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Late in the 19th century, Cantor introduced the notion of the ‘power’, or the ‘cardinality’, 

of an infinite set.1 According to Cantor’s definition, two infinite sets have the same 

cardinality if and only if there is a one-to-one correspondence between them. And what 

Cantor was able to show was that there are infinite sets that do not have the same 

cardinality in this sense. Further, since he equated the cardinality of a set with its size, he 

took this result to show that there are infinite sets of different sizes: and, indeed, this has 

become the absolutely standard understanding of the result. The aim of this paper, 

however, is to challenge this standard understanding—and, more generally, to argue that 

we do not, in fact, have any reason to think that there are infinite sets of different sizes.  

 I should underscore that I am not, in any way, going to challenge Cantor’s 

mathematics: my arguments are aimed solely at the standard account of the significance 

of this mathematics. But I trust that the interest of the challenge is nevertheless clear: for, 

without this claim about significance, Cantor cannot be said to have established that there 

are different sizes of infinity.  

 The plan for the paper is as follows. In §1 I will give an initial argument against 

the claim that Cantor established that there are infinite sets of different sizes. This initial 

argument will proceed by way of an analogy between Cantor’s mathematical result and 

Russell’s paradox. Then, in §2, I will give a more direct argument against the claim that 

Cantor established that there are infinite sets of different sizes. Finally, in §3, I will 

consider objections to the arguments; and I will also consider what the consequences are, 

if they work.2 

                                                
1 See, e.g., Cantor [1883].  
2 I said that Cantor’s equation of the size of a set with its cardinality has become absolutely standard. 
However, I should note that there have been challenges to this equation: in particular, there have been 
attempts to develop alternative accounts of infinite size on which two sets can be of different sizes even if 
there is a one-to-one correspondence between them; see, e.g., Mancosu [2009] and the work cited there. As 
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1. An Initial Argument 

 
The aim of this section is thus to give an initial argument against the claim that Cantor 

established that there are infinite sets of different sizes.  

 I should start by stating (what I will refer to as) Cantor’s account of infinite size. 

Thus, as I said in the introduction, according to Cantor’s notion of cardinality, two 

infinite sets have the same cardinality iff there is a one-to-one correspondence between 

them. Further, Cantor equated the cardinality of a set with its size. Together, these claims 

thus yield the following account of when two infinite sets are of the same size.3,4 

 
(C1) For any infinite sets A and B, A is the same size as B iff there is a one-to-one 

correspondence from A to B. 

 
Further, according to Cantor’s notion of cardinality, the cardinality of A is at least as 

great as the cardinality of B iff there is a one-to-one function from B to A.5,6 Thus, once 

again equating claims about cardinality with claims about size (as Cantor did, and has 

become standard), we get the following.  
 

                                                                                                                                            
will become clear, the challenge that I will raise in this paper is of a very different sort: it is a challenge to 
the claim that if two infinite sets are the same size, then there is a one-to-one correspondence between 
them, whereas the challenges just mentioned are to the converse of this claim. A thorough discussion of 
these alternative challenges is, unfortunately, beyond the scope of this paper. However, one reason why one 
might be somewhat sceptical about their prospects is that we do seem to be in possession of a very good 
argument for the claim that they challenge (i.e., the claim that the existence of a one-to-one correspondence 
between two sets entails that they are of the same size); see §2 below (although see Mancosu [2009] for a 
dissenting evaluation of a similar argument). In contrast, I will argue that the best arguments for the claim 
challenged here can in fact be shown to fail. However, I should also note that everything that I will say here 
could easily be made compatible with the success of these alternative challenges, if it turns out that they are 
successful. 
3 A function from A to B is a one-to-one correspondence iff: (i) any two members of A are sent to different 
members of B; and (ii) every member of B has some member of A sent to it.  
4 Cantor proposed not only (C1), but also its generalization to all sets (whether infinite or finite). For 
simplicity, I will initially focus only on the claim for infinite sets. But the claim for finite sets will be 
discussed further in §3.2.  
5 A function from B to A is one-to-one iff any two members of A are sent to different members of B.  
6 An alternative definition would say that the cardinality of A is at least as great as the cardinality of B iff 
there is an onto function from A to B; where a function from A to be B is onto iff every member of B has 
some member of A sent to it. These two definitions are equivalent, given the axiom of choice (which says 
that for any set C of disjoint sets, there is a set D that contains exactly one member of each member of C). 
For the purposes of this paper, I will assume that these two definitions are equivalent (but nothing that I 
will say will make essential use of this fact).  
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(C2) For any infinite sets A and B, A is at least as large as B iff there is a one-to-one 

function from B to A.  
 
