1 

iff B ~ a v C ~ a, by induction hypothesis 
iff B t ~ a t v C t E a t 

iff B t E C ~ a t, since a ' ~ d is prime 
iff (B & C) ~ ~ a t 

iff B & C ~ a  

ad v :  Similar to the previous case. 
The remainder of the completeness argument is like that for CC,,,. 

Before considering extensions of C,, such as C~, it is worth inquiring as to 
where verification of A ~ a theorem of CC,,,, fails in C~,. Since all postulates of 
C~ have B ~ as hypothesis this is decidedly relevant. Verification of A ~ i.e. 

(A & -q A), in CCo, is as follows: Suppose I (A ~ a) v ~ 1, for a ~ N or a = T. 
Then (b)(Sab ~ I ( A &  --1A, b)'= 1). Since Saa, I(A, a) = 1 = I ( -qA ,  a). Then 
for some b, Sah and I (A,  b) r 1. As Sab, I ( A &  -~'A,b) = 1, so (~ ) ! (A ,  b) = 1, 
which is impossible. In C,~ the argument fails at the last step, marked (-0.  For 
this requires theft b is a normal world, which it may  not be. 

The semantics proposed for C~ appear to admit of exte!~sion ef other C, 
systems; but even for C 1 (though the positive theory simplifies to classical 
banality) the details of a properly recursive semantics become discouragingly 
messy. Let us return instead to the main issue, rectification through extension, 
or other variation, of the C systems so they accomplish desired work." 

4. Other directions: final extensions through EC syste~ins, and going within 

Although the results assembled reveal CC,,, as a neat base on which to try to  
build da Costa style paraconsistent theories with pleasant logical and seman- 
tical properties, they do not resolve two problems in particular: Firstly, 
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how is the theme that  classical wff behave classically to be represented in CCo,, 
given that it cannot, without classical collapse, be done in the fashion of C17 
Secondly, how is a suitable form of SE to be grafted onto C, systems for 
n distinct from 03? 

The first question is investigated in detail in Urbas, though with largely 
negative results so far, since the da Costa C hierarchy typically collapses 
(sometimes in bizarre ways: see Urbas). In any case, an improved resolution of 
the second; question would, it seems, enable-the first question to be skirted. To 
get in a position to try to answer the second question definitively, observe that 
RC really gives more than is necessary to prove SE by induction. For the proof 
it is e n o u g h  that the following weaker equivalential rule hold: 

EC. A ~ B ,  B ~ A / T B ~ - I A .  

Indeed the EC rule,is both necessary and sufficient for full substitutivity, SE. 
Call the systems resulting from C, systems by the addition of EC, E Q  systems, 
for 1 <~ n <~ 03. EC, systems do not enjoy the apparent initial advantages of CC, 
systems; for example, EC does not enable quite as pretty a semantical analysis 
as RC affords. (Even so semantics for E03 may be obtained by analogy with 
relational semantics for modal  system S1, with -1 behaving like S1 modal  
functor V]) More important,  it was from the beginning of investigations very 
doubtful that the relevant EC, systems, for n ~ 03, differed from classical logic 
S. Certainly, as soon emerged, there are no finite matrices which distinguish 
EC a from S. 

SLANEY LEMMA. There are no finite strong models of EC 1 other than models 
o f  classical logic, s 

PROOF. EC suffices in context for a derivable rule of replacement: 

A ~ B, B ~  A, C(A)/C(B). 

Therefore, in any strong matrix for EC x the relation on matrix values, 2xy 
(x~-~y is designated), is a congruence w.r.t, the connectives. So the quotient 
algebra, obtained by collapsing the 'matrix modulo this relation, is likewise 
a model structure for EC 1 and falsifies all formulas falsified by the original. In it 
there is only one designated value, T, and a.--~b = T iff a = b. 

In order to validate all C~ theorems this structure must be a Brouwerian 
lattice (with operations ^ ,  v ,  etc.). For any element a of it, 

--1 [a ^ -1 a) ^ -7 (a ^ 7 a)] = T, since (A & -1 A ~ holds. 

-'] T = -1 -] [(a A -] a) ^ -3 (a ^ -1 a)] 

- 1 T ~ < a A - q a ^ - q ( a ^  ~ a )  (by DDN) 

- q T  <.a. 

s In Harrop's sense of finite strong model, i.e. finite, validating the theorems, and closed ttnder 
:ill the rules of  inference. This result was supplied, in its entirety, by Slaney. 
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So 7 T is lattice 0, Hence the structure is a Heyting lattice with intuitionist 
negation - a  defined as a ---, 7 T. But it satisfies Peirce's law, so it is a Boolean 
algebra, and - a  is the (Boolean) complement of a. 

Thus if it is finite then every element of it is a finite join of atoms, But if 
a l . . . a ,  are all classical elements (i.e. for 1 ~< i ~< n, 7 a i = - a i )  then the join 
a 1 v . . .  v a, is classical by applications of the C1 postulate, A ~ & B ~  (A v B) ~ 
Contrapositively, if there is any non-classical element in such a structure than 
there is a non-classical atom. But there cannot be a non-classical atom; for 
since a v 7 a = T, where a is an atom, 7 a can only be - a or T. If it is - a then 
a is classical, while if it is T then a ~< 7 a ,  whence a ^ 7 a  = a and a is 
(absurdly) again classical (since A & 7 A is classical). 

Everyone's immediate conjecture, that ECa = S, did not maintain its 
conjectural status for long. 

COLLAPSE�9 THEOREM. EC,, = S, for 1 ~ n < e). 

PROOF, by syntactic means, is given in Urbas, to whom this result is due (see 
[22-1). Leading ideas for the proof  were suggested by the strategy of the Slaney 
lemma. 

COROLLARY. There is no extension of  a C, system, for 1 <~ n < o3, confor- 
rain9 to SE weaker than classical logic S, 
Thus a whole line of investigation for rectifying stronger C systems is closed. 9 

We are left with a small group of systems like CCo extending EC~ satisfying 
SE and distinct from S, but apparently lacking a decent internal way of 
representing classicalness. (But no doubt  we can add a classicalness functor 
conservatively, after the fashion of significance logics). For  stronger systems 
there is, as the theorems show, no way of rectifying C systems through 
extension. It is necessary to move inside these systems to achieve desired ends. 
Such a move is important for other reasons also, for instance in accom- 
modating nontrivially within the one system in a symmetrical way, both 
paraconsistency and paracompleteness (i.e. incompleteness). We  are thus led 
towards a sure way, of independent merit, out of all these problems, namely 
weakening the positive base H. That approach (already advocated in [15]) will 
be pursued in a sequel. 
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