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Are there ‘self-referential’ propositions? That is, propositions that say of them-
selves that they have a certain property, such as that of being false. There can
seem reason to doubt that there are. There are of course self-referential sen-
tences, such as ‘the proposition expressed by this sentence is false’. But a standard
response to these is to deny that they express propositions, in which case the ex-
istence of such sentences would not entail that of self-referential propositions.

At the same time, there are a number of reasons why the question of whether
there are such propositions is significant. The first is as follows. Suppose that
there are indeed no such propositions. One might then hope that while para-
doxes such as the Liar must be grappled with in giving an account of language,
one can give an account of propositions—and of propositional attitudes and acts,
such as belief and assertion—entirely untroubled by such things. That is, one
might hope that although the Liar shows that many plausible principles about
sentences must be given up, no such fate will befall principles about propositions.

Consider, for example, the truth-schema for sentences (i.e. ‘A’ is true iff A,
for a sentence A). The existence of Liar sentences (e.g. ‘this sentence is not true’)
seems to give us strong reasons to reject this: since it shows that we cannot main-
tain it without being classically inconsistent.1 On the other hand, if there are
no Liar propositions (e.g. propositions that say of themselves that they are not
true), then one might hope to maintain the truth-schema for these while re-
maining classically consistent.2 One might even hope to keep both the truth-

1Thus, most recent work on truth for sentences does indeed reject it: e.g. Kripke [1975],
Gupta [1982], Herzberger [1982], McGee [1991], Gupta and Belnap [1993], Maudlin [2004] and
Leitgeb [2005]. (Although there are exceptions to this trend, such as Priest [1979, 1987/2006],
Field [2008] and Beall [2009].)

2For example, Sobel [1992] and Glanzberg [2001] maintain the truth-schema for proposi-
tions, and certainly do not mean to embrace classical inconsistency. Indeed, Glanzberg goes so
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schema and classical logic for propositions. But the existence of self-referential
propositions—in particular, Liar propositions—would frustrate such hopes.

Similarly, the existence of Liar sentences seems to provide strong reasons to
reject bivalence for sentences (i.e. the principle that every sentence is either true
or false). But one might hope to maintain this for propositions.3 Again, however,
the existence of self-referential propositions would seem to dash such hopes.

A further group of reasons why the question of whether there are self-referen-
tial propositions matters is as follows. As I have in effect noted, a standard re-
sponse to Liar sentences is to deny that they express propositions.4 But if there
are self-referential propositions, i.e. Liar propositions, then we would have a ver-
sion of the paradox whose solution would require something fundamentally dif-
ferent from this standard move. Indeed, the existence of such propositions would
seem to challenge this traditional claim about Liar sentences. For standard argu-
ments for this claim use either the truth-schema or bivalence for propositions
(which would be challenged by the existence of Liar propositions). Further,
since the sentential and propositional versions of the paradox would seem to be
very similar, it would seem desirable to give similar solutions. But then, since
the solution in the propositional case will not deny that something expresses a
proposition, it seems that the solution in the sentential case shouldn’t either.

All of this makes a suggestion of Saul Kripke’s particularly intriguing. For
in his celebrated paper on truth (in a footnote, no less) he suggests that as long
as propositions are ‘structured’, it may be possible to apply Gödelian techniques
for generating self-reference directly to them (1975: 713). The result would be
a range of self-referential propositions, including Liar propositions. Thus, since
propositions are indeed structured on many of the most popular—and appar-
ently most plausible—accounts, this would seem to be highly significant. So it
is surprising that Kripke’s suggestion does not seem to have been pursued. The
aim of the present paper, however, is to pursue it and show it to be correct.

The structure of the paper is as follows. §1 contains preliminaries. §2 out-
lines the construction of self-referential propositions. §3 considers objections. §4
spells out why the existence of such propositions matters. And §5 goes through
the construction of such propositions in full.

far as to write: I doubt that anything that failed to validate [it] could count as a reasonable theory
of propositions (2001: 228).

3For example, Skyrms [1984], Sobel [1992] and Gaifman [2000] all give up bivalence for
sentences but maintain it for propositions.

4See, e.g., Skyrms [1984], Sobel [1992], Gaifman [2000] and Glanzberg [2001].
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1 Preliminaries

1.1 Propositions
For the purposes of this paper, then, I assume that propositions are ‘structured’,
i.e. in a way that mirrors the structures of the sentences that express them.5 This
is true on the traditional Fregean and Russellian accounts, and I would argue that
it is likely to be true on any adequate account—but that is not of course a case
that I will make here.6 Indeed, for definiteness, I will assume a broadly Russellian
approach (unless otherwise stated). That is, I will assume that the proposition
that John is tall, for example, is a structured entity built out of John together with
the property of being tall. (I will say much more about how I propose to think
about propositions in §5.) However, everything that I will say could easily be
made compatible with a Fregean approach, or any other on which propositions
have a sentence-like structure.

