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The title comes from a well-known paper of Putnam’s (Putnam [1980]). The
content is very different. Putnam uses model theory1 to cast doubt on our ability
to engage semantically with an objective world. The role of mathematics for him
is to prove this pessimistic conclusion. I on the other hand am wondering how
models can help us to engage semantically with the objective world. Mathematics
functions for me as an analogy. Numbers among their many other accomplishments
boost the language’s expressive power; they give us access to recondite physical
facts. Models, among their many other accomplishments, do the same thing; they
give us access to recondite physical facts. This anyway is the analogy I will try to
develop in this paper.

1. Applications

Mathematics is useful in physics. Frege was impressed by this: “It is applica-
bility alone that raises arithmetic from the rank of a game to that of a science.”

1The Lowenheim-Skolem Theorem.
1
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Wigner found it mysterious, which is why he speaks of “the unreasonable effec-
tiveness of mathematics” in physics. The mystery has only deepened with the
attention in recent years to the ways in which math can be effective. Why should
objects causally disconnected from the physical be so helpful in representing phys-
ical phenomena and making physical theories tractable? Why should math be
such a good source of physical hypotheses? Why should it shed light on physical
outcomes?

Before digging into these questions, consider models of the type appealed to in
the natural sciences. They too are helpful in representing physical phenomena.
They too make complex theories tractable. They too suggest hypotheses, and are
apt to be cited in explanations. Why is there not a problem of the unreasonable
effectiveness of models, as there is for mathematical objects?

The simplest answer is that we are dealing with a selection effect. Of all the
technically eligible models that could be invoked, we focus, naturally, on the useful
ones.

But, if that solves the problem for models, why does it not solve the problem
for mathematical objects? The same selection effects are arguably at work with
them.2 Numbers are important because of their relation to counting and cardi-
nality. Geometry grew out of land measurement problems, as the name suggests.
Real numbers owe at least some of their prominence to being “complete” in the
way space and time are thought to be complete. Calculus came to the fore in
connection with Newtonian mechanics. Cantor’s theory of the infinite grew out
of calculus problems to do with integrability. Add to this that scientific models
are causally independent, in most cases, of the phenomena that they model, and
the contrast is hard to make out. The utility of models begins to seem similarly
puzzling to that of mathematical objects.

2. Isms

The dialectic is not so different either. One popular theory of mathematical
applications is instrumentalism. Numbers are useful, according to instrumentalists
like Field, not for what they let us say, but what they let us do—shorten proofs
as it might be:

even someone who doesn’t believe in mathematical objects is free to
use mathematical existence-assertions in a limited context: he can
use them freely in deducing nominalistically-stated consequences
from nominalistically-stated premises (Field [1980], 14).

What about models? They too can be used in a purely instrumental way. There
are

‘probing models’, ‘developmental models’, ‘study models’, ‘toy mod-
els’, [and] ‘heuristic models’. The purpose of such model-systems is

2Balaguer [1998], Pérez Carballo [2014]
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not to represent anything in nature; instead they are used to test
and study theoretical tools that are later used to build representa-
tional models. (Frigg [2010b])

Another leading approach to applications is structuralism. Structuralism about
applications has been advocated in the philosophy of mathematics by Shapiro
(Shapiro [1983]) and in the theory of modeling by van Fraassen and others (Van Fraassen
[2006], Andreas and Zenker [2014]).

Fictionalism is an old standby where mathematical applications are concerned
(Papineau [1988], Balaguer [1996]), Leng [2010]). It has recently made the jump
to models:

A natural first description of [frictionless planes, e.g.] is as fic-
tions... They do not exist, but at least many of them might have
existed, and if they had, they would have been concrete, physical
things, located in space and time and engaging in causal relations.
Though imaginary, these things are often the common property of a
community of scientists. They can be investigated collaboratively.
Surprising properties might be uncovered by one investigator after
being denied by another. In their status, though not their role,
they seem analogous to the fictions of literature. ((Godfrey-Smith
[2006])

Fictionalism has morphed in recent years into figuralism, which sees numbers
as creatures of metaphor, or (in Walton’s version) of prop-oriented make-believe
(Yablo [2002], Yablo [2005]). The make-believe approach has been tried for models
too. For Frigg (description taken from Levy [2015]),

Models are Waltonian games of make-believe. A set of equations or
a mechanism sketch is a prop that, together with the rules relevant
for the scientific context, determines what those engaging with the
model — the game’s participants — ought to imagine...[The] text
and equations aren’t, in this view, a description of an imaginary
entity but a prescription to imagine a ring-shaped embryo with the
specified chemical makeup. Thus, there is no object... to which
[the] equations somehow correspond. There are only inscriptions
on a page which function as instructions for the imaginations of
modelers.

