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The notion of a proposition plays a central role in the philosophy of mind (throu-
gh the notion of a propositional attitude) and the philosophy of language (throu-
gh the theory of speech acts). However, as we have known for a long time, it is
subject to paradoxes. A natural response is to stratify propositions into some
sort of hierarchy; and, ever since Russell proposed his ‘ramified theory of types’
in 1908, this has been the strategy of choice here. But there is a problem that
any such response must overcome, if it is to be adequate. Unfortunately, this
problem does not seem to have been recognized before, let alone overcome. The
upshot would seem to be that we are not in possession of an adequate hierarchical
response after all. The aim of this paper, however, is to remedy this situation, by
providing a hierarchical account that does overcome the problem in question.

The structure of the paper is as follows. In §1, I will introduce some para-
doxes for propositions, and explain how the appeal to some sort of hierarchy
would seem to be a natural and effective response to these. But in §2 I will ex-
plain the problem that this strategy faces, and how existing accounts, including
Russell’s, fall foul of this problem. In §§3 and 4 I will then explain how one can
give a hierarchical account of propositions that overcomes the problem: §3 gives
the basic idea, while §4 gives the account in full. In the appendix I give a model
of the account in standard set theory.

There is something that I should make clear at the outset. This paper is about
hierarchical accounts of propositions, but I do not assume that these are neces-
sarily superior to non-hierarchical accounts. Rather, I suspect that the situation
with propositions is similar to that with sets (for example). Thus, in that case, the
simplest, and in many ways the most natural, response to the paradoxes is a hier-
archical theory: Zermelo-Fraenkel set theory (ZF), which is hierarchical in the
sense that every set belongs to a ‘level’, and can only contain as members things
at lower levels. Despite its virtues, however, this hierarchical theory has certain
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limitations: for example, it would seem that according to it sets cannot play the
role of extensions of predicates (at least not in general; for, since there is no set of
all sets, the extension of ‘is a set’ cannot itself be a set, for example). The moral, it
seems, is that we are going to want to have at our disposal both hierarchical and
non-hierarchical set theories: since although non-hierarchical sets will be able to
play roles that hierarchical sets will not be able to, it seems likely that this will
come at a significant cost in terms of simplicity and naturalness. The attitude of
this paper is that we should expect the situation with propositions to be similar:
in this case too, hierarchical accounts (properly developed) will be simpler and
more natural than non-hierarchical alternatives, but they will also face certain
limitations; as a result, we are going to want to have at our disposal both sorts of
account. The aim of this paper is simply to show how our hierarchical account
should go.1

1 Paradoxes for Propositions and the Promise of
Hierarchy

I should start by laying out some assumptions I will make in this paper. The first
is that propositions are ‘structured’: i.e. structured in a way that more or less
mirrors the structures of the sentences that express them. There are of course
‘unstructured’ accounts of propositions: for example, the account of them as
sets of possible worlds (see, e.g., Stalnaker [1984]). But these accounts have well
known—and apparently serious—problems, such as that of ‘logical omniscience’
(see, e.g., Stalnaker [1984: 79–99]). Thus, at least for the purposes of this paper, I
will simply assume that propositions are structured. The second, more specific,
assumption concerns the constituents of these propositions. Thus, there are two
main broad approaches here: the ‘Fregean’ and the ‘Russellian’. According to
the former, propositions are constructed out of modes of presentation, whereas,

1I have mentioned sets, but one could make similar points with reference to other areas where
there are paradoxes and both hierarchical and non-hierarchical responses (e.g. truth). For non-
hierarchical set theories see, e.g., Forster [1995] and Maddy [1983]; for a non-hierarchical ap-
proach to propositions see, e.g., Prior [1971]. The reader should consult these works to get a
sense of the extent to which going non-hierarchical requires sacrificing simplicity and natural-
ness.
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according to the latter, they are constructed out of objects and properties.2 In
the initial discussion, I will assume a Russellian approach to propositions. How-
ever, everything I will say could easily be rephrased so as to assume a Fregean
approach, if desired.3

I now move on to giving some paradoxes for propositions. The simplest of
these is a version of Russell’s paradox. Thus, suppose that R is a property that
applies to propositions of the form F (a) (for some property F and object a) iff F
does not itself apply to the proposition in question. We then consider a proposi-
tion R(b ) (for some object b ) and ask: does R apply to this proposition? Suppose
first that it does. Then, by the definition of R, it must not apply to it. So R does
not apply to this proposition. But then—by the definition of R again—R must
apply to the proposition—contradiction! And hence the paradox.4

For another, suppose that at time t I say: any proposition that I assert at t is
untrue. (And suppose that I do not utter anything else at t .) Then I would seem
to have asserted a proposition of the form ∀p(A(p)→ ¬T (p)), where A is the
property of being asserted by me at t , and T is the property of being true. Call
this proposition q . Since q is the only proposition with property A, it would
seem that it must be true iff it is not—another contradiction, and hence another
paradox.

Thus, the notion of a proposition is susceptible to paradoxes. A very natural
response would seem to be to propose a hierarchy, along something like the fol-
lowing lines. At level 0, one would start with objects that are neither properties
nor propositions. At level 1, one would have properties that apply to these, and
propositions that are about them. At level 2, one would have properties that
apply to the things are levels 0 and 1, and propositions that are about them—and
so on, with a level for each natural number (and perhaps even beyond).

Russell’s ‘ramified theory of types’ is a more complicated response of essen-
tially this sort. Since discussing the ramified theory of types in any detail would
greatly complicate things, without changing the essential points, I will focus on
the simpler response just sketched. But it will be clear to readers familiar with

2Note that this ‘Russellian’ approach is to be distinguished from Russell’s ramified theory of
types: the former is a general approach to propositions, while the latter is a much more specific
theory, concerning the hierarchical structure of the space of propositions.