1.2 Self-Reference
A self-referential proposition is one that says of itself that it has a certain property
and that does not say anything else. Thus, an atomic proposition F (p) (i.e. the
proposition that p is F ) such that p = F (p) would be self-referential. That is, if
there really are such propositions, then they would be self-referential (although
that there are is something that one might doubt: see below). Similarly, a negated
atomic proposition ¬G(q) such that q = ¬G(q) would be self-referential. As
would be a proposition r of the form ∀x(H (x) → J (x)) such that H applies
precisely to r . And so on. This is not a completely precise characterization, but
it will suffice for the purposes of this paper.

It is hard to deny that there are self-referential sentences. As Kripke pointed
out, we can produce one simply by baptizing the string ‘Jack is short’: Jack (1975:
693). In contrast, it seems very far from obvious that there are self-referential
propositions. For, assuming that propositions are Russellian, one analogous to
‘Jack is short’ would be of the form S(p), where S is the property of being short
and p = S(p). But then p would have itself as a constituent: something that is
plausibly impossible (just as it is plausibly impossible for a set to contain itself). If

5However, if there is a mismatch between the surface and the logical form of the sentence,
then it is the structure of the latter that is mirrored.

6On structured propositions see, e.g., Salmon [1986], Soames [1987, 2010], Kaplan [1989],
Fine [2007] and King [2007].
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propositions are instead Fregean, then an atomic proposition about itself would
not have itself as a constituent. But it would be made out of a mode of presen-
tation of a proposition made out of that very mode, which, again, is plausibly
impossible.

One might try rather to produce a self-referential proposition via a sentence
such as ‘the proposition expressed by this sentence is false’. But, as I noted, a
standard response to such sentences is to deny that they express propositions.

1.3 An Alternative Approach
An approach to the question of whether there are self-referential propositions
that is very different from that which I will pursue is that of Barwise and Etche-
mendy [1987]. That work gives an account of truth focused on propositions,
and self-referential propositions play a central role. However, this account does
not in fact seem well-suited to establishing the existence of such propositions.

It uses the non-wellfounded set theory of Aczel [1988] to provide models of
such propositions. For example, a proposition ¬T (p) that says of itself that it
is untrue (i.e. such that p = ¬T (p)) is modelled by something like a set that
contains itself (more precisely: a set that belongs to its own transitive closure7).
But if one is unsure whether there is a proposition of this form about itself—for
example, on the grounds that such a proposition would have to have itself as a
constituent—then one is unlikely to be convinced by the existence of such mod-
els. After all, the existence of such a model no more establishes that there really
is such a proposition than the existence of non-standard models of arithmetic es-
tablishes that there really is a natural number with infinitely many predecessors.
A similar point can be made about any of the other models of self-referential
propositions given in that work, all of which employ non-wellfounded sets in a
similar way. In contrast, the approach pursued below does not use anything like
these non-wellfounded models and, in part because of this, would seem much
better suited to establishing that there really are self-referential propositions.

2 Self-Referential Propositions: Outline
The idea is thus to construct self-referential propositions using a version of Göd-
el’s ‘diagonal’ function. In this section I will outline the construction, and show

7The transitive closure of a set x is the set whose members are the members of x, the members
of the members of x, the members of the members of the members of x, etc.
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how the resulting propositions give rise to propositional versions of paradoxes
such as the Liar, i.e. versions that do not involve expressions, mental states or
similar. The construction will be given in full in §5.

Thus, let Z be the proposition 0 = 0. And let d be a function such that for
any proposition p, d (p) is the result of replacing all occurrences of Z in p with
p itself (if p is Z , then d (p) is simply p). For example, if p is the proposition
¬Z , then d (p) is ¬¬Z , whereas if p is the proposition T (Z) (i.e. the proposition
that Z is true), then d (p) is T (T (Z)). How d behaves with arguments that are
not propositions will not matter, but for definiteness let’s assume that d sends
any such thing to 0.

This function seems straightforward, and so prima facie it seems hard to deny
that it exists (although I will consider attempts in §3). However, given such a
function, it is straightforward to construct self-referential propositions, such as
one that says of itself that it is untrue.