Levy too thinks of models as rules for the imagination. But the props in his
view “are the real-world target phenomena” we are trying to understand. The role
of the model is to

portray a target as simpler (or just different) than it actually is.
The goal of this special mode of description is to facilitate reason-
ing about the target. In this picture, modeling doesn’t involve an
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appeal to an imaginary concrete entity, over and above the target.
All we have are targets, imaginatively described (Levy [2015])

Of course, different applications may call for different approaches; we may want
to be instrumentalists here and fictionalists there. More on this in a moment. Let’s
try to bear the above analogies in mind as we turn from theories of applicability
to models as entities in their own right.

3. Types of Model

What is a model? If you think that this is not the most important question
to be asking, you are probably right. But we need to say something about it, for
the word is genuinely ambiguous. Model citizens are paragons or exemplars of
good citizenship. Role models are figures worthy of emulation. Fashion models
are, well, you know. A certain Joseph Bell was reportedly the model for Sherlock
Holmes. Car models are things like the Ford Cortina and Fiat Panda.

So far, so irrelevant to scientific modeling. Model cars are a bit more like it.
These stand in for real cars, and serve as a guide—in wind tunnel experiments,
for instance— to real cars’ properties. Likewise the wind-up models of the solar
system encountered in science class; they stand in for, and are a guide to the
properties of, the actual solar system. Model solar systems and the like are valued
for the light they shed on whatever it is that they model.

Models serving as a guide to real properties are called representational ; they will
be our main focus. Not all models are representational, as already noted. Some
may be for playing around with, to get a feel for certain real systems. Some may
be valued for the hypotheses they suggest. Some may play a proof-of-concept role.
Morrison and Morgan list some further possibilities:

Just as we use tools as instruments to build things, we use models as
instruments to build theory (Morrison and Morgan [1999], 18) Mod-
els are often used as instruments for exploring or experimenting on
a theory that is already in place (ibid, 19) [M]odels are instruments
that can both structure and display measuring practices (ibid, 21)
The [class] of models as instruments includes those that are used
for design and the production of various technologies (ibid, 23)

Given all these alternatives, why the focus on representational models? First
because they’re central to the scientific project; science aims, so it is said, at
the accurate representation of real systems. Second because there is work in the
philosophy of mathematics we’d like to draw on, which construes numbers, et al,
in representational terms.

Representational items go hand in hand, however, with things represented.
These oddly enough are apt to be called models too; think for instance of artist’s
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models, or the solar system as the model for the gadget in science class.3 So al-
though representational models are the focus, room will also have to be made for
models of the thing-represented sort; the key question about the former is, after all,
how they relate to the latter. Models of the thing-represented sort are sometimes
called targets or target systems since they are what representational models are
aimed or directed at. Models sans phrase will be representational unless otherwise
indicated.

4. Types of Truth

Representational models, like models in general, come in lots of varieties. There
are scale models, like the wind-up solar system or the balsa wood wing in the wind
tunnel. These are actual concrete particulars. The Bohr model of the atom is a
type of concrete particular, a type that is not actually instantiated. Ideal models,
frictionless planes and the like, are would-be concrete particulars; that is what
they would be if they existed (Godfrey-Smith [2009]). The National Weather
Service’s climate models are computer simulations. Models of computing, like
Turing machines or pushdown automata, might be seen as abstract particulars,
or types of abstract particular. The model of electric current as water flow is an
analogy. The Lotka-Volterra model of predator-prey relations is a set of equations.4

If there is anything tying these various types of model together, it is not their on-
tological category. That being said, we can without too much violence force most
of them into the hypothetical-concrete-particular mold. The role of the Locke-
Volterra model is played by concrete populations described by the equations. The
models associated with a computer simulation of El Nino are the concrete meteo-
rological processes that satisfy the simulation’s assumptions. This puts models in
many cases into the same metaphysical category as target systems, which doesn’t
matter now but will come in handy later.

A better bet for the common element would be how they function— what they
do for us. Once again, models in general have lots of functions. They are used
for testing and prediction, as aids to calculation and visualization, to manage
complexity and facilitate understanding. One can say more about the function of
representational models (this may be stipulative). These are meant to

(1) improve our access to the reality being modeled—the target system,
(2) by providing an epistemically accessible substitute,
(3) information about which translates into information about the target.