So by ‘Cantor’s account of infinite size’ I will mean this pair of claims, (C1) and (C2).  

 Now, given this account of infinite size, to establish that there are infinite sets of 

different sizes, it suffices to establish that there are infinite sets A and B without a one-to-

one correspondence between them. And this Cantor did with the following 

groundbreaking result.7 

 
Cantor’s Theorem. For any infinite set A, there is no one-to-one function from the 

powerset of A to A.  

  
The proof of the theorem is then as follows. 

 
Proof. Suppose that f is a one-to-one function from P(A) into A, and consider C = {x ∈ 

A: ∃y ∈ P(A) such that f(y) = x and x ∉ y}. But now consider f(C). And suppose first 

that f(C) ∈ C. Then (by the definition of C, and the fact that f is one-to-one) it follows 

that f(C) ∉ C. So f(C) ∉ C. But then (by the definition of C again) f(C) ∈ C: which is a 

contradiction.  

 
So that (allegedly!) is how Cantor established that there are different sizes of infinity. The 

aim of this section, however, is to give an initial argument against the claim that Cantor 

really established this. This initial argument is in terms of Russell’s paradox, and the 

basic idea is as follows. There is a very close analogy between the proof of Cantor’s 

theorem and the derivation of Russell’s paradox: indeed, they are really just the same 

argument in slightly different settings. And, similarly, there is a very close analogy 

between the following two claims: (a) the claim that Cantor established that the powerset 

of A is always larger than A; and (b) the claim that the reason for—or the diagnosis of—

Russell’s paradox is that there are more pluralities than there are objects. Indeed, the 

analogy between Cantor’s proof and the paradox is so tight that it would seem that these 

two claims must stand or fall together. However what I will give is an argument against 

                                                
7 If A is a set, then the powerset of A is the set of all of A’s subsets. I will use P(A) for this set.  
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the claim about Russell’s paradox: and this will thus give an initial argument against the 

claim about Cantor’s result.  

 I will start, then, by giving the derivation of Russell’s paradox. This is the proof 

of a contradiction from Frege’s Basic Law V, which (in slightly updated form) is as 

follows; here (and throughout) uppercase ‘X’, ‘Y’, etc. range over pluralities, while 

lowercase variables range over objects; thus, in the law, ‘ext’ is a term intended to denote 

a function from pluralities to objects (and ‘ext’ stands for extension; so the idea is that 

ext(X) is the ‘extension’ of X).8 

 
(V) ∀X∀Y(ext(X) = ext(Y) ↔ ∀z(Xz ↔ Yz)) 

 
Thus, (V) says that ext is a one-to-one function from pluralities to objects (X and Y are 

the same plurality iff for any z, Xz iff Yz; so (V) says that ext(X) = ext(Y) iff X and Y 

are the same plurality). What the paradox shows, however, is that there can be no such 

function. For consider the plurality R, consisting of those objects x such that: for some 

plurality Y, ext(Y) = x and x is not in Y. First suppose ext(R) is in R: then (by the 

definition of R, together with the fact, from (V), that ext is one-to-one) ext(R) is not in R. 

So ext(R) is not in R. But then (by the definition of R again) ext(R) is in R: which is of 

course a contradiction. That, then, is the derivation of the paradox.  