Before giving the construction, I should make clear how I will think about
functions in connection with propositions, that is, how functions are constitue-
nts of propositions. Specifically, I will take it that just as formulas of standard
formal languages can contain function symbols in addition to names and pred-
icate symbols, so propositions can contain functions in addition to objects and
properties. For example, the proposition that the successor of 0 is a number, i.e.
N (s(0)), is built from N , s and 0, and is thus distinct from N (1), which is built
simply from N and 1.

The alternative—to identify such propositions—would seem unnatural. For
consider the proposition that s is an injection, for example: ∀x∀y(s(x) = s(y)→
x = y). There does not seem to be any way of conceiving of this, except as
containing s . But then it is hard to see why one should deny that the instances
of this proposition—or N (s(0))—also contain this function.8

I should add, however, that nothing essential turns on this stance about func-
tions. If one objects to it, one could construct self-referential propositions in a
similar way, but using relations rather than functions (see §3). However, it is
simplest to use functions, and so that is the construction that I focus on.

8In support of the identification of N (s(0)) and N (1) one might note that it is natural to
describe the sentences ‘s(0) is a number’ and ‘1 is a number’ as being ‘about the same thing’
(i.e. 1). However, there are many other cases where we would give a comparable description,
but where we would certainly not want to say that the things in question are constituents of
the propositions expressed. For example, it is natural to describe ‘all odd primes are ϕ’ and ‘all
primes greater than two are ϕ’ as being ‘about the same things’, but we would not want to say
that these infinitely many numbers are constituents of the propositions in question.
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Thus, given d we can construct a self-referential proposition as follows:

¬T (d (¬T (d (Z)))),

i.e. the proposition that d (¬T (d (Z))) is untrue. Call this LP (for ‘Liar proposi-
tion’). LP says of itself that it is untrue: for d (¬T (d (Z))) is just LP (this is what
you get if you replace every occurrence of Z in ¬T (d (Z))with ¬T (d (Z)) itself).

We are then led, via plausible steps, to contradiction. For, as we have seen:

(1) d (¬T (d (Z))) = LP.

But, for any proposition p, ¬T (d (p)) is the proposition that d (p) is not true.
So it seems that ¬T (d (p)) is true iff d (p) is not. In particular:

(2) LP is true iff d (¬T (d (Z))) is not.

But then by (2) and (1) we have:

(3) LP is true iff it is not.

Further, one can construct a whole range of self-referential propositions in
a similar way, giving rise to propositional versions of every other paradox (or
puzzle) that results from a self-referential sentence. For example, a proposition
that says of itself that it is true will give a propositional version of the truth-teller;
one that says of itself that if it is true, then 0 = 1, will give a version of Curry’s
paradox; and so on.

Let M be the proposition Mont Blanc=Mont Blanc. Then, for any proposi-
tion p, we can construct a proposition p* that says of itself exactly what p says
of M . Thus, if p is T (M ), then p* will say of itself that it is true, whereas if p is
T (M )→ 0 = 1, p* will say that if it is true, then 0 = 1. Here is how to do this:
assuming, for simplicity, that Z does not occur in p. First, let p ′ be the result of
replacing all occurrences of M in p with d (Z). Then, to obtain p*, replace all
of the occurrences of Z in p ′ with p ′ itself (i.e. p* = d (p ′)). This proposition
will say of itself whatever p said of M . For p* clearly says of d (p ′) whatever p
said of M (since the occurrences of d (p ′) in p* are precisely those that replaced
occurrences of M in p). But d (p ′) is p*.

Indeed, we can use a similar method to produce propositions that form more
complex networks. For example, propositions p and q such that p says that q is
true, while q says that p is not, or an infinite sequence of propositions with the
structure of Yablo’s paradox.

For example, to produce p and q consider a function e as follows, using In for
the proposition n = n: for propositions r and t , e(r, t ) is the result of replacing,
in r , all occurrences of I1 with r , and all occurrences of I2 with t . Then, if
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p ′ = T (e(I2, I1)), and

q ′ = ¬T (e(I2, I1)),

we are done by letting

p = T (e(q ′, p ′)), and

q = ¬T (e(p ′, q ′))

(it is easy to see that e(q ′, p ′) = q and e(p ′, q ′) = p).
To generate an infinite sequence of propositions, where each member talks

about later ones, we proceed as follows. Consider a function f such that, for any
propositions p0, p1 . . . , pn, . . . , f (p0, p1, . . . , pn, . . . ) is the result of replacing, in
p0, all occurrences of Ii with pi , for each i ≥ 1.9 We can then produce an infinite
sequence of propositions, where each says that the next is true, for example, as
follows. First, for each n ≥ 1, let

q ′n = T ( f (In+1, I1, I2, . . . )).