3I do not include Joseph Bell here because Holmes is under no obligation to be true to Joseph
Bell, nor is he used as a guide to Joseph Bell’s properties.

4The models employed in philosophical logic, like Kripke’s fixed point model of a semanti-
cally closed language or the Bayesian model of belief update, are constructions or construction
techniques; this may apply to philosophical models more generally (Godfrey-Smith [2006], Paul
[2012], Williamson [2016]).



6 S YABLO

Models aspire, if the characterization is right, to be somehow a reliable guide
to—I will say true to—the facts. One of the fundamental issues about models is
to see what “true to the facts” could possibly mean here. Balsa-wood wings and
computer simulations are not even apt for truth, it would seem, for they don’t
say anything. Truth is a property of statements or claims, not pieces of wood or
programs. But let us push a little further.

The property reserved to statements is declarative truth, the kind Aristotle and
Tarski talked about. Declarative truth is on some views not the only kind of truth
out there. If we ask for a true copy of some document, or call a portrait true to
its subject, we seem to be talking about accuracy or lifelikeness or fidelity. How
far these should be considered kinds of truth is open to doubt. (Rooms with more
and better portraits in them do not seem to contain more truths.) That is not
important for our purposes. It’s enough for us that (i) declarative truth is a kind
of truth, and (ii) declarative truths are at least part of what we hope to gain
from our (representational) models. The question either way is, how will this be
possible, if models are not candidates for declarative truth?

Put just like that, this question is not very difficult. You might equally ask how
we hope to learn truths from newspapers, or by inference, or by asking for direc-
tions ; these things are not apt for declarative truth either. Why should they be?
It’s enough if there are semantic truths in the neighborhood, to which newspapers
(inferences, directions) provide access. And indeed there are: the editor’s claim
on behalf of a newspaper that it is largely accurate, or your informant’s claim
on behalf of the directions she gives that they will get you to your destination.
With models too, there is a candidate for semantic truth in the neighborhood: the
theorist’s claim on behalf of a model that it is faithful in such and respects to its
target.

All of this is roughly in line with RIG Hughes’ DDI theory of how models
function (Hughes [1997]), characterized here by Frigg:

According to [the] DDI account of modeling, learning takes place in
three stages: denotation, demonstration, and interpretation. One
begins by establishing a representation relation (denotation) be-
tween the model and the target. Then one investigates the fea-
tures of the model in order to demonstrate certain theoretical claims
about its internal constitution or mechanism; i.e., one learns about
the model (demonstration). Finally, these findings have to be con-
verted into claims about the target system; Hughes refers to this
step as ‘interpretation.’5 (Frigg and Hartmann [2005], 744ff)

5Hughes is not aiming here for an analysis: “I am not arguing that denotation, demonstration,
and interpretation constitute a set of speech acts individually necessary and jointly sufficient for
an act of theoretical representation to take place. I am making the more modest suggestion
that, if we examine a theoretical model with these three activities in mind, we shall achieve some
insight into the kind of representation that it provides (Hughes [1997] S329)”
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Our concern is mainly with the interpretation stage: converting findings, or
more generally claims, about the model into claims about the target system—
more specifically, with the ways in which claims can be “about the target system.”

5. Targeting (I): The Role of Math in Real Content

The model matches in such and such respects the target is a semantic truth, all
right. But I wonder if it is the kind of semantic truth we were after. To say that
the target system resembles the model is to speak in part of the model. And we
wanted a claim about the target, or more broadly the world.

You may say, why should it not be about both? I will give some reasons in
a moment, but the problem in a nutshell is that although inquiry avails itself of
models, it should not be (in cases of interest) about models. There should be the
possibility, at least, of wringing truths entirely about the target out of properties
of the model.

This is nothing special about models. Self-directedness is unfortunate with lots
of representational devices. Take graphs, or barometers. Inquiry avails itself of
them, but does it aim at truths about graphs and barometer? These would be
truths like, The graphs in Feynman’s Lectures are largely accurate, or Air pressure
as measured by barometers falls in a thunderstorm. Surely not. One is hoping
ultimately to be using representers as a means of access to information about the
world.

This is admittedly just an appeal to intuition. But we can do better, for a similar
issue comes up in the literature on mathematical applications. The assumption
there is that math-involving talk is in a sense hyperbolic. One quasi -asserts an S
directed in part at numbers, in order to really assert a weaker claim ρ(S ) that is
not about numbers at all. I might quasi-assert that the number of cells in this petri
dish is doubling every day in order to really assert that there are always twice as
many cells as the day before—which is, to anticipate a little, the part of S about
concreta. What S says about concreta is S ’s real content in a setting where we
are talking about the physical.