3For the Fregean approach to propositions, see, e.g., Frege [1892]. For the Russellian one,
see, e.g., Russell [1903: 42–52] and Kaplan [1977].

4This paradox is similar to Russell’s ‘appendix B’ paradox (see his [1903: 527–28]). However,
I focus on the paradox in the text, rather than on that one, because the appendix B paradox
involves ‘classes’ of propositions which seem to introduce unnecessary complications.
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Russell’s theory that what I will say applies to it just as it applies to the response
sketched.5

This sort of hierarchy would seem to completely block the paradoxes. To
illustrate, consider the version of Russell’s paradox. On such a hierarchical ac-
count, any property R will belong to a definite level of the hierarchy, and will
only apply to things at lower levels. But then the closest one can get to the prop-
erty R that caused the problem would be a property R* such that for some definite
level n: R* will apply to a level n proposition of the form F (a) iff F does not
itself apply to it. But now any proposition of the form R*(b ) (for some object
b ) will be of level greater than n. And so one will not be able to derive a contra-
diction by applying the biconditional in the definition of R* to this proposition
(because that biconditional only holds for level n propositions). Hence the para-
dox dissolves. And the other paradox that I raised is similarly blocked.6

5The main difference between the response sketched and the ramified theory of types is that
the latter is ‘stricter’ in various ways (e.g. there can be no properties that apply both to objects
and to level 1 properties). There is one point of interpretation that I should mention, however. In
taking the ramified theory of types to be a response of the same sort as that sketched I am taking
the former to be an account of properties and structured propositions. This clearly seems to be
the correct interpretation of Russell [1908]: see, e.g., Goldfarb [1989]. But there is some debate
about how exactly Whitehead and Russell [1927] is to be interpreted: see, e.g., Goldfarb [1989],
Linsky [1999] and Klement [2010]. However, since I am in this paper concerned with structured
propositions, I will ignore understandings of the ramified theory on which it is not an account
of these (e.g. on which it is an account of linguistic entities). For more on the ramified theory of
types see, e.g., Ramsey [1925], Gödel [1944], Chihara [1973], Church [1976], Anderson [1989]
and Klement [2004].

6Thus, the paradoxes are blocked in virtue of the fact that on the sort of hierarchical account
sketched properties can only apply to things at lower levels of the hierarchy. However, the sort
of account sketched will also have the feature that properties and propositions can only quantify
over things at lower levels. And since both of the paradoxes that I have given involve quantifica-
tion (in characterizing the property R I said ‘for some property F and object a’; and the version
of the Liar paradox clearly involved quantification over propositions), one might wonder if one
could get by simply with these restrictions on quantification. However, although it is possible
that a hierarchical account that only had such restrictions on quantification would block the para-
doxes in the text (it would depend on the details), there are alternative versions of these paradoxes
that do not involve quantification. The most obvious example would be a version of Russell’s
paradox simply for properties: i.e. consider a property Q that applies to a property F iff F does
not apply to itself. Another example would be a version of the Liar paradox that does not involve
quantification: e.g. involving a proposition p of the form ¬T (p), or a similar proposition con-
structed using a ‘diagonal’ function for propositions. Thus, restrictions on quantification will
not be sufficient for an adequate account: one will also need the restrictions on which things a
property can apply to.
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However, it is not only that such a hierarchy will block the paradoxes: this
approach would also seem to be natural in its own right, a point that can be seen
as follows. To determine whether a proposition is true, one must determine
whether the properties that the proposition is about apply to the objects that
it is about. But on a non-hierarchical account one of these properties might be
truth (or might depend on truth) and one of these objects might be the proposi-
tion itself. But there would then seem to be no way of determining whether the
proposition is true—which is surely undesirable!

Thus, such a hierarchical account would seem to be an effective guard against
paradoxes and natural in its own right. Unfortunately, such an account also faces
a serious problem.

2 A Problem for Hierarchical Accounts
This is as follows. On a hierarchical account, no property can apply to a proposi-
tion that is itself built out of that property. But what then about propositions of
the form ¬¬p, for example? For here we have an operator—negation—applying
to a proposition that is itself built out of that operator. But if, across the board,
propositions of the form F (F (a)) are disallowed, then surely propositions of the
form ¬¬p should be too. For why should negation be allowed to simply exempt
itself from the hierarchical restrictions?

Could one argue that it should be allowed to do this because it is ‘logical’? No.
For our paradoxical property R, for example, would also seem to be logical: the
notions that are used to define it, such as quantification over properties, would
themselves seem to be purely logical ones.7

Could one instead argue that negation should be exempt from the restrictions
because it is an operator, rather than a property? That is, because it has a distinc-
tive ‘pattern of combination’ (it can only combine with something ‘proposition
shaped’). Again: no. For we could easily have raised our version of Russell’s
paradox not in terms of a property R, but in terms of an operator R© such that,
for any proposition of the form * p (for an operator *), R©* p is true iff ** p is
not. Exempting negation from the restrictions would thus seem to be ad hoc.