Then if

qn = T ( f (q ′n+1, q ′1, q ′2, . . . )),

q1, . . . , qn, . . . are as required.10

I will give these constructions more carefully in §5. That is, I will show how
they can be carried out within a natural, but more precisely stated, account of
propositions. First, however, I will consider objections to the claim that propo-
sitions along the lines constructed above exist (§3), and then—having answered
these—I will explain why the existence of such propositions would seem to be
significant (§4). (The outline above will suffice for these discussions.) I will focus
on the example of LP, but similar points apply to the whole range of propositions
constructed above.

9That is, f is an ω-ary function, with a place for each natural number. If desired, one could
give a similar example using a unary function from sequences of propositions.

10The more complicated case, where each proposition says something about all subsequent
ones, is handled as follows. Here is an example where each proposition says that all later ones
are untrue (giving a propositional version of Yablo’s paradox).

q ′n = ¬T ( f (In+1, I1, I2, . . . ), f (In+2, I1, I2, . . . ), . . . )

qn = ¬T ( f (q ′n+1, q ′1, q ′2, . . . ), f (q ′n+2, q ′1, q ′2, . . . ), . . . )

Here ¬T (p1, p2, . . . ) is shorthand for: ¬T (p1)∧¬T (p2)∧ . . . . The sequence q1, . . . , qn , . . . is then
as required. One could give a similar example without infinite conjunctions, but for reasons of
space I omit the details.
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3 Objections
The most obvious possible objection is as follows. It is essential to the above
construction that d can apply to propositions that contain this function. What,
then, about simply denying that a function can ever apply to a proposition that
contains it?

To be effective as a means of denying that there are Liar propositions, one
would similarly have to deny that a property can apply to a proposition that
contains it. For although the construction above was in terms of a function, one
could just as well use a 2-place property D as follows: for any propositions p and
q , D(p, q) iff q is the result of replacing every occurrence of Z in p with p itself.
Now consider:

∀x(D(r, x)→¬T (x)),

where r is: ∀x(D(Z , x)→¬T (x)). It is easy to see that this says of itself that it
is untrue, just as LP does.

What, then, about denying that a function or property can apply to a propo-
sition that contains it? This would seem to be unacceptably restrictive. For
example, there could be no property of being known K that could apply to the
proposition that Z is known in this sense (i.e. K(Z)). Rather, one would need
a hierarchy of properties of being known—leading to problems similar to those
faced by Tarski’s approach to truth.11 Such a blanket prohibition on functions
and properties applying to propositions that contain them would thus seem un-
acceptable.

If properties, for example, can apply to propositions that contain them, then
they cannot be modelled by sets. More precisely, given the standard account of
sets (i.e. Zermelo-Fraenkel set theory with urelements, ZFU), one cannot both
model an n-place property with the set of ordered n-tuples that it applies to, and
model a proposition with a set-theoretic construction of its constituents (i.e. a set
whose transitive closure contains these constituents). Since in ZFU no set can be-
long to its own transitive closure, whereas the members of an ordered n-tuple do
belong to the transitive closure of that n-tuple, and thus to the transitive closure
of any set whose transitive closure contains the n-tuple. Similarly, if a function
can apply to a proposition that contains it, then—given standard set theory—one
cannot both model an n-place function with a set of ordered n+ 1-tuples (in the

11For this approach, see his [1935]. For its problems, see, e.g., Kripke [1975] and Soames
[1999].
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familiar way), and model a proposition with a set-theoretic construction of its
constituents. However, as the above example with the property of being known
makes clear, even if not being able to model properties and functions in ZFU
in this way is a cost, it is one that can be avoided only at the apparently much
higher one of a severely restrictive account of propositions.

But one might at this point have the following concern. As I noted in §1,
one can apparently quite reasonably reject as impossible a proposition of the
form F (p) such that p = F (p), on the grounds that such a proposition would
have to have itself as a constituent. Am I now arguing that we should accept
that a property or function can in some sense ‘contain’ itself? Absolutely not.
I am arguing that we should accept that a property or function can apply to
a proposition that contains it. But this entails that the property or function
‘contains’ itself (in some sense) only if we think of a property or function as
‘containing’ the things that they apply to, and that seems unmotivated once we
recognize the limits of standard set theory when it comes to modelling properties
and functions.

