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1. Introduction

One way to formulate the Baire Category Theorem is that no com-
pact space can be covered by countably many nowhere dense sets. Soon
after Cohen’s discovery of forcing, it was realized that it was natural to
consider strengthenings of this statement in which one replaces count-
ably many with ℵ1-many. Even taking the compact space to be the unit
interval, this already implies the failure of the Continuum Hypothesis
and therefore is a statement not provable in ZFC. Additionally, there
are ZFC examples of compact spaces which can be covered by ℵ1 many
nowhere dense sets. For instance if K is the one point compactification
of an uncountable discrete set, then Kω can be covered by ℵ1 many
nowhere dense sets. Hence some restriction must be placed on the class
of compact spaces in order to obtain even a consistent statement.

Still, there are natural classes of compact spaces for which the cor-
responding statement about Baire Category — commonly known as
a forcing axiom — is consistent. The first and best known example
is Martin’s Axiom for ℵ1 dense sets (MAℵ1) whose consistency was
isolated from solution of Souslin’s problem [19]. This is the forcing
axiom for compact spaces which do not contain uncountable families
of pairwise disjoint open sets. For broader classes of spaces, it is much
more natural to formulate the class and state the corresponding forcing
axiom in terms of the equivalent language of forcing notions.
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Foreman, Magidor, and Shelah have isolated the broadest class of
forcings for which a forcing axiom is relatively consistent — those forc-
ings which preserve stationary subsets of ω1 [10]. The corresponding
forcing axiom is known as Martin’s Maximum (MM) and has a vast
wealth of consequences which are still being developed (many are in
fact consequences of the weaker Proper Forcing Axiom (PFA) — see
[15] for a recent surgery).

Many consequences of MM (and in fact MAℵ1 itself) are examples
of Π2 sentences concerning the structure H(ℵ2) = (H(ℵ2),∈, ω1, NSω1).
Woodin has produced a forcing extension of L(R), under an appropriate
large cardinal assumption, which is provably optimal in terms of the
Π2 sentences which its H(ℵ2) satisfies [20]. Not surprisingly, the theory
of the H(ℵ2) of this model largely coincides with the consequences of
MM which concern H(ℵ2).

What will concern us in the present paper is the extent to which
there is a corresponding strongest forcing axiom which is consistent
with the Continuum Hypothesis (CH). More specifically, Woodin has
posed the following problem.

Problem 1.1. [20] Are there two Π2-sentences ψ1 and ψ2 in the lan-
guage of (H(ℵ2),∈, ω1, NSω1) such that ψ1 and ψ2 are each individually
Ω-consistent with CH but such that ψ1 ∧ ψ2 Ω-implies ¬CH?

For the present discussion, it is sufficient to know that “Ω-consistent”
means something weaker than “provably forcible from large cardinals”
and “Ω-implies” means something weaker than just “implies.”

Even though CH implies that [0, 1] can be covered by ℵ1-many
nowhere dense sets, some forcing axioms are in fact compatible with
CH. Early on in the development of iterated forcing, Jensen estab-
lished that Souslin’s Hypothesis was consistent with CH (see [5]). She-
lah then developed a general framework for establishing consistency
results with CH by iterated forcing [18]. The result was a largely suc-
cessful but ad hoc method which Shelah and others used to prove that
many consequences of MM are consistent with CH (see [2], [8], [7], [13],
[17], [18]). Moreover, with a few exceptions, it was known that starting
from a ground model with a supercompact cardinal, these consequences
of MM could all be made to hold in a single forcing extension which
satisfies CH.

The purpose of the present paper is to prove the following theorem,
which shows that that Problem 1.1 has a positive answer if it is consis-
tent that there is an inaccessible limit of measurable cardinals (usually
this question is discussed in the context of much stronger large cardinal
hypotheses).
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Theorem 1.2. There exist sentences ψ1 and ψ2 which are Π2 over the
structure (H(ω2),∈, ω1) such that

• ψ2 can be forced by a proper forcing not adding ω-sequences of
ordinals;

• if there exists a strongly inaccessible limit of measurable cardi-
nals, then ψ1 can be forced by a proper forcing which does not
add ω-sequences of ordinals;

• the conjunction of ψ1 and ψ2 implies that 2ℵ0 = 2ℵ1.

Note that neither of ψ1 and ψ2 requires the use of the non-stationary
ideal on ω1 as a predicate. The third conclusion of Theorem 1.2 is
proved in Proposition 2.3. The first conclusion follows from Theorem
3.3 and Lemmas 3.5 and 3.6. The first conclusion follows from Theorem
3.10 and Lemmas 4.2 and 4.3.

The relative consistency of these sentences with CH is obtained by
adapting Eisworth and Roitman’s preservation theorems for not adding
reals [8] (which are closely based on Shelah’s framework noted above)
in two different — and necessarily incompatible — ways. Tradition-
ally, the two ingredients in any preservation theorem of this sort are
completeness and some form of (< ω1)-properness. For the preser-
vation theorem for one of our sentences (which is essentially proved
in [8]), the completeness condition is weakened while maintaining the
other requirement. In the other preservation theorem the completeness
condition is strengthened slightly from the condition in [8], but (<ω1)-
properness is replaced by the weaker combination of properness and
(<ω1)-semiproperness.

The paper is organized as follows. In Section 2 we formulate the two
Π2 sentences and outline the tasks which must be completed to prove
the main theorem. Section 3 contains a discussion of the preservation
theorems which will be needed for the main result, including the proof
of a new preservation theorem for not adding reals. Section 4 is devoted
to the analysis of the single step forcings associated to one of the Π2-
sentences. Section 5 contains some concluding remarks.

The reader is assumed to have familiarity with proper forcing and
with countable support iterated forcing constructions. While we aim
to keep the present paper relatively self contained, readers will benefit
from familiarizing themselves with the arguments of [3] and [8]. We will
also deal with revised countable support and will use [14] as a reference.
The notation is mostly standard for set theory and we will generally
follow the conventions of [11] and [12]. We will now take the time to fix
some notational conventions which are not entirely standard. If A is a
set of ordinals, ot(A) will denote the ordertype of A. If θ is a regular
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cardinal, then H(θ) will denote the collection of all sets of hereditary
cardinality less than θ. Unless explicitly stated otherwise, θ will always
denote an uncountable regular cardinal. If X is an uncountable set, we
will let [X]ℵ0 denote the collection of all countable subsets of X. If X
has cardinality ω1, then an ω1-club in [X]ℵ0 is a cofinal subset which
is closed under taking countable unions and is well ordered in type ω1

by containment. At certain points we will need to code hereditarily
countable sets as elements of 2ω. If r ∈ 2ω and A is in H(ℵ1), then we
say that r codes A if (tc(A),∈, A) is isomorphic to (ω, R1, R2) where
R1 ⊆ ω2 and R2 ⊆ ω are defined by

((i, j) ∈ R1) ↔ (r(2i+1(2j + 1)) = 1)

i ∈ R2 ↔ r(2i + 1) = 1

(Here tc denotes the transitive closure operation.) While not every r
in 2ω codes an element of H(ℵ1), every element of H(ℵ1) has a code
in 2ω. Also, if f is a finite-to-one function from a set of ordinals of
ordertype ω into 2<ω, then we will say that f codes A ∈ H(ℵ1) if, for
some cofinite subset X of the domain of f ,

⋃
f [X] is a single infinite

length sequence which codes A in the sense above. Finally, if r and
s are elements of 2≤ω, we will let ∆(r, s) denote the least i such that
r(i) 6= s(i) (if no such i exists, we define ∆(r, s) = min(|r|, |s|)).

2. Two Π2-sentences

In this section we will present the two Π2-sentences which are used
to resolve Problem 1.1 and will prove that their conjunction implies
2ℵ0 = 2ℵ1 . This will be done by appealing to the following theorem of
Devlin and Shelah.

Theorem 2.1. [4] The equality 2ℵ0 = 2ℵ1 is equivalent to the following
statement: There is an F : H(ℵ1) → 2 such that for every g : ω1 → 2,
there is an X ∈ H(ℵ2) such that whenever M is a countable elementary
submodel of (H(ℵ2),∈, X),

F (X) = g(δ).

where X and δ are the images of X and ω1 respectively under the
transitive collapse of M .

Let us also note the following equivalent formulation of ♦.

Proposition 2.2. ♦ holds if and only if there is a sequence 〈Xα :
α < ω1〉 of elements of H(ℵ1) such that whenever Y ∈ H(ℵ2), there is
a countable elementary submodel M of (H(ℵ2),∈, Y ) such that Xδ =
Y where Y and δ are the images of X and ω1 respectively under the
transitive collapse of M .
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The first of our Π2-sentences is essentially the same as one used
by Caicedo and Veličković in [3] in order to prove that BPFA implies
there is a ∆1-well ordering of the H(ℵ2), definable from a parameter in
H(ℵ2). We will now take some time to recall the definitions associated
to this coding. Given x ⊆ ω, let ∼x be the equivalence relation on ω\x
defined by letting m ∼x n iff [m,n]∩ x = ∅. Given two further subsets
y and z of ω, let (Ik)k<t (for some t ≤ ω) be the increasing enumeration
of the set of ∼x–equivalence classes intersecting both y and z, and let
the oscillation of x, y and z be the function o(x, y, z) : t → 2 defined
by

o(x, y, z) = 0 if and only if min(Ik ∩ y) ≤ min(Ik ∩ z)

Let ~C = 〈Cδ : δ ∈ Lim(ω1)〉 be a ladder system on ω1 (so that
each Cδ is a cofinal subset of δ ordertype ω), and let α < β < γ be
limit ordinals greater than ω1. Let N ⊆ M be countable subsets of γ
with {ω1, α, β} ⊆ N such that, for all ξ ∈ {ω1, α, β, γ}, sup(N ∩ ξ) <
sup(M ∩ ξ) and sup(M ∩ ξ) is a limit ordinal. We are going to specify

a way of decoding a finite binary sequence from ~C, N , M , α and β.
This decoding will be a very minor variation of the one defined in [3].