 Clearly, the argument here is essentially just that of the proof of Cantor’s theorem 

(with the plurality R defined here in just the same way that C was in that proof, and 

playing the same role in the argument). Thus suppose (in accordance with orthodoxy) that 

Cantor’s argument does indeed establish that, for any infinite set A, A has more subsets 

than members. Then, presumably, what Russell’s paradox shows—what the reason for 

the paradox is—is that there are, similarly, more pluralities than there are objects. And, 

assuming Cantor’s account of infinite size, that is indeed a very natural diagnosis of the 

paradox. But—natural or not—we will see that it cannot be right: and we will see this by 

considering a variant of the paradox that is so similar to the original that it must have the 

same diagnosis; but, also, it will be completely clear that the diagnosis of the variant has 

                                                
8 Frege’s original version of the law was about concepts rather than pluralities. I am stating it in terms of 
pluralities since these seem to raise fewer distracting issues. However, to remain relatively close to Frege’s 
original version I will (inessentially) assume that there is an empty plurality (i.e., a plurality X such that for 
any z, ¬Xz).  
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nothing to do with size; and, in that case, it will follow that the diagnosis of the original 

similarly cannot have anything to do with size.  

 So the first thing is to give the variant paradox. Now, (V) attempts (in effect) to 

assign a distinct object to each plurality (i.e., each plurality is assigned an ‘extension’, 

and (V) says that distinct pluralities get distinct extensions). But now suppose that—

inspired, perhaps, by the suggested diagnosis of Russell’s paradox—we rein back our 

ambitions, and try instead merely to assign every definable plurality its own object. That 

is, suppose that all we try to do is to assign a distinct object to every plurality that is 

defined by a formula of our language. Thus, instead of (V), we propose the following; 

here ϕ(z) stands for a formula of our language (and so (V*) is a schema, with a different 

instance for each different formula).  

 
(V*) ∀X(∀z(Xz ↔ ϕ(z)) → ∀Y(ext(X) = ext(Y) ↔ ∀z(Xz ↔ Yz))) 

 
So (V*) is, in effect, the restriction of (V) to definable pluralities. And, if the problem 

with (V) was that there are more pluralities than objects, then presumably (V*) will be 

entirely unproblematic: because clearly there are not more definable pluralities than 

objects, because there are no more definable pluralities than there are formulas to do the 

defining; thus, since formulas just are objects, there are no more such definable 

pluralities than there are objects; and so (V*) should not be problematic in the way that 

(V) was.9  

 But unfortunately (V*) is problematic: and in just the same way that (V) is. That 

is, we can derive a paradox from (V*) in just the same way that we did from (V). For 

consider the plurality R, defined just as before: i.e., let R be the plurality of those objects 

x such that for some plurality Y, x = ext(Y) and x is not in Y. Then, as before, we have 

ext(R) is in R iff it is not: for suppose first that ext(R) is in R; then (by the definition of R, 

together with the fact that R is defined by the formula ∃Y(z = ext(Y) ∧ ¬Yz), and the fact 

that ext is one-to-one for definable pluralities) we get that ext(R) is not in R; so ext(R) is 
                                                
9 In case one is unconvinced by the claim that formulas are objects, one could give a version of this 
argument using merely the fact that there will be a one-to-one correspondence between the formulas of our 
language and the natural numbers, together with the fact that if there is a one-to-one correspondence 
between two sets, then they are of the same size. (The latter is the direction of Cantor’s account that I will 
not challenge; indeed, I will give an argument for this direction of the account in §2.)  
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not in R; but then (by the definition of R, again) we get that ext(R) is in R; so 

contradiction.  

 Thus, even if we restrict attention to definable pluralities, we still get a paradox. 

And, further, the paradox involves essentially the same argument that Russell’s original 

paradox did. That is, the variant paradox is extremely similar to the original. And, given 

that, they are presumably going to have the same (or very similar) diagnoses. But—as we 

have seen—the diagnosis of the variant cannot have anything to do with size (because 

there are not too many definable pluralities to allow each to get its own object). And so it 

seems that the diagnosis of Russell’s original paradox similarly cannot have anything to 

do with size. But (as we also saw above) the idea that Russell’s paradox should be 

diagnosed in terms of size would seem to stand or fall with the claim that Cantor 

established that there are different sizes of infinity. So we seem to have an initial 

argument against the claim that Cantor established that there are different sizes of 

infinity.  

 That, then, concludes the work of this section. In the next section I will try to give 

a more direct argument against the claim that Cantor established that there are different 

sizes of infinity. 