On the other hand, applying these to negation would seem to eviscerate logic.
For it is surely an important and central feature of our concept of negation that
it can be iterated. Further, the problem is by no means limited to iteration. For

7To spell this out: R can be defined as follows. For any proposition p, R(p) iff there is some
property F and object a such that p = F (a) and ¬F (p).
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example, just as one wants there to be propositions of the form ¬¬p, so one
wants there to be both propositions of the form¬(p∧q), and of the form¬p∧q .
But, on a hierarchical account, it is hard to see how this could be permissible,
unless ‘¬’ and ‘∧’ mean different things in the two cases. For, on such an account,
for no properties F and G can there both be a proposition of the form F (G(a))
and one of the form G(F (b )). But again one surely does want an account of
negation and conjunction on which there is a single negation operator ¬, and a
single conjunction operator ∧, such that there are propositions of both of these
forms.8

We thus have a dilemma: either render the approach ad hoc (by simply ex-
empting certain connectives and quantifiers from the hierarchical restrictions)
or eviscerate logic (by not doing that!). Needless to say, neither option would
seem to be very attractive.

That is the problem that hierarchical accounts face. Unfortunately, existing
approaches do not seem to recognize it, let alone adequately address it. For ex-
ample, Russell in [1908] (and Whitehead and Russell in [1927]) simply allow the
standard connectives and quantifiers to flout the hierarchical restrictions, with
no apparent recognition that there is a move being made here that requires jus-
tification. But once one does recognize this, it is hard not to see the resulting
theory as ad hoc.9 And commentators on Russell (and Whitehead) have seemed
to be similarly unaware of the problem.10 Further, while subsequent versions of
Russell’s theory, such as those of Church [1976] and Anderson [1989], represent

8Further, quantifiers give rise to a similar problem. For we surely want there to be proposi-
tions both of the form ∀x∃yH (x, y) and of the form ∃y∀xH (x, y), without having to say that
‘∀x’ and ‘∃y’ mean different things in the two cases. But, again, it is hard to see how this could
be legitimately permissible on a hierarchical account.

9As I said above, there are ways in which Russell’s theory differs from the simpler sort of
hierarchical account sketched in §1. However, it is easy to see that none of these differences help
at all with the problem that I have raised. For on Russell’s theory, just as on the simpler account,
there can be no propositions of the form F (F (a)). But then how can it be acceptable for there
to be propositions of the form ¬¬p (for example)? Since no justification for this differential
treatment is given, it is hard not to see the resulting theory as ad hoc.

10Thus, there is an extensive body of literature discussing the foundations of Russell’s theory:
see, e.g., the work cited in note 5. Further, large sections of this work are devoted to the question
of how Russell’s hierarchical restrictions might be justified (see, especially, Gödel [1944], Chihara
[1973], Goldfarb [1989] and Linsky [1999]). But in none of this work does there seem to be
an awareness of the fact that this question is made considerably harder by the fact that these
restrictions are allowed to be flouted in certain central cases: for, once one allows exceptions
in the cases of standard logical operators, it is hard to see what could justify insisting on the
restrictions in every other case.
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improvements on the original in many respects, they simply exempt standard
logical operators from the hierarchical restrictions—without justification, and
with no recognition that there is a problem here—in just the way that Russell
did. Indeed, I know of no hierarchical account of propositions, either a version
of Russell’s theory, or some other approach, that recognizes or addresses this
problem. It seems therefore that we are not in possession of an adequate hier-
archical account after all.11 The aim of the rest of the paper is thus to give a
hierarchical account that does overcome this problem.

3 Solving the Problem: The Basic Idea
The basic idea behind the account that I will propose is this: rather than building
propositions out of objects and properties, we instead build them out of objects
and functions. Specifically, rather than building the proposition that John is tall,
for example, out of John, together with the property of being tall, we should
instead build it out of John together with the ‘tallness function’, i.e. the function
that sends tall things to the truth value t , and everything else to the truth value
f . The suggestion is that, across the board, we should construct propositions
out of functions, rather than properties, in this way.12

How is this appeal to functions going to help with our problem? The point,
essentially, is this: there are two ways in which one can ‘combine’ functions.
Thus, given two functions f and g , one way of combining them is simply to
apply one to the other, i.e. to feed one of the functions into the other as input, so
as to produce some new thing as output. But there is another way of combining

11Indeed, with the exception of unstructured accounts in terms of possible worlds (which, as
I have noted, face serious problems), no non-hierarchical account of propositions seems to have
been worked out in any detail. (Prior [1971] proposes such an account but does not so develop
it.) It would seem therefore that this problem with hierarchical accounts means that we are not
in possession of any adequate response to the paradoxes that has been worked out in any detail.

12I should forestall a possible confusion at this point. For Russell’s ramified theory of types
gives a hierarchy not only of properties and propositions but also of (what he calls) ‘proposi-
tional functions’. One might thus wonder if what I am suggesting is not something that Russell
has already proposed. That is not so, however. Firstly, Russell’s propositional functions are not
constituents of propositions (they seem rather to be the result of replacing certain constituents
of propositions with variables). Secondly, if these propositional functions are literally functions
at all, they are not functions to truth values (and thus nothing like the tallness function just men-
tioned), and they will not help with the problem raised above in anything like the way in which
functions to truth values will, as will become clear once I explain that way in which functions to
truth values help with the problem.
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two functions: and this is to form a new function by ‘composing’ them. Thus,
the ‘composition’ of f and g , written g ◦ f , is the function constructed out of
f and g that, given some input x, works as follows: one first feeds x into f , to
produce some interim output y, which one then feeds into g , to produce the
final output z.

If one is constructing propositions out of functions, there are then two dis-
tinct ways in which one can form a proposition out of these, because there are
two distinct ways in which the functions can combine ‘within’ the proposition.
On the one hand, there will be propositions of the form g 〈 f 〉, where the propo-
sition’s truth value is computed by applying g to f .13 But, on the other hand,
there will also be propositions of the form g ◦ f 〈a〉, where the truth value is
computed by first applying f to a, and then applying g to the result.