Let M be the transitive collapse of M , and let π : M −→ M be
the corresponding collapsing function. Let ωN

1 and ωM
1 denote the

respective ordertypes of N∩ω1 and M∩ω1. Let αM = π(α), βM = π(β)

and γM = ot(M). The height of N in M with respect to ~C is defined

as n(N,M) = |ωN
1 ∩ C

ωM
1
|. Set

x = {|π(ξ) ∩ CαM
| : ξ ∈ α ∩N},

y = {|π(ξ) ∩ CβM
| : ξ ∈ β ∩N},

z = {|π(ξ) ∩ CγM
| : ξ ∈ N}.

If the length of o(x, y, z) is at least n(N, M), then we define

s(N,M) = s
~C
α,β(N, M) = o(x, y, z)

Otherwise we leave s(N, M) undefined. If s is a finite length binary
sequence, we define s̄ to be the sequence of the same length l with its
digits reversed: s̄(i) = s(l − i).

If α < β < γ are ordinals of cofinality ℵ1 in the interval (ω1, ω2),
and f is a function from ω1 to 2ω, then we say that (α, β, γ) codes f

(relative to ~C) if there is an ω1-club 〈Nξ : ξ < ω1〉 in [γ]ℵ0 such that

• {ω1, α, β} ⊆ N0;
• for all ν < ω1 and all ξ ∈ {ω1, α, β, γ}, sup(Nν ∩ ξ) is a limit

ordinal;
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• for all ν0 < ν1 < ω1 and all ξ ∈ {ω1, α, β, γ}, sup(Nν0 ∩ ξ) <
sup(Nν1 ∩ ξ);

• for every limit ν < ω1, there is a ν0 < ν such that if ν0 < ξ < ν,
then

∆(s̄(Nξ, Nν), f(Nν ∩ ω1)) ≥ n(Nξ, Nν),

where the functions s and n are computed using the parameters
~C, α, β, and γ.

It is not difficult to show that if (α, β, γ) codes both f and g with

respect to some ~C, then there is a closed unbounded set of δ such that
f(δ) = g(δ).

Let us pause for a moment to note that the assertion for some ~C,
every f is coded by some triple (α, β, γ) implies that 2ℵ0 = 2ℵ1 . To see
this, define F by

• F (N , ᾱ, β̄) = 1 whenever there exist an ω1-club N in [γ]ℵ0 ,
ordinals α < β < γ < ω2 as above, and a countable ele-
mentary submodel M of H(ℵ2) containing {N , α, β}, such that
s(Nξ, Nν)(0) = 1 for a cobounded set of ξ < ν = M ∩ ω1, and
(M,∈,N , ᾱ, β̄) is the collapse of (M,∈,N , α, β);

• F (X) = 0 for all other X in H(ℵ1).

Now let g : ω1 → 2 be given and define f : ω1 → 2ω by letting f(δ)
be the real which takes the constant value g(δ). If N witnesses that
(α, β, γ) codes f , and M is a countable elementary submodel of H(ℵ2)
containing {N , α, β}, then F (N , ᾱ, β̄) = g(δ). By Theorem 2.1, this
implies 2ℵ0 = 2ℵ1 .

Definition 2.1. ψ1 is the assertion that for every A : ω1 → 2 and
for every ladder system ~C, there is a triple (α, β, γ) and a function

f : ω1 → 2ω such that (α, β, γ) codes f relative to ~C and for each
δ < ω1, f(δ) is a code for A ¹ δ.

We will prove in Section 4 that the conjunction of ψ1 and CH can
be forced over any model in which there is an inaccessible limit of
measurable cardinals.

Now we will turn to the task of defining a Π2-sentence ψ2 which,
together with ψ1, provides a solution to Problem 1.1. Suppose for a
moment that 〈Nξ : ξ < ω1〉 witnesses that (α, β, γ) codes A : ω1 → 2

relative to ~C. If Xi (i < ω) is an infinite increasing sequence in {Nξ :
ξ < ω1}, define the height of {Xi}i<ω to be δ = ω1 ∩

⋃
i<ω Xi. Observe

that, together with α, β and ~C, {Xi}i<ω uniquely determines A ¹ δ.
Moreover, A ¹ δ can be recovered from just the isomorphism type of
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the structure

(N,∈, ω1, α, β ; Xi : i < ω),

where N =
⋃

i<ω Xi. We will refer to a structure arising in this way as
a ψ1-structure and say that this structure codes A ¹ δ.

Definition 2.2. ψ2 is the assertion that for every ladder system ~C,
every triple α < β < γ of ordinals strictly between ω1 and ω2 and every
ω1-club N in [γ]ℵ0, there is a function f : ω1 → 2<ω such that for every
limit δ < ω1, f ¹ Cδ codes (in the sense discussed at the end of the
introduction) the transitive collapse of a structure

(N,∈, ω1, α, β ; Xi : i < ω),

where {Xi}i<ω is an increasing sequence in N of height greater than δ
and N =

⋃
i<ω Xi.

In Section 3, we will prove that ψ2 is relatively consistent with CH.
We now have the following proposition.

Proposition 2.3. ψ1∧ψ2 implies 2ℵ0 = 2ℵ1. In fact, 2ℵ0 = 2ℵ1 follows
from the existence of a ladder system ~C for which the conjunction of
ψ1 and ψ2, both relative to ~C, holds.

Proof. Fix a ladder system ~C and suppose that ψ1 and ψ2 are true. If
t : δ → 2<ω for some countable limit ordinal δ and if t ¹ Cδ codes a
ψ1-structure which in turn codes g ¹ δ∗ for some δ∗ > δ and g : ω1 → 2,
then define F (t) = g(δ). Now if (α, β, γ) codes g : ω1 → 2 relative to
~C as witnessed by N and f : ω1 → 2<ω witnesses the corresponding
instance of ψ2, then F (f ¹ δ) = g(δ) for every limit ordinal δ. By
Theorem 2.1, 2ℵ0 = 2ℵ1 . ¤

We will finish this section by showing that both ψ1 and ψ2 imply
that ♦ fails. Let us say that an ω1-club of [γ]ω (for some γ < ω2 of
uncountable cofinality) is typical in case for all ν0 < ν1 < ω1, Nν0 ∩ ω1

and sup(Nν0) are limit ordinals, Nν0 ∩ ω1 < Nν1 ∩ ω1, and sup(Nν0) <
sup(Nν1). The following fact shows that our methods do not extend to
show nonexistence of a Π2-maximal model for ♦.

Fact 2.4. ♦ implies the failure of ψ1. In fact, ♦ implies that there
is a ladder system ~C with the property that for every ordinal γ in ω2

of uncountable cofinality and every typical ω1-club 〈Nν : ν < ω1〉 of
[γ]ω there are stationary many ν < ω1 such that for unboundedly many
ξ < ν, |CNν∩ω1 ∩Nξ| > |Cot(Nν) ∩ sup(π“Nξ)|, where π is the collapsing
function of Nν.
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Proof. It is easy to fix a natural notion of coding in such a way that
for every γ < ω2 and every ω1-club 〈Nν : ν < ω1〉 of [γ]ω there is a
set X ⊆ ω1 and there is a closed unbounded set of δ < ω1 such that
X ∩ δ codes a directed system S = 〈δν , iν,ν′ : ν ≤ ν ′ < δ〉 where, for
all ν ≤ ν ′ < δ, δν = ot(Nν) and iν,ν′ = πNν′ ◦ π−1

Nν
(where πNν denotes

the collapsing function of Nν). Let us fix such a notion of coding. Let
~X = (Xν)ν<ω1 be a ♦-sequence. We recursively define from ~X a ladder

system ~C = 〈Cδ : δ ∈ Lim(ω1)〉 in the following way.
Let δ ∈ Lim(ω1) and suppose Xδ codes a directed system S =

〈δν , iν,ν′ : ν ≤ ν ′ < δ〉 with well-founded direct limit, where the δν ’s
are countable limit ordinals, and each iν,ν′ is an order-preserving map
from δν to δν′ , iν,ν′ 6= id. Suppose that for all ν < δ, crit(iν,ν+1) is a
limit ordinal and ν ≤ crit(iν,ν+1) < crit(iν+1,ν+2), where crit(iν,ν′) is the
least ordinal moved by iν,ν′ , and that sup(range(iν,ν+1)) < δν+1. Let
ηδ be the direct limit of S and let iν,δ : δν → ηδ be the corresponding
limit map for each ν < δ. We identity ηδ with an ordinal. Suppose
that δ > ηδ′ for all limit ordinals δ′ < δ. Then we pick Cδ and Cηδ

in such a way that for unboundedly many ν below δ, |Cδ ∩ crit(iν,δ)|
is bigger than |Cηδ

∩ sup(range(iν,δ))|. Now, using the fact that ~X is

a ♦-sequence it is not difficult to check that ~C is a ladder system as
required. ¤

It is also easy to see that ♦ – and in fact ♣ – implies the failure
of ψ2. To see this, let 〈Cδ : δ ∈ Lim(ω1)〉 be a ♣–sequence. Suppose
that f : ω1 → 2<ω is such that for all limit δ < ω1 there is a co-finite
set X ⊆ Cδ such that

⋃
f [X] is a member of 2ω. There is then some

n < ω such that S = {ν ∈ ω1 : |f(ν)| = n} is unbounded in ω1. But if
δ is such that Cδ ⊆ S, then

⋃
f [Cδ] is finite, which is a contradiction.