 
 
2. A More Direct Argument 

 
So, the aim of this section is to give a direct argument to the effect that we are not 

justified in believing Cantor’s account of infinite size (i.e., (C1) and (C2) of §1). Thus, 

the first question to ask is: what reason might we have for believing this account?  

 And one thought one might have here is the following.  

 
Surely (C1) simply states what it is for two infinite sets to be of the same size; and, 
similarly, surely (C2) simply states what it is for one infinite set to be at least as large as 
another. That is, surely the right-hand-sides of (C1) and (C2) simply unpack what it is for 
the relation mentioned in the left-hand-side to hold. So—similarly—surely we can justify 
our belief in (C1) and (C2) simply by reflecting on the nature of these relations 
mentioned in the left-hand-sides.  

 
So perhaps there is a very simple and easy account of why we should believe Cantor’s 

account? Unfortunately, though, tempting or not, this thought is hopeless. For the size of 
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a set (infinite or otherwise) is an intrinsic property of that set: that is, it is a property that a 

set has purely in virtue of what it is like; it is not a property that it has in virtue of its 

relations to distinct sets, or to functions between it and such sets.10 Thus, for two sets 

(infinite or otherwise) to be of the same size is simply for them to have a certain sort of 

intrinsic property in common; it is not for these sets to stand in some sort of relation to 

certain functions between the two sets. So (C1) does not state what it is for two sets to be 

of the same size. And, for analogous reasons, (C2) does not state what it is for one set to 

be at least as large as another. 

 Of course, this is not to say that (C1) and (C2) cannot still be true: but they 

cannot, it seems, be seen to be so simply by reflecting on the nature of the same-size 

relation, or on the nature of the at-least-as-large-as relation. So, I ask again: what reason 

might there be for believing Cantor’s account of infinite size?  

 It is perhaps useful, at this point, to separate out the different directions of the 

claims of the account (and perhaps also to reproduce the claims).  

 
(C1) For any infinite sets A and B, A is the same size as B iff there is a one-to-one 

correspondence from A to B. 

(C2) For any infinite sets A and B, A is at least as large as B iff there is a one-to-one 

function from B to A.  

 
In each case, the left-to-right direction goes from a claim about size to a claim asserting 

the existence of a function; while the right-to-left direction goes (of course) from the 

functional existence claim back to the claim about size. And, actually, we seem to have 

pretty good reasons for believing the latter directions of the account (i.e., the function-to-

size claims). Consider, for example, the function-to-size direction of (C1): this can 

apparently be argued for as follows.11 

 
Suppose first that A is some infinite set, let x be some member of A, and let y be some 
object that does not belong to A. Now let A* be the result of removing x from A, and 
replacing it with y. Surely A* is the same size as A: for the size of a set does not depend 

                                                
10 To put this last point slightly more carefully: the size of a set depends only on which members a set has; 
it does not depend on its relations to sets other than its members, or on its relations to functions from it to 
other sets, etc.  
11 For a similar argument, see Gödel [1947: 176].  
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on which members it has, just on how many it has; and so swapping one member for 
another should not affect size.  
 But now suppose that B is some other set, and that there is a one-to-one 
correspondence from A to B. In this case, B is, in effect, the result of simultaneously 
replacing each member of A with a distinct object. And, just as in the A* case (and for 
similar reasons), it seems that B must thus be the same size as the set one started with; 
that is, it seems that A and B must be the same size here.  

 
Thus, we seem to have good reason to believe the function-to-size direction of (C1); and 

a similar argument can be given for the corresponding direction of (C2) (but this time 

using the principle that a set is at least as large as each of its subsets).  

 But now what about the size-to-function directions of (C1) and (C2)? Ideally, at 

this point in the paper I would consider the best arguments that been given for these. 

Unfortunately, however, it is hard to find any arguments for these directions of the 

claims.12 

 Before one has thought much about infinite sets, one might be tempted to argue as 

follows. Suppose that A and B are infinite sets, and suppose (for the sake of argument) 

that they are the same size. Then surely one can just construct a one-to-one 

correspondence from A to B: simply first choose some member of A, then choose a 

member of B to send it to; then another member of A, and another member of B to send it 

to, and so on. Surely (the thought would go) if A and B are really the same size, then this 

will eventually yield a one-to-one correspondence: for if one runs out of members of A 

before one runs out of members of B (say), then surely that just shows that A is smaller 

than B (and similarly if one runs out of members of B first).  