This versatility of functions of course contrasts with the situation with prop-
erties: for, given two properties F and G, one can form propositions in which
one property is applied to the other (i.e. the proposition that F is G, or the propo-
sition that G is F ), or in which one property is applied to something built out of
the other; but there is no further way in which the properties can be combined
within a proposition.

But still: how does this help with the problem? The point is that, if one is
giving a hierarchical account of propositions, and of functions out of which to
build these, then there will be hierarchical restrictions that prohibit a function
from taking as input, or as giving as output, anything at an equal or higher level
to the function itself. Thus, self-application, for example, will be prohibited,
and so there will be no propositions of the form f 〈 f 〉, whose truth value would
be computed by applying f to itself. On the other hand, there will be no such
prohibition on self-composition. To see why not, suppose for example that g
is a function from natural numbers to natural numbers, such as the squaring
function. Then—since we are giving a hierarchical account—g will be at a higher
level than the things that it takes as input and output (i.e. the natural numbers).
But consider what we would be doing if we were to compose this function with
itself—to form g ◦ g—and then to apply this new function to some number n: all
we would be doing would be, first, applying g to n to produce some new number
m (= n2), and then applying g again to this new number to produce the final
result (= m2 = n4). That is, all we would be doing would be applying g to things

13I use angle brackets to distinguish propositions constructed out of functions from the values
of functions. That is, I will use g 〈 f 〉 for the proposition just mentioned, to distinguish it from
the value of g at f (i.e. what g outputs when given f as input), which I will denote g ( f ).
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lower down in the hierarchy, and producing such things as a result. Thus, there
would seem to be nothing that any right-minded hierarchicalist should object to
here.

So, on our hierarchical—but functional—approach, although we will not have
propositions of the form f 〈 f 〉, we will have those of the form f ◦ f 〈a〉 (for ex-
ample). And this, it turns out, is all that we need to solve the problem.

To illustrate, consider again the issue with propositions of the form ¬¬p.
On the functional approach, ¬ will simply be the familiar truth function: i.e.
the function that sends t to f , and f to t (and everything else to f 14). For ex-
ample, let g be the tallness function (which sends tall things to t and everything
else to f ). The proposition that John is tall is then g 〈John〉; and the double nega-
tion of this is simply ¬ ◦ ¬ ◦ g 〈John〉, i.e. the proposition whose truth value is
computed by first applying the tallness function to John, and then applying ¬
twice to the result, giving t iff John is tall. Thus, this proposition has its truth
value computed in just the way that one would expect of the double negation of
John is tall. But—crucially—this computation in no way violates the hierarchi-
cal restrictions, because ¬ is only ever applied to things at strictly lower levels of
the hierarchy (i.e. truth values), and never to anything built out of this operator.
Further, the issue with negation and conjunction, as well as other similar ones,
are handled in just the same way.

Thus, going functional would seem to solve the problem.
But—one might worry—won’t this admission of self-composition allow the

paradoxes to return? No. To illustrate consider again the version of Russell’s
paradox. This involved a property R applying to propositions of the form F (a)
iff F does not itself apply to the proposition. If one was to try to reintroduce
this paradox with functions, exploiting the possibility of self-composition, one
would presumably need a function r such that for any proposition of the form
g 〈a〉 (of some definite level of the hierarchy, say) r ◦ g 〈a〉will be true iff g ◦ g 〈a〉 is
not. This would seem to be the natural way of trying to reintroduce the paradox,
with self-composition in place of self-application. And if one could find such an
r , that would seem to lead to contradiction (just consider a proposition of the
form r 〈b 〉, and ask whether r ◦ r 〈b 〉 is true). Fortunately, however, it is easy to
see that there will be no such r within the proposed framework. For, since the
truth value of r ◦ g 〈a〉 is determined by composing r with g—rather than applying
r to g 〈a〉—this truth value can only depend on the truth value of g 〈a〉 (and not on

14Or, strictly, everything else of lower level than ¬ to f . (I will sometimes omit such qualifica-
tions below.)
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anything more fine-grained, as it were). But the impossibility of an r as required
then follows from the fact that there will be some true propositions of the form
g 〈a〉 such that g ◦ g 〈a〉 is true, and others such that g ◦ g 〈a〉 is not. For example,
let v be the ‘truth values’ function, which sends truth values to t and everything
else to f , and let h be the ‘humanity’ function, which sends humans to t and
everything else to f . Then consider v〈t 〉 and h〈Obama〉. These are both true
and of the requisite form. Yet v ◦ v〈t 〉 is true—because the truth value of v〈t 〉 is
a truth value—while h ◦ h〈Obama〉 is not—because the truth value of h〈Obama〉
is not human. But then r ◦v〈t 〉will be true iff r ◦ h〈Obama〉 is, and so it cannot
be that for any proposition of the form g 〈a〉, r ◦ g 〈a〉 is true iff g ◦ g 〈a〉 is not.
Thus, there can be no such function r , and self-composition does not seem to
allow the paradox to re-emerge.

Of course, this argument shows merely that one way of trying to reintroduce
one paradox fails. However, I will now move on to giving the proposed account
in full. In the appendix I will show how to construct a model of this account
in standard set theory (i.e. ZF or ZF with urelements, ZFU), from which it will
follow that the account is consistent, and thus that any attempt to derive a con-
tradiction from this account—i.e. any attempt to derive a paradox within it—will
fail.

4 Solving the Problem: The Account in Full
The proposed account is thus as follows.

4.1 Level 0
At level 0 one starts with objects that are neither functions nor propositions. In
particular, this level contains the truth values t and f . I call the inhabitants of
this level ‘objects’.