3. Iteration theorems

In this section we will review and adapt Eisworth and Roitman’s
general framework for verifying that an iteration of forcings does not
add new reals. We will need two preservation results, one which is
essentially established in [8] and one which is an adaptation of the
result in [8] to iterations of totally proper α-semiproper forcings. In
the course of the section, we will also establish that ψ2 is relatively
consistent with CH.

Before we begin, we will review some of the definitions which we
will need in this section. A forcing Q is a partial order with a greatest
element 1Q. A cardinal θ is sufficiently large for a forcing Q if P(P(Q))
is an element of H(θ). We will say that M is a suitable model for Q if
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Q is in M and M is a countable elementary submodel of H(θ) for some
θ which is sufficiently large for Q. If M is a suitable model for Q and
q is in Q, then we will say that q is (M,Q)-generic if whenever r ≤ q
and D ∈ M is a dense subset of Q, r is compatible with an element
of D ∩ M . If, moreover, {p ∈ Q ∩ M : q ≤ p} is an (M,Q)-generic
filter, then we say that q is totally (M,Q)-generic. Q is (totally) proper
if whenever M is a suitable model for Q and q is in Q ∩ M , q has a
(totally) (M,Q)-generic extension. It is easily verified that a forcing
is totally proper if and only if it is proper and does not add any new
reals.

Remark 3.1. It is important to note that if Q is totally proper and
M is suitable for Q, it need not be the case that every (M,Q)-generic
condition is totally (M,Q)-generic. It is true that every (M,Q)-generic
condition can be extended to a totally (M,Q)-generic condition. This
distinction is very important in the discussion of when an iteration of
forcings adds new reals.

A suitable tower (in H(θ)) for Q is a set N = {Nξ : ξ < η} (for some
ordinal η) such that for some θ which is sufficiently large for Q:

• each Nξ is a countable elementary submodel of H(θ) having Q
as a member;

• if ν < η is a limit ordinal, then Nν =
⋃

ξ<ν Nξ;

• if ν < η is a successor ordinal, then {Nξ : ξ < ν} is in Nν .

Since a tower is naturally ordered by ∈, we notationally identify it
with the corresponding sequence. A condition q is (N ,Q)-generic if it
is (N,Q)-generic for each N in N . A partial order Q is η-proper if
whenever N = 〈Nξ : ξ < η〉 is a suitable tower for Q and q is in N0,
then q has a (N ,Q)-generic extension. If a forcing is η-proper for every
η < ω1, we will say that it is (<ω1)-proper.

Now we will return to our discussion of iterated totally proper forc-
ing.

Definition 3.2. Suppose that η is a countable ordinal and P ∗ Q̇ is a
two-step forcing iteration such that P is η-proper. The iteration P ∗ Q̇
is η-complete if whenever

(1) 〈Nξ : ξ < 1 + η〉 is a suitable tower of models for P ∗ Q̇,
(2) G ⊆ P ∩N0 is (N0,P)-generic, and

(3) (p, q̇) is in P ∗ Q̇ ∩N0 with p in G,

then there is a G∗ ⊆ P∗ Q̇∩N0 extending G with (p, q̇) ∈ G∗ such that
whenever r is a lower bound for G which is (〈Nξ : ξ < 1+η〉,P)-generic,

then r forces G∗/G has a lower bound in Q̇.
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Notice that if η < ζ and P∗Q̇ is η-complete, then P∗Q̇ is ζ-complete.
By routine adaptations to the proof of Theorem 4 of [8], we obtain the
following iteration theorem.

Theorem 3.3. Let η, γ be ordinals, with η < ω1, and let

〈Pα, Q̇α : α < γ〉
be a countable support iteration with countable support limit Pγ. Sup-
pose that for all α < γ,

• °α Q̇α is (<ω1)–proper,

• the iteration Pα ∗ Q̇α is η–complete.

Then Pγ is totally proper.

We will now argue that this theorem is sufficient to prove that the
conjunction of ψ2 and CH can be forced over any model of ZFC. First
we will recall a general fact which we will use repeatedly below.

Lemma 3.4. Suppose that X ⊆ H(ℵ1) and Q ⊆ X<ω1 is a partial
order, ordered by extension, with the following properties:

• Q is closed under initial segments;
• for every α < ω1, {q ∈ Q : |q| ≥ α} is dense;
• if q is in Q with |q| = α, p : α → X and

{ξ < α : q(ξ) 6= p(ξ)}
is finite, then p is in Q.

Then if

• M is a suitable model for Q,
• q is in Q ∩M ;
• C ⊆ (M ∩ ω1) \ |q| is cofinal in M ∩ ω1 with ordertype ω;
• f is a function from C into X ∩M ;

then there is a q′ : M ∩ ω1 → X extending q such that q′(ξ) = f(ξ) for
all ξ ∈ C and {q′ ¹ ξ : ξ ∈ M ∩ ω1} is an M-generic filter for Q.

Proof. It is sufficient to prove that if Q, M , q, C and f are as in the
statement of the lemma and D ⊆ Q is dense and in M , then there is
a q′ ≤ q in M ∩D such that q′(ξ) = f(ξ) for all ξ in |q′| ∩ C. By the
elementarity of M , there is a countable elementary N ≺ H(ℵ1) in M
such that q is in N , D∩N is dense in Q∩N , and {p ∈ Q∩N : ξ ≤ |p|}
is dense in N for every ξ ∈ N ∩ω1. Let ν = N ∩ω1 and let C ′ = C ∩ ν.
Since ν is a limit ordinal and C ′ is finite, there is a q0 ≤ q in N such
that (f ¹ C ′) ⊆ q0. By the density of D∩N in Q∩N , there is a q′ ≤ q0

in D ∩N . Since |q′| ∩ C = |q0| ∩ C, we are done. ¤
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By performing a preliminary forcing if necessary, we may assume
that our ground model satisfies 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2. Suppose that
~C, α, β, γ, and N represent an instance of ψ2, i.e., ~C is a ladder system
on ω1, ω1 < α < β < γ < ω2 and N is an ω1-club contained in [γ]ℵ0 .
Define Q = Q ~C,α,β,N to be the collection of all q such that the domain

of q is η for some countable limit ordinal η, q maps into 2<ω, and q
satisfies the conclusion of ψ2 for δ ≤ η. Note that Q has cardinality
2ℵ0 = ℵ1.

Lemma 3.5. Q is totally α-proper for each α < ω1.

Proof. First observe that Q satisfies the hypothesis of Lemma 3.4. (We
leave it to the reader to verify that if ξ < ω1, then {q ∈ Q : |q| ≥ ξ} is
dense in Q.) We will prove by induction on α that:

If M = 〈Mξ : ξ ≤ α〉 is a suitable tower for Q, q0 ∈
M0∩Q and f0 is a finite partial function from ωMα

1 \ |q0|
to 2<ω, then there is a totally (M,Q)-generic q̄ ≤ q0

with f0 ⊂ q̄.

If α = 0, this is vacuously true. If α = β + 1, then by our inductive
assumption there is a q′ ≤ q0 such that q′ is totally (Mξ,Q)-generic for
all ξ < β and such that q̄(ξ) = f0(ξ) whenever ξ ∈ dom(f0) ∩ dom(q̄).
By elementarity, such a q′ can be moreover found in Mβ. Define δ =
Mβ ∩ ω1 and let f : Cδ → 2<ω be such that for some {Xi}i<ω ⊆ N
of height greater than δ, f codes the ψ1-structure corresponding to
{Xi}i<ω. By modifying f if necessary, we may assume that q′ ∪ f ∪ f0

is a function. By Lemma 3.4, there is a q̄ : δ → 2<ω such that q̄
extends q′, {q̄ ¹ ξ : ξ ∈ Nβ ∩ ω1} is an (〈Nξ : ξ ≤ β〉,Q)-generic filter,
and q̄ ∪ f ∪ f0 is a function. Notice that this implies that q̄ is in Q and
is therefore as desired.

If α is a limit ordinal, let αn (n < ω) be an increasing sequence of
ordinals converging to α with α0 = 0. Define δ = Mα∩ω1 and as above
let f : Cδ → 2<ω be such that for some {Xi}i<ω ⊆ N of height greater
than δ, f codes the ψ1-structure corresponding to {Xi}i<ω. Let q0 be
a given element of M0 ∩Q and let f0 be a given finite partial function
from ω1 \ |q0|. By modifying f if necessary, we may assume that f ∪ f0

is a function. Construct a ≤-descending sequence qn (n < ω) such that:

• qn+1 is totally (〈Mξ : ξ ≤ αn〉,Q)-generic;
• qn+1 is in Mαn+1 and has domain Mαn ∩ ω1;
• qn+1 extends f0 ∪ f ∩Mαn .

Given qn, qn+1 can be found in H(θ) by applying our induction hypoth-
esis to qn and to (f ∪ f0)∩Mαn . Such a qn+1 moreover exists in Mαn+1

by elementarity, completing the inductive construction. It now follows
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that q̄ =
⋃

n<ω qn is a totally (〈Mξ : ξ ≤ α〉,Q)-generic extension of q0

as desired. ¤

Under CH, length-ω2 countable support iterations of proper forcings
which are forced to have cardinality at most ℵ1 are ℵ2-c.c. (see for
instance Theorem 2.10 of [1]). Standard book-keeping arguments then
reduce our task to verifying that an iteration of forcings of the form
Q ~C,α,β,N is ω-complete.