 Unfortunately, though (although this argument looks fine in the finite case), it is 

of course hopeless in the infinite one. For, even if A and B are both the same set (for 

example, the set of natural numbers), there is no guarantee that simply choosing members 

will lead to a one-to-one correspondence (for example, suppose that one chooses 

members of ‘A’ in the obvious order, i.e., 0, 1, 2, etc., but that one chooses members of 

                                                
12 For one very striking failure to give such an argument, see (again) Gödel [1947]. Gödel starts the paper 
by asking if Cantor’s account of infinite size is ‘uniquely determined’. He then proceeds to give an 
argument for the function-to-size direction of this account (his argument is similar to that which I have just 
given). And he then concludes from this that Cantor’s account is uniquely determined—without any 
apparent recognition of the fact that he has (in effect) just argued for a biconditional by arguing for one 
direction of it. Similarly, set theory textbooks typically present Cantor’s account with very little in the way 
of accompanying argumentation (for example, Hrbacek and Jech [1999] simply mention a case involving 
theatregoers and seats, and then say that Cantor’s account is ‘very intuitive’ ([1999: 65–66])). 
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‘B’ in the order 0, 2, 4, etc.; then one will obviously not end up with a one-to-one 

correspondence from A to B). So the idea that simply choosing members will lead to a 

one-to-one correspondence, as long as A and B are the same size, is hopeless.13  

 So that argument won’t work. But it is not, I take it, that proponents of Cantor’s 

account think that these size-to-function claims must simply be taken on faith. Rather, the 

thought (I take it) is that they are sufficiently obvious that we are entitled to believe them, 

even in the absence of any explicit argument (and I must confess that that is what I 

thought, when I first learnt set theory). But why should it seem obvious that if a pair of 

sets stand in a certain size-relation, then there should exist a certain sort of function 

between them—especially in light of the fact that it is far from obvious how to actually 

construct such a function? The implicit thought, surely, is something like the following 

(what I am about to say is about (C1), but it could easily be rephrased so as to be about 

(C2)): 

 
Let A and B be infinite sets, and suppose, for the sake of argument, that there is no one-
to-one correspondence between them. Well, what possible reason could there be for why 
there is no such function? The only possible reason, surely, is that the two sets are of 
different sizes—for what else could be relevant here? That is, if there is no one-to-one 
correspondence between A and B, then they must be different sizes; but that is logically 
equivalent to the relevant direction of (C1) (i.e., that if A and B are the same size, then 
there is such a function).  

 
Thus, I suggest that the reason why the size-to-function claims seem obvious is because 

of something like such an inference to the best explanation: i.e., the thought is that if 

there isn’t a one-to-one correspondence between two sets, then the only possible (and 

hence the best!) explanation is that one set must be bigger than the other.14  

What I will argue in the rest of this section, however, is that—natural as this 

thought may be—it is mistaken. For (I will argue) in the paradigm cases of pairs of 

infinite sets without a one-to-one correspondence between them, there is a better 

explanation for why there is no such function; so the upshot will be that we should no 

                                                
13 I will discuss an attempt to strengthen this argument, using the fact that every set has a least well-
ordering, in §3.1 (but I will argue that the modified argument also fails).  
14 I will take for granted here that it makes sense to talk about explanations of mathematical facts (of 
course, if it doesn’t make sense, then that would seem to make things even worse for Cantor). For a 
discussion of such explanations, see Mancosu [2011].  
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longer believe Cantor’s account of infinite size (because the reason that it seemed 

obvious turns out to be a mistake).  

In making my case, for the sake of definiteness I will focus on the set of natural 

numbers, N, and its powerset (but similar points could be made about any infinite set A 

and its powerset). Thus, what I will argue is that there is an explanation of why there is 

no one-to-one correspondence between N and P(N) that is better than that which uses the 

hypothesis that one is larger than the other.  