Why should the real content have to be wholly about concreta? The reason
is that representational devices, including numbers but not only them, are “out
of place” in certain contexts. The real content has to be number-free to have,
in certain contexts, the right truth-conditional effects. Numbers are out of place
because allowing them into the real content winds up falsifying a larger claim that
ought to come out true.6

For a sense of how this might work, consider the context of causal explanation.
Field’s case for nominalism in Science Without Numbers relies on the idea that
explanations ought to be “intrinsic”:

6Arguments of this type are developed at greater length in Yablo [2001, 2002].
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If we need to invoke some real numbers like 6.67 x 1011 (the gravi-
tational constant in [SI units]) in our explanation of why the moon
follows the path that it does, it isn’t because we think that that real
number plays a role as a cause of the moon’s moving that way...The
role it plays is as an entity extrinsic to the process to be explained,
an entity related to the process to be explained only by a function
(a rather arbitrarily chosen function at that) (Field [1980], 43)

The real reason the moon follows that path is to do with the strength of the
forces acting on it, not their numerical representation.

Suppose Field is right that explanations should confine themselves to the entities
actually doing the work. Allusions to numbers could then make an explanation
defective—not to split hairs, let’s just say false—in roughly the way that the
allusion to God casts doubt on The patient recovered because God knows she was
given antibiotics. Numbers are unwelcome in these contexts because they are
extrinsic to the causal scene. The bag ripped because it had too many apples in it,
not because a certain number (the number of apples in it) was too large. It is not
that numerals can never appear in X because Y, or that they can never influence
the real content of X or of Y.7 The suggestion is only that numbers should not
participate in the real contents, if this would violate some plausible version of the
intrinsicness constraint.

If numbers are indeed objectionable in causal/explanatory contexts, perhaps the
real content should treat them as existing only according to a certain story, the
story of standard math. But, the story of standard math is just as extrinsic to
the scene as the numbers of which it treats. The bag didn’t rip because a certain
number was too large according to standard math, any more than it ripped because
a certain number was too large.8

Or consider nomological contexts. According to Galileo’s Law of Falling Bodies,
d(t) — the distance a dropped object falls in t seconds — is proportional to t2.
Suppose we are convinced for broadly Fieldian reasons that the real content of
d(t) ∝ t2 in this setting does not involve numbers or numerical operations (like
squaring); the law treats of concrete objects, not mathematical ones. Matters are
not improved by putting the numbers under a story prefix, for natural laws know
nothing of stories either. If Galileo’s Law is really to be a law, the real content of
d(t) ∝ t2 should not involve the story of standard math.

Or contexts of understanding. I may need to know some math to understand
Galileo’s Law, in its standard formulations. I do not, however, need to know
what standard math is, to understand it. Since I do apparently need to know

7Members of Congress cannot be paired off one-one because the number of them is odd.
8I am using “the story of standard math” loosely to allow the importation of truths about

non-mathematical objects. Incorporation of real or apparent truths into the content of a fiction
is standard operating procedure. See Walton on the Reality Principle and the Mutual Belief
Principle (Walton [1990],144ff).
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which math is standard to understand, According to standard math, distance fallen
is proportional to the square of the time elapsed, the latter is not a very good
candidate for the real content of Galileo’s Law. Agreement contexts are similar.
People agree, I take it, on Galileo’s Law; at least there is no obvious obstacle to
our agreeing. A potential obstacle emerges, though, if the Law has the story of
standard math in its real content. For who is to say we are working with the same
version of the story?

Modal contexts put a different kind of pressure on real content . The number
of (F∨G)s is bound to be even, if the number of F s = the number of Gs, and the
number of (F∧G)s = 0; it could not have been otherwise. But it could (perhaps)
have been otherwise according to standard math, for standard math could have
been different.

Consider finally epistemic contexts. It is supposedly a priori that if the number
of F s = the number of Gs, and the number of (F∧G)s = 0, then the number of
(F∨G)s is even. But do we know a priori that this is so according to standard
math? No, because we know do not know the content of standard math a priori.9

Again, we seem to know a priori that a set’s subsets outnumber its members. But,
this holds only on a combinatorial conception of set. And it is somewhat of a
historical accident—it was not anyway inevitable—that set theory developed in
that direction.