Lemma 3.6. Suppose that

• P is a totally proper forcing;
• for each δ ∈ Lim(ω1), Ċδ is a P-name for a cofinal subset of δ

of ordertype ω;

• ~̇C is a P-name for the ladder system on ω1 induced by the names
Ċδ (δ ∈ Lim(ω1));

• α̇, β̇, and γ̇ are P-names for an increasing sequence of ordinals
between ω1 and ω2;

• Ṅ is a P-name for an ω1-club contained in [γ̇]ℵ0;

• Q̇ is a P-name for the partial order Q ~̇C,α̇,β̇,Ṅ .

Then P ∗ Q̇ is an ω-complete iteration.

Proof. Let 〈Nk : k < ω〉 be a tower of models with P ∗ Q̇ in N0,

G ⊆ P∩N0 be an (N0,P)-generic filter, and (p, q̇) be in P∗ Q̇∩N0 such

that p is in G. Notice that some condition in G decides q̇, α̇, β̇, and γ̇
to be some q, α, β and γ, respectively. Let r be a real which codes the
transitive collapse of

(
⋃

k<ω

Nk ∩ γ,∈, α, β; Nk ∩ γ : k < ω).

The key point is that if p̄ is (〈Nk : k < ω〉,P)-generic, then p̄ forces
Nk ∩ γ is in Ṅ for all k < ω.

Set δ = N0 ∩ ω1. Notice that there is a ladder Ĉδ on δ such that
whenever C ′ is a ladder on δ which is in N1, then C ′ \ Ĉδ is finite and

Ĉδ consists only of ordinals not in the domain of q̇ as decided by G.
In particular if p̄ is (N1,P)-generic, then p̄ forces that Ċδ is contained

in Ĉδ except for a finite set. Let fδ be a bijection between Ĉδ and
{r ¹ n : n < ω}. Lemma 3.4 now allows us to build a G∗ ⊆ P ∗ Q̇ such
that (p, q̇) is in G∗ and if

g = ∪{s ∈ H(ω)<δ : ∃p ∈ G(p, š) ∈ G∗}
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then fδ is a restriction of g. It follows that whenever r is a lower bound
for G which is (〈Nk : k < ω〉,P)-generic, then r forces G∗/G has a lower
bound. ¤

Putting together Theorem 3.3 with Lemmas 3.5 and 3.6, we have (in
ZFC) that there exists a partial order forcing ψ2 + CH. Corresponding
results for ψ1 are proved in Section 4.

Unlike ψ2, it is generally not possible to force an instance of ψ1

with an ω-proper forcing. Fortunately, assuming the existence of three
measurable cardinals, there is a forcing to force an instance of ψ1 which
is (< ω1)-semiproper. In the remainder of this section, we formulate
and prove a version of Theorem 4 of [8] which applies to iterations of
totally proper (< ω1)-semiproper iterands. This seems to provide the
first example of a forcing which is proper and (< ω1)-semiproper, but
not (<ω1)-proper.

In order to state this definition we will borrow the following pieces
of notation from [8] (originating in [18]): Given a set N and a forc-
ing notion P ∈ N , Gen(N,P) denotes the set of all (N,P)-generic
filters G ⊆ N ∩ P. Furthermore, if p ∈ N ∩ P, Gen(N,P, p) =
{G ∈ Gen(N,P) : p ∈ G} and Gen+(N,P, p) denotes the set of all
G ∈ Gen(N,P, p) such that G has a lower bound in P.

Given a partial order P, a regular cardinal θ which is sufficiently
large for P, and a countable N ≺ H(θ) with P ∈ N , we say that a
condition p ∈ P is (P, N)-semi-generic if p ° τ ∈ (ω̌1 ∩ Ň) for all
P-names τ in N for countable ordinals. Given a countable ordinal η, P
is said to be η-semiproper if for every suitable tower 〈Nξ : ξ < η〉 with
P ∈ N0, and every p ∈ P ∩N0, there is a condition q ≤ p in P which is
(〈Nξ : ξ < η〉,P)-semi-generic, i.e., which is (Nξ,P)-semi-generic for all
ξ < η.

Given a countable elementary substructure N of H(θ) with P ∈
N , and given G ∈ Gen(N,P), we let N [G] denote the set of G-
interpretations of P-names which are in N (see section 3 from [8] for
details).

In the following definition, we have replaced the condition that r be
(〈Nξ : ξ < 1 + η〉,P)-generic from Definition 3.2 with the condition
that it be merely (〈Nξ : ξ < 1 + η〉,P)-semi-generic. We call the cor-
responding notion η-semi-completeness, and note that it is a stronger
condition than η-completeness.

Definition 3.7. Suppose that η is a countable ordinal and P ∗ Q̇ is a
two-step forcing iteration such that P is η-semiproper. The iteration
P ∗ Q̇ is η-semi-complete if whenever
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(1) 〈Nξ : ξ < 1 + η〉 is a suitable tower of models for P ∗ Q̇,
(2) G ⊆ P ∩N0 is (N0,P)-generic, and

(3) (p, q̇) is in P ∗ Q̇ ∩N0 with p in G,

then there is a G∗ ⊆ P∗ Q̇∩N0 extending G with (p, q̇) ∈ G∗ such that
whenever r is a lower bound for G which is (〈Nξ : ξ < 1 + η〉,P)-semi-

generic, then r forces G∗/G has a lower bound in Q̇.

Even though we will be working exclusively with iterations of proper
forcings in this paper, we will use the terminology of revised count-
able support iterations in order to prove the analogue of Theorem 3.3
for η-semi-complete iterations. By revised countable support (RCS) we
mean either the original presentation of RCS due to Shelah [18], or
the later reformulation due to Miyamoto [14]. Theorem 3.8 and Fact
3.9 below are proved in [14] but are already implicit in [18]. In [13]
it is claimed, erroneously, that these facts apply to the presentation
of RCS due to Donder and Fuchs [6]. Under the Donder-Fuchs pre-
sentation of RCS, an RCS iteration of proper forcings it identical to
the corresponding countable support iteration, for which Theorem 3.8
fails. For the Shelah version and the Miyamoto versions, an RCS limit
of proper forcings and the corresponding countable support limit are
merely isomorphic on a dense set. It follows, in the end, that Theo-
rem 3.10 is true when one uses countable support in place of revised
countable support, though again our proof of this fact requires RCS.
A similar situation holds in [13].

To facilitate the statements below, we let “〈Pα, Q̇α : α < γ〉 has

RCS limit Pγ” include the case that γ = β + 1 and Pγ = Pβ ∗ Q̇β (and
similarly for countable support).

Theorem 3.8. ([14], Corollary 4.12) Suppose that γ is an ordinal and

that 〈Pα, Q̇α : α < γ〉 is an RCS iteration with RCS limit Pγ. Fix
β < γ and p ∈ Pβ. Suppose that τ is a Pβ-name for a condition in Pγ

for which p forces that τ ¹ β ∈ Gβ. Then there is a condition p′ in Pγ

such that p′ ¹ β = p and p forces that p′ ¹ [β, γ) = τ ¹ [β, γ).

The following fact is extracted from pages 7-10 of [14].

Fact 3.9. Suppose that γ is a limit ordinal and that 〈Pα, Q̇α : α < γ〉
is an RCS iteration with RCS limit Pγ. Then for each p ∈ Pγ there
exists a sequence of Pγ-names τi (i ∈ ω) for elements of γ +1 such that

• for any condition q, for any i ∈ ω and any α ≤ γ, if q ° τi = α̌,
then (q ¹ α)_1Pγ/Pα forces τi = α̌;

• for all i ∈ ω, p ° τi < γ̌;
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• the empty condition in Pγ forces that for every

β ≥ sup{τi : i ∈ ω},
p(β) = 1Q̇β

.

The following is our extension of Theorem 3.3 to η-semi-complete
iterations. We will introduce two more useful facts before we start the
proof.

Theorem 3.10. Let η, γ be ordinals, with η < ω1, and let

〈Pα, Q̇α : α < γ〉
be a countable support iteration with countable support limit Pγ. Sup-
pose that for all α < γ,

• °α Q̇α is (<ω1)–semiproper,

• the iteration Pα ∗ Q̇α is η–semi-complete,
• °α+1 |Pα| ≤ ℵ1.

Then Pγ is totally proper.

A proof of the following fact appears in [13].

Fact 3.11. Let η be a countable ordinal, let γ be an ordinal, and let

〈Pα, Q̇α : α < γ〉
be a revised countable support iteration with RCS limit Pγ. Suppose
that for all α < γ,

• °α Q̇α is η–semiproper, and
• °α+1 |Pα| ≤ ℵ1.

Then Pγ is η–semiproper.

The proof of Theorem 3.10 uses the following lemma, a simplified
(and ostensibly weaker) version of Lemma 4.10 in [13] which is used in
the course of proving Fact 3.11 above.

Lemma 3.12. Let γ be an ordinal, and let η be a countable ordinal.
Suppose that Pγ is the RCS limit of an RCS iteration 〈Pα, Q̇α : α < γ〉
such that for each α < γ,

• 1Pα forces Q̇α to be η-semiproper, and
• 1Pα+1 forces Pα to have cardinality ℵ1.

Let θ be sufficiently large for Pγ. Fix α ≤ β ≤ γ, and fix a suitable
tower 〈Nξ : ξ < η〉 for Pγ with α, β ∈ N0. Let s ∈ Pγ and r ∈ Pα be
such that

• r is (Nξ,Pα)-semi-generic for all ξ < η,
• s ¹ α ≥ r,
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• r forces that for some t ∈ Pγ ∩N0, s ¹ [α, γ) = t ¹ [α, γ).

Then there exists r† ∈ Pβ such that

• r† is (Nξ,Pβ)-semi-generic for all ξ < η,
• r† ≤ s ¹ β,
• r† ¹ α = r.