What—as an alternative objection—about denying simply that this particu-
lar function d exists (and similarly that the property D does)? After all, I have
shown that d can be used to generate paradoxes. Isn’t that already ground for
denying its existence? No—for the following reason. To determine the value of
d for a given proposition p, all one needs to know is where one particular entity
(i.e. Z) occurs in p. One does not need to know anything about which things the
properties in p apply to, or about which values the functions in p take. Thus,
given some straightforward notation for propositions (such as that which I am
using, or that of §5), one could easily write a computer program that, given the
notation for a proposition q as input, gives that of d (q) as output. It would thus
seem incredible to respond to the paradox that LP give rise to—not by revising
our naive theory of T —but rather our naive theory of d . After all, when we
consider LP, and other propositions involved in the paradox, it may not be clear
whether T applies to them, but it is completely clear what value d takes when
applied to them.

The claim that d exists is also supported by the fact that it would be extremely
difficult, if not impossible, to give an adequate account of propositions without
resources that would enable one to express a function that is at least coextensive
with d (and which would thus generate paradox in just the way that d does). This
is just a propositional version of the familiar point that an adequate account of the
syntax of a standard formal language would seem to require resources sufficient
to express (a function coextensive with) a sentential version of d .
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Thus, d exists. But then—given that ¬, T and Z of course also exist—it is
hard to see what could prevent a proposition from resulting from their straight-
forward combination as in LP.

4 Significance
So self-referential propositions such as LP exist. Why does that matter?

The first group of reasons concern prima facie plausible principles about
truth, for sentences and propositions. Thus, Liar sentences show that one cannot
maintain the truth-schema for sentences while remaining classically consistent.
But one might hope to maintain this for propositions while so remaining.12 In-
deed, one might hope to maintain both this schema and classical logic for propo-
sitions. But LP dashes such hopes.

For to maintain the truth-schema for propositions is to accept every propo-
sition of the following form, for a proposition p.

(TP) T (p)↔ p

But we have seen that the following proposition is true.

(P1) d (¬T (d (Z))) = ¬T (d (¬T (d (Z))))

While the following is an instance of (TP).

(P2) T (¬T (d (¬T (d (Z)))))↔¬T (d (¬T (d (Z))))

But (P1) and (P2) are classically inconsistent. So one cannot maintain (TP) while
being classically consistent, and one cannot maintain it together with classical
logic (since it entails everything in that logic).

12See, e.g., Sobel [1992] and Glanzberg [2001]. I should note that in that work Glanzberg
represents propositions as sets of possible worlds. But he is quite clear that this is merely a sim-
plifying assumption, and that the claims of the work are not supposed to make essential use of
this. He writes:

The Liar paradox. . . is insensitive to issues of how finely structured propositions
must be. Thus, we may take the possible worlds view of propositions as at least
a simplifying assumption, regardless of whether the familiar arguments, such as
those of [Soames [1987]], ultimately show propositions to be structured entities.
(2001: 245.)
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Consider next bivalence. Many approaches to truth give this up for sentenc-
es—on the basis of considerations about Liar sentences—but hold on to it for
propositions.13 However, LP gives us reasons for rejecting bivalence for proposi-
tions that seem every bit as strong as those that Liar sentences give us for rejecting
it for sentences.

For example, one argument against bivalence for sentences uses the following
rules, where Tr and Fa mean sentential truth and falsity, respectively.

(TR) Tr(‘A’) / A

(FR) Fa(‘A’) / ¬A

For suppose that c = ‘¬Tr(c)’. We can then derive ⊥ from Tr(c): we have
Tr(‘¬Tr(c)’) (by c = ¬Tr(c)), and then ¬Tr(c) (by (TR)). And we can also de-
rive ⊥ from Fa(c): we get Fa(‘¬Tr(c)’), then ¬¬Tr(c) (by (FR)), and then Tr(c);
and then ⊥ as before. But then it seems that we should reject Tr(c) ∨ Fa(c)—
an instance of bivalence for sentences. However, LP of course allows us to give
just the same argument against bivalence for propositions, using propositional
versions of (TR) and (FR). More generally, it seems that any argument that uses
Liar sentences to make trouble for bivalence for sentences, will correspond to an
equally convincing one that uses LP to make trouble for bivalence for proposi-
tions. Thus, if Liar sentences should lead us to give up the sentential principle,
then it seems that LP should lead us to give up the propositional one too.