So what is this better explanation? Well, the thought is simply as follows. Here is 

a completely banal and general fact of mathematical life: there are very often ‘connecting 

principles’ between mathematical domains, D1 and D2, which say that for every object d1 

of D1, there is an object d2 in D2, that is related to d1 in a certain way; and these principles 

are often pretty self-evident to anyone who understands the natures of the domains D1 

and D2. So, to illustrate, here is an example where D1 = D2 = P(N). 

 
(1) For every set of numbers A, there is another set of numbers B, that contains 

precisely the numbers that are not in A.  

 
This, surely, is pretty self-evident to anyone who knows what sets of numbers are. 

Another example where D1 = NN (i.e., the set of functions from N to N), and D2 = P(N), 

is as follows. 

 
(2) For any function f from N to N, there is a set of numbers A, that contains 

precisely those numbers that f sends to 0.  

 
Again: surely pretty self-evident to anyone who knows what the domains D1 and D2 are. 

And now here is another example, where D1 = NP(N) and D2 = P(N).  

 
(3) For any function f from N to P(N), there is a set A that contains precisely those 

numbers that are not members of the sets that they are sent to by f.  

 
Again, this principle is surely pretty self-evident to anyone who knows what functions 

from N to P(N) are, and also what sets of numbers are. But it turns out that this last 

principle gives us a completely sufficient explanation for why there is no one-to-one 
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correspondence from N to P(N): for why, in particular, there is no onto function from N 

to P(N).15 This explanation, starting with (3), is as follows. Let f be any function from N 

to P(N). Then, by (3), there is a set A containing precisely those numbers that are not 

members of the sets they are sent to (by f). And so suppose that for some n, f(n) = A; and 

suppose, to begin with, that n is in A. Then, by the definition of A, n is not in f(n), i.e., n 

is not in A: so it turns out that n is not in A, after all. But then, by the definition of A 

again, it follows that n is in A: which is a contradiction. So, given only the connecting 

principle (3), we can completely explain why there can be no onto function from N to 

P(N) (and thus why there cannot be a one-to-one correspondence from N to P(N)).  

 What I now want to argue is that this is in fact a better explanation than any in 

terms of the sizes of N and P(N). But I should first just make clear that this really is a 

different explanation. Actually, though, that is relatively obvious. For the explanation that 

I have proposed starts from a fact connecting functions from to N to P(N) (on the one 

hand) and members of P(N) (on the other); and this is simply a very different fact from 

the (alleged) fact that P(N) is bigger than N (for the latter, as we have seen, concerns only 

the intrinsic properties of N and P(N), and not functions between them); thus, the two 

explanations start from very different facts, and so they are different.  

 But—one might respond— 

 
OK. The explanation that you have proposed really is different. But only because it is 
incomplete: yes, it starts from something that is not (in and of itself) about size; but this 
starting point must itself be explained; and surely that explanation will bottom-out at a 
fact about the relative sizes of N and P(N).  

 
This response is not very promising, however. For, while it may be correct that my 

explanation is incomplete (i.e., perhaps (3) must, as the respondent contends, itself 

ultimately be explained), nevertheless, it is hardly plausible that this explanation should 

take us back to the sizes of N and P(N). For, surely, whatever this ultimate explanation of 

(3) is going to look like, it is going to be essentially similar to the ultimate explanations 

of other connecting principles, such as (1) and (2). And surely one does not want to say 

                                                
15 The explanation I am about to give corresponds to the proof of an alternative version of Cantor’s theorem 
(i.e., the version that says that there is no onto function from N to P(N)). The points that I will make could 
also be put in terms of an explanation corresponding to the proof of the version of the theorem in §2; 
however, it is slightly simpler to focus on the explanation that I do.  



 12 

that every connecting principle from D1 to D2 must ultimately be explained in terms of 

the sizes of the domains D1 and D2 (or anything along those lines). Rather, it is surely 

much more plausible to say that these principles are explained by what sorts of things the 

members of the domains are (facts about the conditions for their existence, for example). 