To prove Theorem 3.10, let θ be a regular cardinal which is suffi-
ciently large for Pγ. Let N ≺ H(θ) be countable with P and η in N ,
and let p ∈ Pγ ∩N be an arbitrary condition. We must produce a to-
tally (N,Pγ)-generic condition q ≤ p. For each α ∈ N ∩ (γ + 1), let α∗

denote the ordertype of N∩α. Fix a suitable tower N = 〈Nξ : ξ ≤ ηγ∗〉
with N0 = N . The following claim is a variation of Claim 6.2 of [8]. In
order to facilitate the statement of the claim, we let Nηγ∗+1 stand for
H(θ).

Claim 3.13. Given α < β in N0 ∩ (γ + 1), p ∈ Pβ and

G ∈ Gen+(N0,Pα, p ¹ α) ∩Nηα∗+1,

there is a G† ∈ Gen(N0,Pβ, p)∩Nηβ∗+1 such that whenever r ∈ Pα is a
lower bound for G that is (Nξ,Pα)-semi-generic for all ξ ∈ (ηα∗, ηγ∗],
there is an r† ∈ Pβ such that

(1) r† is a lower bound for G†,
(2) r† ¹ α = r,
(3) r† is (Nξ,Pβ)-semi-generic for every ξ ∈ (ηβ∗, ηγ∗].

Theorem 3.10 follows from taking α = 0 and β = γ in Claim 3.13.
Inducting primarily on γ, we assume that the claim holds for all γ′ < γ
in place of γ, for this fixed sequence of Nξ’s. This will be useful in the
limit case below.

Remark 3.14. Item (1) above implies that {q ¹ Pα | q ∈ G†} = G,
since otherwise, these two generic filters could not have the same lower
bound r in common.

Since P0 is the trivial forcing, the case α = 0, β = 1 follows from the
assumption that Q̇0 is totally proper and (< ω1)-semiproper.

Now consider the case where β = β0 + 1. We are given a G ∈
Gen+(N0,P, p ¹ α) ∩ Nηα∗+1, and, applying the induction hypothesis

we may fix a G†
0 ∈ Gen(N0,Pβ0 , p ¹ β0) ∩ Nηβ∗0+1 satisfying the claim

with β0 in the role of β. Since Pα is (<ω1)-semiproper, the conclusion

of the claim implies that G†
0 ∈ Gen+(N0,Pβ0 , p ¹ β0). We apply the

definition of “Q̇β0 is η-semi-complete for Pβ0” in Nηβ∗+1 with

{N0} ∪ {Nξ : ηβ∗0 + 1 ≤ ξ ≤ ηβ∗},
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G†
0 and p(β0) in place of 〈Nξ : ξ < 1 + η〉, G and q̇ there. This gives us

a G† ∈ Gen(N0,Pβ, p)∩Nηβ∗+1 extending G†
0 such that whenever r†0 is

a lower bound for G†
0 which is ({N0} ∪ {Nξ : ηβ∗0 + 1 ≤ ξ ≤ ηβ∗},Pβ0)-

semi-generic, then r†0 forces that G†/G†
0 has a lower bound in Qβ0 .

Now, whenever r ∈ Pα is a lower bound for G that is (Nξ,Pα)-semi-

generic for all ξ ∈ (ηα∗, ηγ∗], there is by the choice of G†
0 a condition

r†0 ∈ Pβ0 such that

• r†0 is a lower bound for G†
0,

• r†0 ¹ α = r,

• r†0 is (Nξ,Pα)-semi-generic for every ξ ∈ (ηβ∗0 , ηγ∗].
By Theorem 3.8, there is a condition s ∈ Pβ ∩Nηβ∗+1 such that s ¹ β0

is 1Pβ0
and 1Pβ0

forces that s(β0) is a lower bound for G†/G†
0 if such a

lower bound exists. By Lemma 3.12, then, there is an r† as desired,
with r† ¹ β0 = r†0 and s ≥ r†. This takes care of the case where β is a
successor ordinal.

Finally, suppose that β is a limit ordinal. Fix a strictly increasing
sequence 〈αn : n ∈ ω〉 ∈ Nηβ∗+1 which is cofinal in N0∩β, with α0 = α,
and let 〈Dn : n ∈ ω〉 ∈ Nηβ∗+1 be a listing of the dense open subsets of
Pβ in N0.

Subclaim 3.1. There exist sequences 〈pn : n ∈ ω〉, 〈Gn : n ∈ ω〉 in
Nηβ∗+1 such that p0 = p, G0 = G and, for all n ∈ ω,

• pn+1 ∈ N0 ∩Dn;
• pn+1 ≤ pn;
• pn+1 ¹ αn ∈ Gn;
• Gn ∈ Gen(N0,Pαn , pn ¹ αn) ∩Nηα∗n+1;
• whenever r ∈ Pαn is a lower bound for Gn that is (Nξ,Pαn)-

semi-generic for all ξ ∈ (ηα∗n, ηγ∗], there is an r+ ∈ Pαn+1 such
that
◦ r+ is a lower bound for Gn+1;
◦ r+ ¹ αn = r;
◦ r+ is (Nξ,Pαn+1)-semi-generic whenever

ξ ∈ (ηα∗n+1 < ξ ≤ ηγ∗].

Given n ∈ ω, r ∈ Pαn and δ ∈ (αn, γ]∩N0, let A(r, n, δ∗) denote the
statement that r is a lower bound for Gn and r is (Nξ,Pαn)-semi-generic
for all ξ ∈ (ηα∗n, ηδ∗] (this is just for notational convenience, and we
will use it only when the Gn in question has already been established).
Then the last item of the subclaim says that for all r ∈ Pαn satisfying
A(r, n, γ∗), there exists an r+ ∈ Pαn+1 such that

• r+ ¹ αn = r;
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• r+ satisfies A(r+, n + 1, γ∗) (again, for Gn+1 as chosen).

To verify the subclaim, suppose that pn and Gn are given. We will
verify that pn+1 and Gn+1 exist as described in the subclaim. First note
that E = {t ¹ αn | t ∈ Dn, t ≤ pn} is dense in Pαn below pn ¹ αn, and
that E ∈ N0. Since pn ¹ αn ∈ Gn, there exists a t ∈ E ∩Gn. Applying
the definition of E inside N0, we get a pn+1 ∈ N0 ∩Dn with pn+1 ≤ pn

and pn+1 ¹ αn ∈ Gn, as desired.
Applying the induction hypothesis inside of Nηβ∗+1, with αn, αn+1

and β in place of α, β and γ, we can find a filter

Gn+1 ∈ Gen(N0,Pαn+1 , pn+1 ¹ αn+1)

such that for any condition r ∈ Pαn satisfying A(r, n, β∗) there is an
r′ ∈ Pαn+1 satisfying A(r′, n + 1, β∗) such that r′ ¹ αn = r. We need to
see that for this Gn+1, for any condition r ∈ Pαn satisfying A(r, n, γ∗)
there is an r+ ∈ Pαn+1 satisfying A(r′, n + 1, γ∗) such that r+ ¹ αn = r.

Fix such an r. Since r satisfies A(r, n, γ∗), it satisfies A(r, n, β∗). Fix
r′ ∈ Pαn+1 such that r′ ¹ αn = r and r′ satisfies A(r, n + 1, β∗). In
order to apply Lemma 3.12, we want to see that there is an r′′ ∈ Pαn+1

satisfying A(r′′, n + 1, β∗) such that r′′ ¹ αn = r and such that

r′′ °Pαn
r′′/Gαn ∈ Nηβ∗+1[Gαn ],

that is, that r forces (in Pαn) that there is a Pαn-name t in Nηβ∗+1 such
that r′′/Gαn = tGαn

.
If we force with Pαn below r ¹ αn, in V [Gαn ], r′/Gαn ∈ Pαn+1/Gαn

satisfies condition (∗∗), i.e.,

• is a lower bound for {s/Gαn : s ∈ Gn+1};
• is semi-generic for (Nξ[Gαn ],Pαn+1/Gαn), for all ξ ∈ (ηα∗n+1, ηβ∗].

So there exists a condition satisfying (∗∗) in Nηβ∗+1[Gαn ].
Let τ be a Pαn ¹ r-name for an element of Pαn+1/Gn in Nηβ∗+1[Gαn ]

satisfying (∗∗). Viewing Pαn+1 as Pαn ∗ Q̇αn,αn+1 , let r′′ = (r, τ).
Now apply Lemma 3.12. We have that

• r is (Nξ,Pαn)-semi-generic for all ξ ∈ (ηβ∗, ηγ∗];
• r′′ ¹ αn = r;
• r forces that there is a t ∈ Pαn+1 ∩ Nηβ∗+1 such that r′′ ¹

[αn, αn+1) = t ¹ [αn, αn+1).

Then by the lemma, there exists an r+ which is (Nξ,Pαn+1)-semi-generic
for all ξ ∈ (ηβ∗, ηγ∗], such that r+ ≤ r′′ and r+ ¹ αn = r. This verifies
the subclaim.

Let G† = {t ∈ N0 ∩ Pβ | ∃n t ≥ pn}. Then

G† ∈ Gen(N0,Pβ, p) ∩Nηβ∗+1.
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Subclaim 3.2. G† has a lower bound.

To see this, let r be a lower bound for G that is (Nξ,Pα)-semi-generic
for all ξ ∈ (ηα∗, ηγ∗]. The properties of the sequence 〈Gn : n ∈ ω〉 allow
us to build a sequence 〈rn : n ∈ ω〉 satisfying:

• r0 = r;
• rn is a lower bound for Gn in Pα∗ ;
• rn is (Nξ,Pαn)-semi-generic for all ξ ∈ (ηα∗n, ηγ∗];
• rn+1 ¹ αn = rn.