The second group of reasons that the existence of LP matters concern the
traditional claim that Liar sentences fail to express propositions. For LP of course
gives rise to a paradox that cannot be solved by anything like this standard move.
But, further, it in fact seems to challenge this traditional claim. The first reason
that it does this is simply that standard arguments for this claim use propositional
versions of either the truth-schema or bivalence. But, as we have just seen, LP
challenges these.

For example, one such argument is as follows.14 Consider a Liar sentence of
the form ‘this sentence does not express a true proposition’. That is, suppose
that b = ‘¬∃p(Exp(b , p)∧ T (p))’ (where Exp(x, q) means that x expresses q).
It is surely the case that if b expresses a proposition, than that proposition is
¬∃p(Exp(b , p)∧T (p)). That is, ∀q(Exp(b , q)→ q = ¬∃p(Exp(b , p)∧T (p))).
But now suppose Exp(b , r ). By (TP) and what we have just seen, T (r ) ↔

13For example, Skyrms [1984], Sobel [1992] and Gaifman [2000].
14See, e.g., Sobel [1992] and Glanzberg [2001].
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¬∃p(Exp(b , p)∧T (p)), and thus ¬T (r ). That is, ∀p(Exp(b , p)→¬T (p)), giv-
ing ¬∃p(Exp(b , p) ∧ T (p)); which, by (TP) again, gives T (r )—contradiction.
Thus, ¬∃pExp(b , p). But of course this argument is called into question once
(TP) is.

Alternatively, one might argue for the claim that Liar sentences do not ex-
press propositions using bivalence for propositions, together with (a) the claim
that Liar sentences are neither true nor false, and (b) the claim that if x expresses
p, then x is true (false) if p is true (false). But this argument is also called into
question once bivalence for propositions is.

Finally, the existence of LP also challenges the claim that Liar sentences fail to
express propositions for the following reason. The paradox that LP gives rise to
is obviously very similar to that which these sentences give rise to. It would thus
seem desirable to give similar solutions. But the solution in the propositional
case will not involve anything like the claim that something fails to express a
proposition—so it seems that the solution in the sentential case shouldn’t either.

5 Self-Referential Propositions: In Full
I will now fill in the outline of §2. More precisely, I will show how the construc-
tions of that section can be carried out in a natural, but more precisely stated,
account of propositions. This is essential, because a certain difficulty emerges as
soon as one tries to think clearly about the nature of propositions.

Specifically, the following.15 On the usual way of thinking about things, the
proposition that 1 is a (natural) number, for example, is something like the or-
dered pair of the property of being a number N and 1: 〈N , 1〉. What, then, about
the proposition that the successor of 0 is a number, which (as explained in §2) one
wants to distinguish from this? It seems natural to think of this as (something
like) another ordered pair, but this time of N together with a complex of the
successor function s and 0, i.e. something like 〈s , 0〉. So the proposition would
be 〈N , 〈s , 0〉〉. But the problem is now easy to see. For if the result of combining
1 with N to form 〈N , 1〉 is the proposition that 1 is a number, then shouldn’t
the result of combining 〈s , 0〉with N in just the same way be the proposition that
〈s , 0〉—i.e. this complex—is a number? And, if not, then what is the proposition
that this complex is a number?

15This difficulty is mentioned in Kaplan [1989: 496]. Kaplan does not say in any detail how
it should be solved, but the solution below is in the general direction that he suggests.
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The most natural way of solving this difficulty would seem to be as follows.
Give up on the idea that the proposition that 1 is a number is anything like
〈N , 1〉. Rather, it is (something like) the pair of N and (something like) the ‘or-
dered single’ of 1. I use [1] for the latter component. I will state the resulting
account of propositions more precisely below. But the way in which it solves
the difficulty—i.e. allows us to distinguish propositions that use complexes from
those that mention them—is this. The proposition that 1 is a number is 〈N , [1]〉.
The proposition that the successor of 0 is a number is 〈N , [s , [0]]〉, where [s , [0]]
is a complex of s and [0] (here the complex is used). Finally, the proposition
that this complex is a number is 〈N , [[s , [0]]]〉 (where, of course, [[s , [0]]] is the
ordered single of [s , [0]]; here the complex is mentioned). And these last two
propositions are distinct because [s , [0]] 6= [[s , [0]]]—solving the difficulty.

More generally, propositions are as follows.

5.1 Simple Terms
I assume that for every object x, there is an object [x], called a simple (proposi-
tional) term. I call x the constituent of [x].

What exactly is an object? All that I will assume is that numbers are objects, as
are simple terms, and complex terms and propositions (to be introduced below).
But if one does not think that terms or propositions are really objects, then one
can simply read my uses of ‘object’ as ‘object, term or proposition’.