4.2 Level 1
Level 1 is constituted as follows. To start with one has everything that one had
at level 0: just because it is simplest, and less restrictive, to have a cumulative
hierarchy.

But the first new things that one has are all the n-place ‘unstructured’ func-
tions from objects to objects (for positive natural numbers n). Thus, these are
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functions that are not themselves built out of other functions. Rather, they are
‘simple’, or ‘atomic’, ways of going from any given n objects to some other ob-
ject. I will assume a ‘plenitudinous’ account of these: intuitively, if X is a plu-
rality of (ordered) n + 1-tuples of objects, such that each n-tuple of objects is
the initial segment of exactly one member of X , then I will assume that there is
at least one unstructured function corresponding to X (in the obvious way). I
will not try to say more about what exactly unstructured functions are. Rather
the proposed account will be compatible with any account of these (that is plen-
itudinous in the sense just described, although even this assumption could be
significantly weakened if desired). For example, the proposed account will be
compatible with both extensional and non-extensional accounts of these. (By
an extensional account I mean one on which functions that send the same argu-
ments to the same values are identical.)

Level 1 also contains ‘structured’ functions from objects to objects, construct-
ed as follows. Thus, I assume that we have at our disposal infinitely many ‘vari-
ables’, which do not themselves belong to any level of the hierarchy. Further,
I assume that these are divided up into infinite subclasses, one for each natural
number n; and I refer to the variables belonging to the subclass corresponding
to n as ‘level n’ variables. These will of course be used to range over level n of
the hierarchy.15

Structured functions are then constructed as follows. Thus, if f is an n-place
unstructured function of level 1, and a1, . . . , an are each either objects or level
0 variables, then f 〈a1, . . . ,an〉 is a structured function of level 1. This can be
thought of as something like the n+1-tuple of f together with a1, . . . , an. Again,
I will not try to say what exactly structured functions are. Rather, the proposed
account will be compatible with a range of different accounts of these. All I as-
sume is that structured functions are identical iff they have the same constituents
in the same order; and that no structured function is an unstructured function.

Thus, if a1, . . . , an are objects, then f 〈a1, . . . ,an〉 is a constant (i.e. 0-place)
function, and its value is f (a1, . . . ,an). On the other hand, if some ai is a variable,
then f 〈a1, . . . ,an〉 is a ‘real’ (i.e. m-place for positive m) function. For example,
if a1 is the only variable, then this will be a 1-place function—from objects to
objects—and its value at an object b will be f (b ,a2, . . . ,an). Similarly when more
than one of the ai s is a variable.

15An alternative, perhaps ‘purer’, implementation of the basic idea might try to do without
these variables (i.e. making do with nothing more than objects and functions). However, it sim-
plifies things to use variables, and so, at least for the purposes of this paper, this is what I will
do.
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That is one way in which level 1 structured functions are constructed. But
it is not the only way: for there are also functions constructed via ‘composi-
tion’ (that, after all, is why we moved to functions in the first place). Thus, let
f 〈a1, . . . ,an〉 and g 〈b1, . . . , bm〉 be level 1 structured functions of the sort just con-
structed.16 Then f 〈a1, . . . ,ai−1,◦g 〈b1, . . . , bm〉,ai+1, . . . ,an〉 will also be a struc-
tured function of level 1. ◦ should be thought of as an additional constituent of
this function (distinct from the inhabitants of the levels of the hierarchy and the
variables). Thus, this function should be thought of as something like the n+ 2-
tuple of f , a1, . . . , ai−1, this additional constituent ◦, the structured function
g 〈b1, . . . , bm〉, ai+1, . . . , an.17

To illustrate how these functions work, let+ and× be unstructured addition
and multiplication functions for natural numbers.18 If y is a level 0 variable, then
+〈◦× 〈2, y〉, 1〉 will be a 1-place structured function of level 1, and its value at a
number n will be +(×(2, n), 1) (= 2n+ 1).

More generally, if f is an n-place unstructured function of level 1, and each
of a1, . . . , an is either an object, a level 0 variable, or ◦S, where S is a structured
function of level 1, then f 〈a1, . . . ,an〉 is a structured function of level 1. For
example,+〈◦×〈2,◦×〈2, y〉〉, 1〉 is a 1-place structured function of level 1, and its
value at a number n is +(×(2,×(2, n)), 1) (= 4n+ 1).

That exhausts the contents of level 1. I say that an n-place structured function
of level 1 is an n-place concept of level 1 if its values are always in {t , f }. Thus, if
g is the (unstructured) primeness function that sends prime numbers to t , and
every other object to f , and x is a level 0 variable, then g 〈x〉 is a 1-place concept
of level 1 (i.e. the concept of being prime). Further, I will say that a 0-place
concept of level 1 is a proposition of level 1. For example, g 〈23〉 is a proposition
of level 1 (i.e. the proposition that 23 is prime). Of course, a proposition is true
if its value is t , and false otherwise.

16That is, f is an n-place unstructured function from objects to objects, g is an m-place such
function, and a1, . . . , an , b1, . . . , bm are each either objects or level 0 variables.

17A ‘purer’ implementation of the basic idea, doing without this additional constituent, is
perhaps ultimately to be desired. However, for reasons of space I will not attempt such an imple-
mentation here.