Finally let r+ =
⋃

n∈ω rn ∈ Pβ. Let us check that r+ is a lower bound
for G†. First note that by the argument presented in Remark 3.14,
{q ¹ αn | q ∈ Gm} = Gn, whenever n ≤ m. When m ≤ n, pm ≥ pn, so
pm ¹ Pαn ≥ pn ¹ Pαn . Since for each n ∈ ω we have pn ¹ αn ∈ Gn, we
get that for each such n, {pm ¹ αn : m ∈ ω} ⊆ Gn.

For each n ∈ ω, let τn
i be the names as in Fact 3.9 corresponding to

pn. Since the pm’s collectively meet all dense subsets of Pβ in N0, a value
for each τn

i is decided by some pm, and since pn and pm are compatible
this value is decided to be some value in N0 ∩β. Since for each m ∈ ω,
r ¹ Pαm is a lower bound for Gm, we have that r ¹ αm ≤ pn ¹ αm for
all m ∈ ω, and thus that r ≤ p. It follows that r is a lower bound for
G†. This proves the subclaim, and thereby the limit case of Claim 3.13
and thereby Theorem 3.10.

4. The single step forcing for ψ1

In this section we examine the single step forcings associated with
ψ1. Before proceeding, we will recall some terminology from [16]. Let
X be an uncountable set and let θ be a regular cardinal with P([X]ℵ0)
in H(θ). [X]ℵ0 is topologized by declaring sets of the form

[a,M ] = {N ∈ [X]ℵ0 : a ⊆ N ⊆ M}
to be open whenever M is in [X]ℵ0 and a is a finite subset of M . If M is
a countable elementary submodel of H(θ) with X in M , then Σ ⊆ [X]ℵ0

is M-stationary if M ∩ E ∩ Σ is non empty whenever E ⊆ [X]ℵ0 is
a club in M . If Σ is a function whose domain is a club of countable
elementary submodels of H(θ), then we say that Σ is an open stationary
set mapping if Σ(M) is open and M -stationary whenever M is in the
domain of Σ. If N = 〈Nξ : ξ < ω1〉 is a continuous ⊆-chain where
〈Nξ : ξ ≤ ν〉 is in Nν+1 for each ν, then we say that N is a reflecting
sequence for Σ if whenever ν < ω1 is a limit ordinal, there is a ν0 < ν
such that

Nξ ∩X ∈ Σ(Nν)
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whenever ν0 < ξ < ν. If N = 〈Nξ : ξ ≤ δ〉 is a sequence of countable
successor length which has the above properties for all limit ν ≤ δ,
then we will say that N is a partial reflecting sequence for Σ. In [16]
it is shown that PFA implies all open stationary set mappings admit
reflecting sequences and that the forcing PΣ of all countable partial
reflecting sequences for an open stationary set mapping Σ is always
totally proper.

Except for trivial cases PΣ is not ω-proper. Moreover it will be (<
ω1)-semiproper only under rather special circumstances. The following
lemma gives a useful sufficient condition for when we can build generic
conditions in PΣ for a given suitable tower of models.

Lemma 4.1. Let Σ be an open stationary set mapping whose do-
main consists of elements of H(θ) and let λ be sufficiently large for
PΣ. Suppose that M = 〈Mδ : δ ≤ α〉 is a tower of countable el-
ementary submodels of H(λ) which is suitable for PΣ and such that
〈Mδ ∩H(θ) : δ ≤ α〉 is a partial reflecting sequence for Σ. Then every
condition in M0 can be extended to a totally (M,PΣ)-generic condition.

Proof. This follows from the properness of PΣ when α = 0, and by
the induction hypothesis, elementarity and the total properness of PΣ

when α is a successor ordinal. When α is a limit ordinal, choose an
increasing sequence 〈βi : i < ω〉 converging to α, such that for all δ in
the interval [β0, α), Mδ ∩X ∈ Σ(Mα ∩H(θ)). Note that any condition
in PΣ which is (Mδ,PΣ)-generic for all δ < α will be (Mα,PΣ)-generic.
The difficulty in what follows is in ensuring that a tail of the generic
sequence we build falls inside of Σ(Mα ∩ H(θ)). We will ensure that
this happens for all members of the sequence containing Mβ0 . We have
that for each δ in the interval [β0, α) there is a finite set aδ ⊂ Mδ ∩X
such that [aδ,Mδ ∩X] ⊂ Σ(Mα ∩H(θ)).

By elementarity and the induction hypothesis, we may assume first
that s0 is a condition in Mβ0+1 which is (Mδ,PΣ)-generic for all δ ≤ β0,
and which extends any given condition s ∈ M0. We may assume that
the last member of s0 is Mβ0 ∩ X, and we have then that a tail of
s0 is contained in Σ(Mα ∩ H(θ)). Suppose now that i ∈ ω, that si

is a condition in Mβi+1 which is (Mδ,PΣ)-generic for all δ ≤ βi, which
extends s0, whose last member is Mβi

∩X, and such that every member
of si containing Mβ0 ∩X is in Σ(Mα ∩H(θ)). We show how to choose
si+1 satisfying these conditions for i + 1. If aβi+1

⊆ Mβi+1, then we let
s′i be a condition in Mβi+1 extending si by one set which contains aβi+1

,
and, applying the induction hypothesis and elementarity we let si+1 be
a condition in Mβi+1+1 as desired, extending s′i.



FORCING AXIOMS AND THE CONTINUUM HYPOTHESIS 21

If aβi+1
is not in Mβi+1, we need to work harder to extend si while

staying inside Σ(Mα ∩ H(θ)). In this case, let a(i, 0) = aβi+1
and let

γ(i, 0) be the largest δ in (βi, βi+1) such that a(i, 0) is not contained in
Mδ. Let a(i, 1) be a finite subset of Mγ(i,0) ∩X such that

[a(i, 1),Mγ(i,0) ∩X] ⊆ Σ(Mα ∩H(θ)).

Continue in this way, letting γ(i, j + 1) be the largest δ in [βi, γ(i, j))
such that δ = βi or a(i, j+1) is not contained in Mδ, and, if γ(i, j+1) >
βi, letting a(i, j + 2) be a finite subset of Mγ(i,j+1) ∩X such that

[a(i, j + 2),Mγ(i,j+1) ∩X] ⊆ Σ(Mα ∩H(θ)).

As the γ(i, j)’s are decreasing, this sequence must stop at a point where
a(i, j) ⊆ Mβi+1 and γ(i, j) = βi. Let k be this j. As 〈a(i, j) : j ≤ k〉 is
in Mβi+1+1, we can argue in Mβi+1+1, as follows.

Let t(i, k) be a condition in Mβi+1 extending si such that every mem-
ber of t(i, k)\si contains a(i, k). Applying the induction hypothesis and
elementarity, let s(i, k) be a condition in Mγ(i,k−1)+1 extending t(i, k)
which is (Mδ,PΣ)-generic for every δ ≤ γ(i, k−1), and whose last mem-
ber is Mγ(i,k−1)∩X. For each positive j < k, let t(i, j) be a condition in
Mγ(i,j)+1 extending s(i, j+1) such that every member of t(i, j)\s(i, j+1)
contains a(i, j), and let s(i, j) be a condition in Mγ(i,j−1)+1 extending
t(i, j) which is (Mδ,PΣ)-generic for every δ ≤ γ(i, j−1), and whose last
element is Mγ(i,j−1) ∩X. Finally, let t(i, 0) be a condition in Mγ(i,0)+1

extending s(i, 1) such that every member of t(i, 0) \ s(i, 1) contains
a(i, 0), and let si+1 be a condition in Mβi+1+1 extending t(i, 0) which is
(Mδ,PΣ)-generic for all δ ≤ βi+1 and whose last member is Mβi+1

∩X.
Then every member of si+1\si is in Σ(Mα∩H(θ)), as desired. Contin-

uing in this way, the union of the si’s will be the desired condition. ¤

Now we return to our discussion of ψ1. Let ~C be a ladder system
and let κi (i < 3) be an increasing sequence of cardinals greater than
ω2. For a fixed A : ω1 → 2, we will define a totally proper forcing
QA,~κ, ~C which collapses κ2 to have cardinality ω1 and adds a function

f : ω1 → 2ω such that f(δ) is a code for A ¹ δ for each δ < ω1,
together with a witness N to the statement that (κ0, κ1, κ2) codes f

with respect to ~C. In order to improve readability, we will suppress
terms from subscripts which are either clear from the context or which
do not influence the truth of a given statement.

The forcing QA,~κ, ~C is the collection of all q such that:

(1) q is a function from some countable successor ordinal δ +1 into
[κ2]

ℵ0 ;
(2) q is continuous and strictly ⊆-increasing;



22 DAVID ASPERÓ, PAUL LARSON, AND JUSTIN TATCH MOORE

(3) if ν ≤ δ is a limit ordinal, then there is a ν0 < ν and an r ∈ 2ω

such that r codes A ¹ ν and for all ν0 < ξ < ν,

∆(s̄~κ(Nξ, Nν), r) ≥ n(Nξ, Nν).

This forcing can be viewed as a two step iteration in which we first
add, by countable approximations, a function f : ω1 → 2ω with the
property that f(δ) codes A ¹ δ for each δ. Then we force to add a
reflecting sequence (using the partial order described above) for the
set mapping Σf , where Σf (N) is the set of all M in [κ2]

ℵ0 such that
M ⊆ N , M ∩ κ is bounded in N ∩ κ for κ in {ω1, κ0, κ1, κ2} and

∆(s̄~κ(M,N), f(N ∩ ω1)) ≥ n(M, N).

It is not difficult to verify that this is an open set mapping and it
will follow from arguments below that it is in fact an open stationary
set mapping. Hence QA can be regarded as a two step iteration of a
σ-closed forcing followed by a forcing of the form PΣ.