In ZFU, one can easily define (ordered) n-tuples, for n ≥ 1, such that the
following is satisfied.16 (‘X’ is for ‘extensionality’.)

(X) If the m-tuple of x1, . . . , xm (in that order) is identical to the l -tuple of y1,
. . . yl (in that order), then m = l and x1 = y1, . . . , xm = yl .

In the following, I assume that we have settled on one such definition, and use
n-tuple (and similar) to mean n-tuple (and similar) so defined.

The ordered single of x is at least a natural model of [x]. I will give simi-
lar models of complex terms and propositions below. Now, on one version of
the account being proposed, terms and propositions would in fact be identified
with these models. However, this version would seem to face a problem similar
to that which Benacerraf [1965] raises for identifications of numbers with sets.
That problem is simply that since there are multiple, apparently equally good,

16For example, one can define the n-tuple of x1, . . . , xn as {¹1, x1º, . . . ,¹n, xnº}, where ¹i , xiº

is {{i},{i , xi}}.
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ways of modelling numbers with sets, any such identification would appear arbi-
trary. But any attempt to identify terms and propositions with sets would seem
to face a similar issue: why use one definition of n-tuples rather than another,
for example?17

In the number case, the natural lesson would seem to be that these are sui
generis objects, and so not reducible to sets or anything else. And the natural
lesson in the propositional case would seem to be similar. For this reason, I will
not assume that the models of this section tell us what terms and propositions
really are. Rather, they are meant simply to convey the sort of way in which
these are constructed from their basic constituents, such as objects, functions
and properties.

Indeed, all that one needs to assume about simple terms is the following,
which of course holds in the suggested set-theoretic model by (X).

(XS) If [x] = [y], then x = y.

5.2 Complex Terms
I assume that there are also complex (propositional) terms generated recursively as
follows: if n ≥ 1, f is an n-place function, and t1, . . . , tn are simple or complex
terms, then there is a complex term [ f , t1, . . . , tn]. Once again, f , t1, . . . , tn are the
constituents of [ f , t1, . . . , tn]. And a natural model of [ f , t1, . . . , tn] is the n + 1-
tuple of f , t1, . . . , tn (in that order).

To be clear, I am not suggesting that set theory can be used to give natural
models of functions, at least not in the standard way (see §3). Rather, I am sug-
gesting that it can be used to give a natural model of [ f , t1, . . . , tn]—but in this
model f is an urelement. What then are functions? It is beyond the scope of
this paper to say in any detail. All that is required for my purposes here is that
certain straightforward ones exist (i.e. d and the variants of it considered in §2).
But I would suggest thinking of functions as sui generis objects—as ways of go-
ing from one object to another (or from a number of objects to another)—in the
same way that it is plausible to think of numbers or sets as sui generis objects.

The natural assumptions about complex terms are as follows.

(XC) If [ f , t1, . . . , tn] = [g , u1, . . . um], then n = m and f = g , t1 = u1, . . . ,
tn = um.

17For discussions of versions of this problem for accounts of propositions, see Jubien [2001],
King [2007: 47–50, 127–36] and Soames [2010: 91–94].
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(SC) No complex term is a simple term.

Again, these hold in the suggested set-theoretic model by (X). It is (SC) that en-
sures that the difficulty raised at the start of this section is solved.

5.3 Atomic Propositions
Next, I assume that if n ≥ 1, H is an n-place property, and t1, . . . , tn are (simple
or complex) terms, then there is an object 〈H , t1, . . . , tn〉, called an atomic propo-
sition. H , t1, . . . , tn are the constituents of 〈H , t1, . . . , tn〉.18 A natural model of
〈H , t1, . . . , tn〉 is again the corresponding n+ 1-tuple. I use different brackets for
terms and propositions just for readability.

The natural assumptions are: (XA), i.e. the analogue of (XC) for atomic
propositions, and that no atomic proposition is a term. These hold in the sug-
gested model by (X), as long as no property is a function (which I assume).
〈H , [a]〉 is the proposition that a is H , 〈H , [ f , [a]]〉 is the proposition that

f (a) is H , and so on.
Thus, 〈N , [1]〉 is the proposition that 1 is a number; 〈N , [s , [0]]〉 is the propo-

sition that s(0) is a number; and 〈N , [[s , [0]]]〉 is that to the effect that [s , [0]] (i.e.
this complex term) is a number. The first and second are distinct by (XA), to-
gether with the fact that no simple term is a complex one (i.e. (SC)); and the
second and third are distinct for the same reason. So the difficulty raised at the
start of this section is solved as anticipated.