18Thus,+ is a 2-place unstructured function from objects to objects such that, for any natural
numbers n and m, +(n, m) is the sum of n and m (and any pair of objects at least one of which
is not a natural number will be sent to some object that is itself not a natural number). Similarly
for ×.
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4.3 Connectives
It is at level 1 that we get the familiar truth functional connectives. For example,
let ¬ be a 1-place unstructured function from objects to objects that sends t to
f , f to t , and every other object to f . Then ¬〈◦g 〈23〉〉 will be the proposition
(of level 1) that 23 is not prime, while ¬〈◦¬〈◦g 〈23〉〉 will be the proposition
that it is not not prime. Similarly, let ∧ be a 2-place unstructured function from
objects to objects that sends t , t to t , and every other pair of objects to f . Then
∧〈◦g 〈23〉,◦¬〈◦g 〈24〉〉〉 will be the proposition that 23 is prime and 24 is not,
while ¬〈◦∧〈◦g 〈23〉,◦g 〈24〉〉〉will be the proposition that 23 and 24 are not both
prime. And so on. Thus, as promised, we get a treatment of these connectives
on which they can iterate, and combine more generally, in just the way that one
would like.19

4.4 Level 2
Level 2 then stands to level 1 essentially as level 1 stood to level 0 (with just one
small difference). Thus, one first has everything that one had at level 1 (because
the hierarchy is cumulative); one then has all the n-place unstructured functions
from level 1 into level 1 (for positive natural numbers n); and finally structured
functions constructed as before. More precisely, if f is an n-place unstructured
function of level 2, but not an unstructured function of level 1, and each of a1,
. . . , an either belongs to level 1, is a level 1 variable, or is ◦S, where S is a struc-
tured function of level 2, then f 〈a1, . . . ,an〉 is a structured function of level 2.
(The requirement that f not belong to level 1 is the only difference from the
earlier characterization of structured functions of level 1: we need this because
unstructured functions of level 1 are of course not defined for all members of
level 1.) As in the level 1 case, structured functions whose values are always in
{t , f } are concepts, and 0-place concepts are propositions.

19A reader may at this point have the following thought: why, in giving an account of func-
tions, have I not availed myself of standard existing notation for these, specifically, Church’s
λ-calculus. The reason is essentially as follows. In the λ-calculus, for any variables x and y and
formula A, if λx.λy.A is wellformed then so is λy.λx.A. However, if one is giving a hierarchi-
cal account of propositions, then it is no less ad hoc to introduce operators λx and λy that can
‘permute’ like this than it would have been to insist from the start that standard connectives and
quantifiers can iterate, permute, etc. Thus, the λ-calculus is not something one can help oneself
to in giving a hierarchical account of propositions.
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4.5 Quantifiers
It is at this point that quantification enters the picture. For example, if x is level 0
variable, then level 2 will contain a corresponding existential quantifier ∃x . This
is a 1-place unstructured function from level 1 into level 1. To illustrate how this
works, let g be an n+1-place unstructured function from level 1 into {t , f } (for
some n ≥ 1), and let y1, . . . , yn be distinct level 0 variables, each also distinct
from x. Thus, g 〈x, y1, . . . , yn〉 is an n + 1-place concept of level 1. ∃x will then
send g 〈x, y1, . . . , yn〉 to an n-place concept of the form h〈y1, . . . , yn〉 such that,
for any objects a1, . . . , an, h(a1, . . . ,an) = t iff there is some object b such that
g (b ,a1, . . . ,an) = t . For example, if m〈x, y〉 is the is-the-mother-of concept (i.e.
sending pairs of objects c , d to t iff c is the mother of d ), then ∃x will send
m〈x, y〉 to the has-a-mother concept m*〈y〉 (i.e. which sends an object c to t iff
there is some object that is the mother of c ). If C is an n + 1-place concept of
level 1 (some n ≥ 1) of a different form, then ∃x works similarly. On the other
hand, if C is a 1-place concept of level 1 of the form g 〈x〉, then ∃x will send C to
a truth value. For example, if g is the tallness function, then ∃x will send g 〈x〉 to
t if some object is tall, and to f otherwise. ∃x〈g 〈x〉〉 is thus the proposition that
some object is tall. Similarly in the case of 1-place concepts of different forms. If
p is a proposition of level 1, then ∃x sends p to its truth value. Finally, ∃x will
send every member of level 1 that is not a concept to f .

Similarly for ∃y for distinct level 0 variables y, and for universal quantifiers
∀z for level 0 variables z. For example, ∃x〈m〈x, John〉〉 is the proposition that
John has a mother, while ∀x〈◦∃y〈m〈y, x〉〉 is the proposition that everything
has a mother, and ∃y〈◦∀x〈m〈y, x〉〉 is that to the effect that there is a ‘universal
mother’.

As this makes clear, the proposed account allows quantifiers to combine with
one another in just the way one would like. For, in the second of the three propo-
sitions just mentioned, ∃y occurs within the scope of ∀x , while, in the third, it is
the other way round. Of course, before moving to functions it was hard to see
how such ‘permutations’ could be permissible on a hierarchical approach.

4.6 A Complication
There is, however, a complication that I should discuss at this point. This arises
from the fact that we are going to have an unending hierarchy of logical opera-
tors (for example, we are going to have higher and higher level quantifiers, as we
introduce higher and higher level things to quantify over). This leads to a com-
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plication because it is not then going to be straightforward to combine higher
level operators with lower level ones: we cannot simply compose these, because
the higher level operators will sometimes output things that are at too high a
level for the lower level ones to take as input.

To illustrate, consider how we are going to handle propositions of the form
∃x¬∃yF (x, y) (for distinct variables x and y). We handled those of the form
∃x∃yF (x, y) simply by composing the level 2 functions ∃x and ∃y . But we cannot
now repeat the trick in the ∃x¬∃yF (x, y) case: for when ∃y is applied to a concept
of the form f 〈x, y〉 it will output, not an object, but a level 1 function; and ¬
cannot take this as input (because ¬ is itself such a function).