Our goal in this section is to prove the following two lemmas. It
then follows from Theorem 3.10 and standard book-keeping and chain
condition arguments (see, e.g., [12, VIII], [18]) that if there is a inac-
cessible cardinal which is a limit of measurable cardinals, then there is
a proper forcing extension with the same reals which satisfies ψ1.

Lemma 4.2. If κi (i < 3) is an increasing sequence of measurable
cardinals, then QA,~κ is (<ω1)-semiproper.

Lemma 4.3. If P is a totally proper forcing and ~κ, ~C, and Ȧ are P-
names for objects as described above, then P ∗ Q̇Ȧ is 1-semi-complete.

In particular Q̇Ȧ is totally proper.

Remark 4.4. The reader may be puzzled as to why we constructed QA

by first forcing to produce the function f , since there are certainly
functions f in V such that f(δ) codes A ¹ δ. The problem arises in
proving Lemma 4.3 — the argument below does not go through unless
we force the function f as we are building the corresponding reflecting
sequence.

Remark 4.5. It is interesting to note that it is much easier to obtain
the consistency of ψ1[~C] with CH for some ladder system ~C. Suppose

that ~C is a ladder system on ω1, P is a totally proper forcing, and Ȧ is
a P-name for an element of 2ω1 . If M is a suitable model for P ∗ Q̇Ȧ, ~C ,

p is totally (M,P)-generic, and q̇ is forced by p to be an element of

M [G]∩Q̇Ȧ, ~C , then there is a ṙ such that (p, ṙ) is a totally (M,P∗Q̇Ȧ, ~C)-

generic extension of (p, q̇) (those familiar with preservation theorems
for not adding reals with proper forcing should notice that this almost
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never happens). This allows one to easily prove that if ~C is a fixed

ladder system, then we can iterate forcings of the form Q̇Ȧ, ~C without

adding reals (and without the complex iteration machinery which we
are about to employ). This shows that if we allow a fixed ladder system

as a parameter, we can force ψ1[~C]∧CH over any model of ZFC (recall

that 2ℵ0 = 2ℵ1 follows from the existence of a ladder system ~C such
that both ψ1[~C] and ψ2[~C] hold). The difficulty arises when we want

to quantify out the parameter ~C in order to obtain a Π2-sentence. The
final section of [17] contains an example of a pair ψ′1[~C] and ψ′2 of Π2

sentences having these same properties except that ∀~Cψ′1[~C] implies
2ℵ0 = 2ℵ1 .

In [3], the proof of Lemma 5 actually yields the following lemma
(stated in our notation).

Lemma 4.6. Suppose that κi (i < 3) is an increasing sequence of

regular cardinals above ω1 and ~Ci (i < l) (for some l ∈ ω) is a sequence
of ladder systems on ω1. If M is a countable elementary submodel of
H(θ) for θ sufficiently large and E ⊆ [κ2]

ℵ0 is a club in M , then there
is an n such that for any σ in 2<ω there is an N in E ∩M such that

o(xi \ n, yi \ n, zi \ n) = σ

ni(N, M) ≤ n

for all i < l, where xi, yi, yi, and ni are computed from M and N as

in the computation of s
~Ci

~κ (N, M).

We will now prove Lemmas 4.2 and 4.3.

Proof of 4.3. Let P be proper and force that:

• κ̇i (i < 3) is an increasing sequence of regular cardinals above
ω1,

• 〈Ċξ : ξ ∈ Lim(ω1)〉 is a ladder system on ω1, and

• Ȧ is a function from ω1 to 2.

Let Q̇ denote Q̇Ȧ,~κ, ~C , N0 ∈ N1 be suitable models for P ∗ Q̇, G be

an (N0,P)-generic filter, and q be an element of QN0[G]. Observe that
there is a condition in G deciding κ̇i to be some κi for each i < 3.
Furthermore, if δ = N0 ∩ ω1, then there is an A : δ → 2 such that for
every α < δ, there is a condition in G forcing Ȧ ¹ α̌ = Ǎ ¹ α̌. Fix an r
in 2ω such that r codes A ¹ δ.

Notice that, by CH, if p is (N1,P)–semi-generic and a lower bound
for G, then p forces that the value of Ċδ is some element of N1, where
δ = N0 ∩ ω1 (although it need not decide which is this value). Let Ci

δ
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(i < ω) enumerate all cofinal subsets of δ of ordertype ω which are
elements of N1 and let Di (i < ω) enumerate all dense open subsets of
Q which are in N0[G].

We will now build a sequence qi (i < ω) of conditions in QN0[G] such
that:

• qi+1 ≤ qi and qi+1 is in N0[G] ∩Di;
• if ξ is in dom(qi+1) \ dom(qi), then M = qi+1(ξ) satisfies

∆(s̄j(M, N0 ∩ κ2), r) ≥ nj(M, N0 ∩ κ2) for all j ≤ i,

where sj and nj are computed using Cj
δ and ~κ.

If this can be done, then any condition p̄ which is an (N1,P)–semi-
generic lower bound for G will force that there is some i0 < ω such
that Ċδ = Či0

δ , and therefore that qi (i < ω) will have a lower bound
(namely the union of this sequence).

Suppose that we have constructed qi and we wish to construct qi+1.
Following [16, 3.1] (or Lemma 4.1), it is sufficient to demonstrate that
there is an countable elementary submodel M of H((2κ2)+) such that
Di and qi are in M and

∆(s̄j(M ∩ κ2, N0 ∩ κ2), r) ≥ nj(M,N0 ∩ κ2)

holds for all j ≤ i. Let E be the collection of all sets of the form
M ∩ κ2 such that M is a countable elementary submodel of H((2κ2)+)
such that qi and Di are in M . Let n be given as in Lemma 4.6 and let
σ = r ¹ (n + 1). Find an M in E such that

o(xj \ n, yj \ n, zj \ n) = σ̄,

nj(M,N0 ∩ κ2) ≤ n

for all j ≤ i. Then s̄j(M,N0 ∩ κ2) contains r ¹ n as an initial part and
therefore

∆(s̄j(M, N0 ∩ κ2), r) ≥ nj(M, N0 ∩ κ2).

This finishes the proof. ¤
Now we are ready to turn to the proof of Lemma 4.2. Since QA,~κ

decomposes as an iteration of a σ-closed partial order followed by a forc-
ing of the form PΣ, it is sufficient to verify the (<ω1)-semiproperness
of the second factor. In fact we will show that if ~κ consists of measur-
able cardinals, f : ω1 → 2ω is any function, and Σf,~κ is the open set
mapping associated to f as above, then PΣf,~κ

is (<ω1)-semiproper.
For the rest of this section, let ~κ = 〈κ0, κ1, κ2〉 be a fixed increasing

sequence of three measurable cardinals, and fix a normal ultrafilter Ui

on each κi. Let f be any fixed function from ω1 to 2ω and let ~C be a
fixed ladder system on ω1. We will denote PΣf,~κ

by P.
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Let θ be sufficiently large for P and let / be a well ordering of H(θ).
Given subsets M, I of H(θ) with I ⊆ κ2 ∈ M , we use cl(M, I) to
denote the set of values g(η0, . . . , ηn−1), where g is a function in M
with domain κ<ω

2 and {η0, . . . , ηn−1} is a finite subset of I. We will use
the following well-known facts repeatedly in our argument.

Fact 4.7. For θ, / and ~κ as above, if M is an elementary submodel of
(H(θ),∈, /) and I ⊆ κ2 ∈ M , then cl(M, I) is an elementary submodel
of (H(θ),∈, /).

Fact 4.8. Let θ, /, ~κ and ~U be as above. Fix i ≤ 2 and let M be an
elementary submodel of H(θ) such that Ui, κ2 ∈ M . If η ∈ ⋂

(M ∩Ui),
then cl(M, {η}) ∩ κi is an end-extension of M ∩ κi.

Fact 4.9. Let θ, /, ~κ and ~U be as above. Fix i ≤ 2 and let M be an
elementary submodel of H(θ) such that Ui, κ2 ∈ M . Let I be a subset
of κi and let µ ∈ M be a regular cardinal greater than κi. Then

sup(cl(M, I) ∩ µ) = sup(M ∩ µ).

Still fixing θ, /, ~κ and ~U , given an i ≤ 2 and an elementary submodel
M of (H(θ),∈, /) of cardinality less than κi, we will say that (Mξ)ξ<κi

is the iteration of M relative to Ui in case (Mξ)ξ<κi
is the unique ⊆–

continuous sequence such that M0 = M and such that, for all ξ < κi,
Mξ+1 = cl(Mξ, {ηξ}), where ηξ = min(

⋂
(Ui ∩Mξ)). We will also call

(ηξ)ξ<κ the critical sequence of M relative to Ui.
Lemma 4.2 follows from combining Lemma 4.1 with the following

lemma.

Lemma 4.10. Let α < ω1 be a limit ordinal and let 〈Nξ : ξ ≤ α〉
be a suitable tower in H(θ) for P such that each Nξ is a countable
elementary submodel of (H(θ),∈, /). Then there is a suitable tower
〈N∗

ξ : ξ ≤ α〉 in H(θ) such that for each ξ ≤ α:

• N∗
ξ is a countable elementary submodel of (H(θ),∈, /) of the

form cl(Nξ, I) for some I ⊆ κ2;
• if ξ ≤ α is a limit ordinal, then there is a ξ0 < ξ such that

∆(s̄(N∗
ν ∩ κ2, N

∗
ξ ∩ κ2), f(N∗

ξ ∩ ω1)) ≥ n(N∗
ν ∩ κ2, N

∗
ξ ∩ κ2)

whenever ξ0 < ν < ξ, where s denotes s
~C
κ0,κ1

.