(What about the distinctness or otherwise of the first and third propositions?
These will indeed be distinct as long as 1 is distinct from the complex term
[s , [0]]. This is highly plausible. However, it does not follow from the explicit
assumptions above, since none of these have any bearing on what numbers are.)

Here is a further example that will help make clear the way in which the
account works—and the way in which it allows us to distinguish propositions
that are about (i.e. mention) terms from those that have them as constituents
(i.e. use them). Thus, let i be the identity function. Then the proposition that
i(0) is 0, that is, 〈=, [i , [0]], [0]〉, is of course true. —Despite the fact that the
two constituents of this proposition are distinct (by (SC)). For the proposition
is not about the constituents. What (SC) commits us to is rather the falsity of

18Note that the defined use of ‘constituent’ is slightly narrower than that of previous sections.
For on the former 0 is not a constituent of the proposition 〈N , [0]〉; rather, it is a constituent of
a constituent of this proposition.
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〈=, [[i , [0]]], [[0]]〉 (the identity proposition that mentions the terms that the
last proposition used).

5.4 Compound Propositions
Finally, I assume that there are negated and conjoined propositions generated recur-
sively as follows: if p and q are atomic, negated or conjoined propositions, then
there is a negated proposition (¬, p) and a conjoined proposition (∧, p, q). I also
call negated and conjoined propositions negations and conjunctions (respectively);
¬ and p are the constituents of (¬, p), and ∧, p and q are those of (∧, p, q). The
idea is that ¬ and ∧ are abstract entities corresponding to the English words ‘not’
and ‘and’ (respectively), but nothing will turn on what exactly these are. Nega-
tions and conjunctions are once again naturally modelled by pairs and triples
(respectively). The natural assumptions are similar to those in the atomic case:
i.e. (¬, p) = (¬, q) entails p = q ; no negation is a conjunction, atomic proposi-
tion or term; and similarly for conjunctions. These will hold in the model given
(X), together with the assumption that no function is a property.

If H and J are 1-place properties and a and b are objects, then (¬, 〈H , [a]〉)
is the proposition that it is not the case that a is H ; and (∧, 〈H , [a]〉, 〈J , [b ]〉) is
that to the effect that a is H and b is J . And so on.

One could straightforwardly extend this account to quantified propositions,
but for reasons of space I will not do this here.

5.5 Self-Referential Propositions
We now have a precisely stated framework in which to construct self-referential
propositions, following the outline of §2.

Thus, let Z be the proposition 〈=, [0], [0]〉. And let d be a function such
that for any proposition p, d (p) is the result of replacing all occurrences of Z
in p with p itself (as before, d (Z) = Z). For example, if p is (¬,Z), then d (p)
is (¬, (¬,Z)); and if p is 〈T , [Z]〉, then d (p) is 〈T , [〈T , [Z]〉]〉. Once again, for
definiteness, let d (x) = 0 for any x that is not a proposition. As we saw in §3, it
seems hard to deny that such a function exists.

In addition to the arguments of §3, one can also provide set-theoretic models
along the lines suggested above in which such a function exists. That is, §§5.1–
5.4 describe a family of set-theoretic models of propositions, in which functions,
properties, ¬ and ∧ are urelements. But it is straightforward to extend any mem-
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ber of this family to one in which d exists. (For reasons of space I leave this as
an exercise for the reader.)

The construction of self-referential propositions can then proceed as in §2.
Thus, let LP be the following.

(¬, 〈T , [d , [(¬, 〈T , [d , [Z]]〉)]]〉)

As before, we have:

(1*) d ((¬, 〈T , [d , [Z]]〉)) = LP.

That is, LP says of itself that it is untrue.
We then have a purely propositional version of the Liar. For if p is a proposi-

tion, then (¬, 〈T , [d , [p]]〉) is that to the effect that d (p) is not true. So it seems
that this should be true iff d (p) is not. In particular:

(2*) LP is true iff d ((¬, 〈T , [d , [Z]]〉)) is not.

Giving:

(3*) LP is true iff it is not.

Similarly for the other propositions constructed in §2 (i.e. other self-referential
propositions and those that form more complex networks).

Therefore, given a precise and apparently natural account of propositions,
the constructions of §2 can be straightforwardly carried out. The above should
also make plausible, however, that this will similarly be possible on any alterna-
tive such account (at least on which propositions are structured).

Thus, if propositions are structured, they can be self-referential, and a range of
apparently plausible claims about truth will have to be rethought.19
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