Now, if all we cared about was ‘first-order’ logic,20 then this complication
could be very easily solved: we could simply reconceive of ¬ as a level 2 function
(and similarly for the other connectives);21 and ¬ could then compose with our
objectual quantifiers just as desired. But first-order logic is not all that we care
about here. The aim is rather a completely general account of propositions, and
so of the whole range of logical operators they can contain.

A better solution would thus seem to be as follows. When we introduce a
new level of logical operators (e.g. when we introduce our ‘objectual’ quanti-
fiers ∃x , ∀y etc. for level 0 variables x, y etc.) we must also introduce ‘raising’
functions. That is, functions that ‘raise’ our previously introduced (lower level)
logical operators, so as to allow them to compose with the higher level operators.
For example, one of these raising functions will be a 2-place level 2 function R
such that, when ¬ is ‘raised’ using it, the result can combine in just the way that
one would like with the level 2 logical operators (i.e. ∃x , ∀y etc.). More pre-
cisely, if Z is a level 1 variable, then R〈¬,Z〉 will be a 1-place concept of level
2 that works as a level 2 version of negation,22 and which can thus straightfor-
wardly compose with other level 2 operators. Thus, using R, we can straightfor-
wardly handle propositions of the form ∃x¬∃yF (x, y): these will have the form

20That is, standard quantificational logic, the basic terms of which are: names of objects, func-
tion symbols for functions from objects to objects, predicates of objects, quantifiers and variables
over objects, and truth functional connectives.

21Thus, ¬would send an n-place level 1 concept of the form g 〈x1, . . . , xn〉 to its ‘complement’,
i.e. a concept h〈x1, . . . , xn〉 that sends objects a1, . . . , an to t iff g 〈x1, . . . , xn〉 sends them to f (and
similarly in the cases of level 1 concepts of other forms; ¬would send anything that is not a level
1 concept to f ). Other connectives could be similarly reconceived.

22That is, R〈¬,Z〉works just like the version of negation described in the previous note: send-
ing level 1 concepts to their ‘complements’ (and sending anything that is not a level 1 concept to
f ).
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∃x〈◦R〈¬,◦∃y〈 f 〈x, y〉〉〉〉 (and so the truth value is computed by first applying ∃y

to f 〈x, y〉, then applying R〈¬,Z〉 to the result, and then applying ∃x to the result
of that). More generally, such raising functions will allow lower level operators
to combine with higher level ones in just the way that one would like.23

The picture that emerges is as follows. We have a hierarchy of logical oper-
ators, and when we introduce a new level of these, we also need to ‘raise’ our
old operators so they can combine properly with the new ones. Fortunately,
it is straightforward to implement this way around the complication within the
proposed account—i.e. without any sort of exceptions to the hierarchical restric-
tions. Indeed, it bears emphasis that the raising functions discussed above are not
an addition to the previously described hierarchy. Rather, their existence follows
from that previous description. (For example, the level 2 function R discussed
above belongs to level 2 in virtue of the description of §4.4; specifically, in virtue
of the fact that level 2 contains all unstructured functions from level 1 into level
1.)

I should also stress how different this treatment of logical operators is from
one on which such operators cannot iterate or permute. For on the proposed
treatment, when one introduces a new level of logical operators, one must intro-
duce new raising functions to allow one’s previously introduced logical operators
to combine with these. Once these raising functions have been introduced, how-
ever, one’s logical operators (new and old) can combine just as desired. And one
need only introduce more raising functions when one introduces what are—by
anyone’s lights—new logical operators (e.g. quantifiers over a new, ‘higher’, range
of things). This is of course very different from a treatment on which one must
introduce a new (higher level) logical operator every time one simply wants to
iterate one of those one has already introduced.

That completes the account of levels 0–2. For each natural number n ≥ 2, there
is a level n + 1 that stands to level n just as level 2 stands to level 1. One could
also, if desired, straightforwardly extend the hierarchy to transfinite levels. As
before, a structured function whose values are always in {t , f } is a concept, and a
0-place concept is a proposition.

23Specifically, there will be a distinct raising function Rn,m for each pair n, m with n ≥ 1 and
m ≥ 2. Thus, Rn,m will in effect turn the n-place logical operators of level less than m into level
m operators, so as to allow them to compose with other level m operators (such as quantifiers
over level m− 1).
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This account will of course block paradoxes such as those of §1 in just the way
described there. For example, because any function can only apply to things at
lower levels, there can be no function r such that for any proposition of the form
f 〈a〉, r sends this to t iff the function f does not itself send it to t . The closest
one can get is a function r * such that for some definite level n: for any proposition
of level n of the form f 〈a〉, r * will send this to t iff f does not itself send it to t .
But, since propositions of the form r *〈b 〉 will not themselves belong to level n,
the paradox will be blocked.

As I noted in the introduction, hierarchical accounts of propositions—like hi-
erarchical accounts of sets, for example—will have certain limitations. For exam-
ple, on the account that I have given, no proposition can quantify over absolutely
all functions, or absolutely all concepts or propositions. Rather, a proposition
can quantify only over those functions, concepts or propositions that occur at
lower levels than the proposition itself. For this sort of reason, we are presum-
ably also going to want to develop non-hierarchical accounts of propositions.
Nevertheless, the hierarchical account that I have proposed is very simple and
naturally motivated—virtues it seems unlikely that a non-hierarchical account
will possess to anything like the same extent. Thus, we are presumably ulti-
mately going to want to have both sorts of account at our disposal. What I hope
to have shown, then, is what our hierarchical account should look like.24

Appendix
In this appendix I construct a model of the proposed account in standard set the-
ory. In particular, in ZFU. I write N for the set of natural numbers {0,1,2, . . .},
and N+ for N−{0}. For simplicity, I assume that there exist the following infi-
nite, and pairwise disjoint, sets of urelements: LEV0, VAR0, VAR1, . . . (i.e. a set
VARn for each n ∈ N). I assume also that there is some urelement ◦ not in any
of these sets, and that the truth values t and f are in LEV0. LEV0 is the model
of level 0 of the hierarchy.