Proof. By induction on α. We start by proving the lemma for α = ω,
in which case we will prove the lemma with one additional conclusion,
discussed below. Let (N0

j )j<ω and (η0
i )i<ω be the respective initial seg-

ments of length ω of the iteration of Nω and the critical sequence of
Nω, both relative to U0. Let N0 =

⋃
j<ω N0

j . Let (N1
j )j<ω and (η1

i )i<ω
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be the respective initial segments of length ω of the iteration of N0

and the critical sequence of N0, both relative this time to U1. Let
N1 =

⋃
j<ω N1

j . Finally, let (N2
j )j<ω and (η2

i )i<ω be the respective ini-

tial segments of length ω of the iteration of N1 and the critical sequence
of N1, both relative to U2.

Each model N∗
j will be of the form cl(Nj,

⋃
r<3{ηr

i : i ∈ Ir
j }) for

suitable finite subsets Ir
j of ω (for r < 3). It will follow in particular

that Nj ∩ω1 = N∗
j ∩ω1, so that n(Nj, Nω) = n(N∗

j , N∗
ω). Furthermore,

we will choose the sets Ir
j so that j ⊆ Ir

j ⊆ Ir
j+1 for all r < 3 and all

j < ω. This will ensure that each N∗
j is a member of N∗

j+1 and also that
we already know at the beginning of the construction exactly which set
N∗

ω =
⋃

j<ω N∗
j is going to be. Specifically, N∗

ω will be

cl(Nω,
⋃
r<3

{ηr
i : i < ω}) =

⋃
j<ω

cl(Nj,
⋃
r<3

{ηr
i : i < ω}) =

⋃
j<ω

N2
j .

Let δ = Nω ∩ ω1. Let π be the collapsing function of N∗
ω, and let

C0 = π−1“Cπ(κ0), C1 = π−1“Cπ(κ1) and C2 = π−1“Cπ(κ2).
For each j < ω and r < 3, Ir

j will be of the form

j ∪ (
⋃

j′<j

Ir
j′) ∪ {irk : k < n}

for a suitable increasing sequence (irk)k<n of integers above
⋃

j′<j Ir
j′ to

be defined as follows. Let j < ω be given and suppose that Ir
j′ have

been chosen for all r < 3 and j′ < j.
Set

M0 = cl(Nj,
⋃
r<3

{ηr
i : i ∈ j ∪ (

⋃

j′<j

Ir
j′)}).

Let n = n(Nj, Nω). If n = 0 we can let N∗
j = M0. Otherwise, let

〈p0, . . . , pn−1〉 be f(δ) ¹ n. By the choice of (ηr
i )i<ω (for r < 3) together

with Fact 4.8, each of {η0
i }i<ω, {η1

i }i<ω and {η2
i }i<ω is cofinal in κ0∩N∗

ω,
κ1∩N∗

ω and κ2∩N∗
ω, respectively. Choose integers i0k, i1k and i2k (0 ≤ k ≤

n−1) and models Mt (1 ≤ t ≤ 2n), satisfying the following conditions.

• j ∪ (
⋃

j′<j I0
j′) < i00 < . . . < i0n−1;

• j ∪ (
⋃

j′<j I1
j′) < i10 < . . . < i1n−1;

• j ∪ (
⋃

j′<j I2
j′) < i20 < . . . < i2n−1;

• for all k ∈ {0, . . . , n− 1},
– sup(M2k ∩ κ0) < η0

i0k
and C0 ∩ η0

i0k
has size strictly bigger

than both

|C1 ∩ sup(M2k ∩ κ1)|
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and
|C2 ∩ sup(M2k ∩ κ2)|;

– M2k+1 = clj(M2k ∪ {η0
i0k
});

– if pn−1−k = 0, then

|C0 ∩ sup(M2k+1 ∩ κ0)| < |C1 ∩ η1
i1k
| < |C2 ∩ η2

i2k
|;

– if pn−1−k = 1, then

|C0 ∩ sup(M2k+1 ∩ κ0)| < |C1 ∩ η2
i2k
| < |C2 ∩ η1

i1k
|;

– M2k+2 = cl(M2k+1, {η1
i1k
, η2

i2k
}).

Note the following consequences of these choices (and Facts 4.8 and
4.9 and the fact that each ηr

i is regular), for all k ∈ {0, . . . , n− 1} .

• M2k+1 ∩ [sup(M2k ∩ κ0), η0
i0k

) = ∅;
• M2k+2 ∩ κ0 = M2k+1 ∩ κ0;
• for all µ ∈ {η1

i1
k′

: k′ < k} ∪ {κ1},
sup(M2k ∩ µ) = sup(M2k+1 ∩ µ) < η1

i1k
;

• M2k+2 ∩ [sup(M2k+1 ∩ κ1), η1
i1k

) = ∅;
• for all µ ∈ {η2

i2
k′

: k′ < k} ∪ {κ2},
sup(M2k ∩ µ) = sup(M2k+1 ∩ µ) < η2

i2k
;

• M2k+2 ∩ [sup(M2k+1 ∩ κ2), η2
i2k

) = ∅.
Now it is not hard to check that the string 〈pn−1, . . . , p0〉 is a terminal

segment of s(M2n∩κ2, N
∗∩κ2), which means that we can let N∗

j = M2n.
We note one additional aspect of this construction: each ηr

i is in
each member of Nω ∩ Ui. From this it follows that for each j ∈ ω
and any countable elementary submodel P of (H(θ),∈, /) such that
~U ∈ P ∈ Nω,

cl(P,
⋃
r<3

{ηr
i : i ∈ Ir

j }) ∩ ω1 = P ∩ ω1.

This completes the proof for α = ω.
Now we can prove the lemma for general α < ω1 by induction on α,

α a limit ordinal. Let (Nν)ν≤α be a tower as in the hypothesis of the
lemma for α, and assume that the lemma is true for all β < α. Let
(αj)j<ω be any increasing sequence of limit ordinals with supremum α.
Apply the case α = ω to the sequence (Nαj+1)j<ω to obtain the models
N∗

αj+1 for j < ω. Let N∗
α =

⋃
j<ω N∗

αj+1. Applying the additional
conclusion of the case α = ω, we have that there is a ⊆-increasing
sequence of finite sets 〈Ej : j < ω〉 such that for each j < ω,
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• Ej ⊆ N∗
αj+1 ∩ κ2;

• N∗
αj+1 = cl(Nαj+1, Ej);

• for all countable elementary submodels P of (H(θ),∈, /) in Nα,

cl(P, Ej) ∩ ω1 = P ∩ ω1;

• for all Q such that Ej ⊆ Q ⊆ N∗
αj+1,

∆(s̄(Q, N∗
α∩κ2), f(N∗

α∩ω1)) ≥ n(N∗
αj+1∩κ2, N

∗
α∩κ2) = n(Q∩κ2, N

∗
α∩κ2).

We can now build the rest of the sequence of N∗
β ’s by working sepa-

rately on each interval [αj + 2, αj+1] inside of N∗
αj+1+1 (this omits the

construction for the first interval, which can be taken care of by set-
ting α−1 = −2). Fixing such a j, for each β ∈ [αj + 2, αj+1], let
N0

β = cl(Nβ, Ej+1). Now apply the induction hypothesis inside of

N∗
αj+1+1 to the sequence 〈N0

β : αj + 2 ≤ β ≤ αj+1〉 to obtain the

desired sequence 〈N∗
β : αj + 2 ≤ β ≤ αj+1〉. ¤

5. Concluding remarks

The Π2 sentences which we employed to resolve Problem 1.1 are quite
ad hoc in nature and it is natural to ask whether there are simpler
examples. In particular, it is unclear whether there are Π2-sentences
which have already been studied in the literature which solve Problem
1.1.

Until the present article, the study of preservation theorems for not
adding reals largely centered on the degree to which (< ω1)-properness
can be dispensed with in theorems like Theorem VIII.4.5 of [18] (which
is the precursor to [8] and Theorems 3.3 and 3.10 above). For instance
it is an open problem whether the hypothesis of (< ω1)-semiproperness
can be removed as a hypothesis to Theorem 3.10 if one makes a rea-
sonable large cardinal assumption (an example in [18, XVIII] shows
that some large cardinal assumption would be necessary;1 a different
presentation of this theorem can be found in [9]).

The relevance of this to the present discussion is that Shelah has
shown that a different hypothesis, unrelated to (< ω1)-properness, can
be substituted in order to obtain a preservation theorem for not adding
reals [18, XVIII]. This iteration theorem allows one to establish, for
instance, that the following Π2-sentence is relatively consistent with
CH: For every ladder system 〈Cα : α < ω1〉 on ω1, then there is a club
E ⊆ ω1 such that E ∩ Cα is finite for all α < ω1. This sentence is

1Shelah has indicated in private communication with the third author that there
is an error in his argument in [18, XVIII] where he claims that his iteration coun-
terexample exists in any model of CH.
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a special case of the following stronger statement: For every sequence
〈Dα : α < ω1〉 in which Dα ⊆ α is closed for each α < ω1, there is
a club E ⊆ ω1 such that if δ < ω1, there is a δ0 < δ with E ∩ (δ0, δ)
either contained in or disjoint from Dδ. While it is unknown whether
this Π2-sentence is consistent with CH, it is known that there is a
canonical class of single step forcings which are totally proper and
whose iterations are 1-semi-complete.

The present article underscores that the notion of completeness is
not as robust as one might hope. The results in this paper show that
there is an important distinction between 1-semi-complete iterations
and ω-complete iterations. In [8], the apparent added flexibility of 2-
complete over 1-complete iterations was important to the argument.
While this was largely dismissed as a technical detail at the time, it
may now warrant further investigation.
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