For instance, in the case of each of (1–3), the ultimate explanations are plausibly all 

going to start from the fact that for any property of numbers, there is a set of numbers that 

contains precisely the numbers with that property.16  

 Thus, the proposed explanation of why there is no one-to-one correspondence 

from N to P(N) really does seem to be an alternative explanation to that in terms of size. 

But is it better? Well, of course it is: because it only uses things that we are committed to 

anyway (i.e., the connecting principle (3); for it is not as if, if we accept that P(N) is 

larger than N, then we would give up on (3)). That is, the proposed explanation is clearly 

more economical than that in terms of size. And, thus, since the only reason we could 

find for believing Cantor’s account in the first place was a sort of inference to the best 

explanation, it would seem to follow that we do not, in the end, have any reason to 

believe that account.  

 
 
3. Objections and Consequences 

 
In this section I will consider objections my arguments; and I will also consider what the 

consequences are, if the arguments work.  

 
 
3.1. Least Well-Orderings 

 
Now, in §2 I considered an argument for Cantor’s account based essentially on the 

following thought: surely if A and B are the same size then one can simply construct a 

one-to-one correspondence between them, i.e., by successively choosing members of the 

two sets. But I rejected this argument as hopeless: because even if A and B are the very 

                                                
16 This basic fact about sets of numbers may also explain how many such sets there are, but that in no way 
tells against what I am saying: for what is crucial is simply that this basic fact is not in and of itself a fact 
about size.  
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same set, there is no guarantee that the proposed construction will yield a one-to-one 

correspondence. One might, however, be tempted to respond as follows. 

 
OK, unlike in the finite case, it is not true that any way of choosing members will yield a 
one-to-one correspondence. But every set has a least well-ordering.17 And as long as one 
chooses the members of A and B in line with least well-orderings of the sets,18 then, as 
long as they really are of the same size, one will end up with a one-to-one 
correspondence. So Cantor was right after all! 

 
Unfortunately, however, this response simply begs the question. For what this response is 

simply taking for granted is that if A and B are the same size, then their least well-

orderings will be isomorphic. For if these well-orderings are not isomorphic then the 

construction described will not yield a one-to-one correspondence. But what is being 

taken for granted is then stronger that what we are trying to prove: because an 

isomorphism between ≺A and ≺B (where these are well-orderings of A and B, 

respectively) is (among other things) a one-to-one correspondence between A and B. 

Thus, the proposed argument simply begs the question. 

 
 
3.2. What about the Finite Case? 

 
An alternative objection focuses on the version of Cantor’s account for finite sets. For 

(the objection goes) surely this version of Cantor’s account is correct (i.e., surely for any 

finite sets A and B, they are the same size iff there is a one-to-one correspondence 

between them). But one might then worry that if my argument works in the infinite case, 

then it will work in the finite case too: giving the unacceptable result that we are not 

justified in believing even the finite version of Cantor’s account. In fact, however, there 

is no need for concern here. For, as I have already hinted, it is actually clear how this 

                                                
17 A well-ordering of A is a relation ≺ on A that is anti-symmetric (if x ≺ y then not y ≺ x), and such that 
every non-empty subset of A has a ≺-least element (i.e., for every subset X of A, there is x ∈ X such that 
for every y ∈ X, if y ≠ x then x ≺ y). The domain of a relation ≺ is the set of things x such that for some y, 
x ≺ y or y ≺ x. And a relation ≺ is isomorphic to a relation ≺' iff there is a one-to-one correspondence f 
between the domains of ≺ and ≺' such that for any x and y in the domain of ≺, x ≺ y iff f(x) ≺' f(y). Finally, 
≺ is the least well-ordering of A iff for any well-ordering ≺' of A, ≺ is isomorphic to an initial segment of 
≺'.  
18 I.e., as long as for some least well-orderings ≺A and ≺B of A and B, respectively, one first chooses the 
≺A-least member of A, and sends it to the ≺B-least member of B; and one then chooses the second ≺A-least 
member of A, and sends it to the second ≺B-least member of B; and so on.  