Let X and Y be non-empty sets. By an n-place set-theoretic function from X
to Y (n ∈N+) I mean a set Z of ordered n+ 1-tuples of members of X ∪Y such
that: the first n members of each member of Z are in X , and the last member
is in Y ; and each n-tuple of members of X is the initial segment of exactly one
member of Z .

24[Acknowledgements.]
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UF1 = { f : f is an n-place set-theoretic function from LEV0 to LEV0 for
some n ∈ N+}. UF1 is the model of the class of unstructured functions of level
1.

The model of the class of structured functions of level 1 is as follows. I use
¹a1, . . . ,anº for the n-tuple of a1, . . . , an in that order. SF1 is defined recursively
as follows:

if f is an n-place member of UF1 (for some n ∈ N+), and each ai is
either a member of LEV0 ∪VAR0 or ¹◦, gº for some g ∈ SF1, then
¹ f ,a1, . . . ,anº ∈ SF1.

LEV1 = LEV0∪UF1∪SF1. LEV1 is of course the model of level 1 of the hierarchy.
The model of level 2 is as follows. UF2 = UF1 ∪ { f : f is an n-place set-

theoretic function from LEV1 to LEV1 for some n ∈N+}. SF2 is then defined:

(i) SF1 ⊆ SF2; and

(ii) if f is an n-place member of UF2 −UF1 (for some n ∈ N+), and each
ai is either a member of LEV1 ∪VAR1 or ¹◦, gº for some g ∈ SF2, then
¹ f ,a1, . . . ,anº ∈ SF2.

LEV2 = LEV0 ∪UF2 ∪ SF2 is the model of level 2 of the hierarchy.
The models of subsequent levels are defined similarly. Thus, the model of

level m + 1 for m ∈ N with m ≥ 2 is as follows. UFm+1 = UFm ∪ { f : f is an
n-place set-theoretic function from LEVm to LEVm for some n ∈N+}. SFm+1 is
defined as follows:

(i) SFm ⊆ SFm+1; and

(ii) if f is an n-place member of UFm+1−UFm (for some n ∈N+), and each ai
is either a member of LEVm ∪VARm or ¹◦, gº for some g ∈ SFm+1, then
¹ f ,a1, . . . ,anº ∈ SFm+1.

LEVm+1 = LEV0 ∪UFm+1 ∪ SFm+1.
For n ∈N+, I write VAR<n for

⋃

m<n VARm. I define the notion of a member
of VAR<n being ‘free’ in a member of SFn as follows. Let x ∈ VAR<n and f ∈
SFn. For some g ∈ UFn and a1, . . . , am (m ∈ N+), f = ¹g ,a1, . . . ,amº. x is free
in f if: for some i (1≤ i ≤ m), ai is x; or ai is ¹◦, hº and x is free in h. f ∈ SFn
is r -place if exactly r members of VAR<n are free in f .

The ‘values’ of members of SFn are defined as follows. I write VARN for
⋃

n∈NVARn and LEVN for
⋃

n∈NLEVn. An assignment is a 1-place set-theoretic
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function A from VARN into LEVN such that for any x ∈ VARN and n ∈ N, if
x ∈VARn then A(x) ∈ LEVn. Let f ∈ SFn (n ∈N+) and let A be an assignment.
The value of f at A is defined as follows. For some g ∈ UFn and a1, . . . , am
(m ∈ N+), f = ¹g ,a1, . . . ,amº. For each i with 1 ≤ i ≤ m, define bi as follows:
if ai ∈ LEVN, then bi = ai ; if ai ∈VARN, then bi =A(ai ); if ai is ¹◦, hº for some
h ∈ SFn, then bi is the value of h at A. The value of f at A is then g (b1, . . . , bm).

It is easy to show that all the assumptions and claims made in §4 hold in
the model, when interpreted in the obvious way. These fall essentially into two
groups: existence and distinctness claims. An example of an existence claim is as
follows. In §4.2 I claimed that if f is an n-place unstructured function of level
1, and each of a1, . . . , an is either an object, a level 0 variable, or ◦S, where S
is a structured function of level 1, then f 〈a1, . . . ,an〉 is a structured function of
level 1. This holds in our model because for any n-place f ′ ∈ UF1, and a′1, . . . ,
a′n ∈ LEV0 ∪VAR0 ∪ {¹◦, gº : g ∈ SF1}, ¹ f ′,a′1, . . . ,a′nº ∈ SF1 (by the definition
of SF1). Similarly, the existence of unstructured functions such as ¬, ∃x (for x a
level 0 variable), and the raising functions of §4.6 follows easily from the axioms
of ZFU. An example of a distinctness claim is the assumption made in §4.2 that
no structured function is an unstructured function. This holds because for any
n ∈ N+ and f ∈ SFn, f is an ordered m-tuple (for some m ∈ N+). It follows
that f is finite. In contrast, for any r ∈ N+ and g ∈ UFr , g is infinite (because
g is a set-theoretic function from LEVr−1 into LEVr−1, and LEVr−1 is infinite).
Similarly for the other claims made in §4. It follows that the account of §4 is
consistent.
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