 14 

version of Cantor’s account can be supported. For, in the finite case, one can simply give 

the argument that is ‘hopeless’ in the infinite case: because given finite sets of the same 

size A and B, one can always construct a one-to-one correspondence between them 

simply by choosing successive members of them. Thus, in this case, there is no need to 

fall back on an inference to the best explanation, and, similarly, there is no danger that 

my challenge will generalize in the way that we were worried about.  

 
 
3.3. Significance 

 
A different sort of worry one might have about my arguments concerns not their cogency 

but their significance. For, one might think something like the following. 

 
OK, perhaps you’re right that Cantor did not actually establish anything about size. Still, 
he did introduce a rich and fruitful mathematical concept (i.e., cardinality). And why 
should we really care if his results are really about size, as opposed to being merely about 
cardinality (which one might call ‘size*’)? 

 
I must admit that I find this line of thought incredible: when I learnt (or came to believe!) 

that Cantor had shown that there are different sizes of infinity, I thought that it was one of 

the most exciting mathematical results I had ever encountered. I would not have been 

anywhere near as excited if all I had come to believe was that Cantor had provided a new 

technical notion (with certain similarities to the notion of size, perhaps) and shown that 

there are infinite sets which this new notion puts into different categories. Surely I am not 

alone in feeling this way!  

 Another way to put essentially the same point is this. Cantor’s theorem surely 

belongs to a general category of mathematical results whose significance in large part 

depends on their connection to pre-theoretic notions. Another good of example of such a 

result is that of Kurt Gödel and Alonzo Church to the effect that the set of arithmetical 

truths is not computable (i.e., that no computer could output precisely the true sentences 

of the language of arithmetic).19 Now, the way in which the Gödel-Church result is 

actually proved is by providing some precise mathematical definition of computability, 

and then showing that the set of arithmetical truths is not computable in this sense. But it 

                                                
19 For this result, see, e.g., Boolos and Jeffrey [1989: 176]. 
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is surely obvious that the significance of the technical result depends in very large part on 

the adequacy of the definition of computability (i.e., on whether it is really coextensive 

with the pre-theoretic notion). And it is surely similarly obvious that the significance of 

Cantor’s result depends in very large part on the adequacy of his technical notion of size 

(i.e., on whether or not what I have been calling his account of infinite size is correct). 

But, if that is right, then the significance of my conclusion should also be clear (because it 

gets to the heart of the significance of Cantor’s fundamental result!).  

 
 
3.4. Consequences 

 
So much, then, for objections. I want to end the paper by saying something about what 

the consequences are, if the arguments that I have given are correct. And the first natural 

question to ask here is of course this: so are there, after all that, different sizes of infinity? 

For, if we accept that Cantor did not succeed in answering this question, then it is of 

course very natural to ask what the answer really is. Now, giving any sort of definite 

answer is well beyond the scope of this paper. However, I do want to suggest that—while 

we work on that!—the most reasonable view to take is that there is exactly one size of 

infinity. For, this is clearly the simplest hypothesis, and, if the above arguments work, 

then Cantor did not give us any reason to prefer an alternative. Of course, I am not 

suggesting that we are entitled to believe this one-size-hypothesis with anything like the 

certainty that previously we thought that we were entitled to believe Cantor’s hypothesis. 

But the simplicity of the former does seem to give it a good claim to being our best 

working hypothesis.  

 I want to make one further point about the picture that emerges, if my arguments 

are correct. And I will for the sake of definiteness once again focus on N and P(N) (but 

similar points could be made about any infinite set and its powerset). Now, what Cantor 

did of course establish is that there is no one-to-one correspondence between N and P(N). 

But what I have been arguing is that this does not tell us anything about the sizes of the 

sets, because the reason why there is no such function is not that the sets are of different 

sizes; rather, the lack of such a function is due to basic connections between, on the one 

hand, functions between N and P(N), and, on the other, the members of P(N) (cf. (3) of 
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§2). That is to say: on the picture that emerges (if my arguments are correct), these 

functions cannot be used to measure N and P(N) because there is a basic connection 

between the functions and the sets that gets in the way. So, if I am right, then one way to 

think about the situation is this: these functions are simply not the ‘independent 

observers’ that Cantor needed them to be. 

 
 
Thus, I hope to have shown that, for all we know, there is only one size of infinity.20 
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