6. Targeting (2): The Role of Models in Real Content

These are some of the problems that arise if representational devices are written
into the real content of math-infused statements. It would be surprising if similar
problems did not sometimes arise when representational models are written into
the real content of statements of model-based science.

Suppose we are working with a purely gravitational model of the solar system
in which planets interact exclusively with the sun. (I will use α for actual systems
and ω for models.) And suppose that the hypothesis about α that we access by
quasi-asserting S—asserting it in reference to ω— is not entirely about α but
involves also ω. It is, let’s say, the hypothesis that ω is similar in respect R to α.
To use our earlier terminology, ωRα is the real content ρ(S ) of our quasi-assertion
that S.

What kind of trouble is caused, in what contexts, by the real content’s alluding
not only to the target system α but also the model ω?

Start as before with causal/explanatory contexts. The “effect” is that planets
speed up on approaching the sun. We’d like to explain it with Kepler’s Second
Law: A planet always sweeps out the same area in the same amount of time. This
is not strictly true, though, of α. The real content ρ(S ) of Kepler’s Law is true,
however, and we look to it for the explanation. We look in vain if the real content

9To know what is true in the Holmes stories, one has to look at the stories.
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is of the form ωRα, because the model does not participate in the Earth’s reasons
for speeding up when it approaches the sun; it figures at most in the representation
of those reasons.10

A law’s holding without exception in ω is meant to tell us something lawful about
actuality. So, it reflects a robust fact about the solar system α that planetary orbits
are elliptical in ω. But it reflects no deep fact about the solar system that it is
R-related to ω. This for two reasons, one pertaining to R and one to ω. Why
would an astronomical law of this world bring in a system that exists only in other
worlds, or α’s relations to this nonexistent structure?

And so on. If the real content is ωRα, then it is accessible only to those ac-
quainted with ω. To agree on the real content of S, we have to be working with
the same ω. If the real content is ωRα, information gleaned from multiple models
does not paint a unified picture: the most we can say is that α resembles this
model in one respect, that one in another, a third in a third respect, and so on.11

7. Actuality

The target system α is supposed in most cases to be real; it is part of the
actual world. It simplifies mattersd to treat it as identical to the actual world, on
the understanding that truths S about the model translate into truths (true real
contents) ρ(S ) that pertain only to the bits of actuality that are being modeled.
The model itself is presumed not to be real; it is part of a counterfactual world.
I propose again to treat it as identical to that world, on the understanding that
S speaks only to the bits that do the modeling. There are plenty of other options
here. The target system could be a mini-world, for instance, or a situation, or a
set of worlds with only the mini-world in common; and similarly for the model.

I am not going to fret too much about the ontology of models and target systems
because the action is really elsewhere. Truths about ω, we said, are supposed to
translate into truths ρ(S ) about α. As Frigg puts it,

10Bokulich [2011]
11See Weisberg [2007, 2012] for multiple models of the same target, and multiple targets for

the same model (e.g. a compressed spring device governed by Hooke’s Law stands in for harmonic
oscillators generally). Admittedly a unified picture is not always desirable, or possible; one of the
glories of model-based theorizing is supposed to be that it takes this in stride. Weisberg quotes
Levins: “The multiplicity of models is imposed by the contradictory demands of a complex,
heterogeneous nature and a mind that can only cope with few variables at a time; by the
contradictory desiderata of generality, realism, and precision; by the need to understand and
also to control; even by the opposing aesthetic standards which emphasize the stark simplicity
and power of a general theorem as against the richness and the diversity of living nature. These
conflicts are irreconcilable. Therefore, the alternative approaches even of contending schools are
part of a larger mixed strategy. But the conflict is about method, not nature, for the individual
models, while they are essential for understanding reality, should not be confused with that
reality itself” (Levins [1966]).
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Models not only represent their target; they do so in a clearly speci-
fiable and unambiguous way, and one that allows scientists to ‘read
off’ features of the target from the model...we study a model and
thereby discover features of the thing it stands for. We do this by
first finding out what is true in the model-system itself, and then
translating the findings into claims about the target itself. (Frigg
[2010a])

But now, where are we to look for the translation manual? It should be possible,
on Frigg’s picture, to identify ρ(S ) on the basis of S, α, ω, and ω’s relation to α,
henceforth R. His schematic solution is that

ω comes with a key K specifying how facts [S ] about ω are to be
translated into claims [ρ(S )] about α (Frigg [2010a])

This is not very informative, as Frigg says himself:

[T]here is much more to be said ... than is contained in [the con-
ditions given]—they are merely blanks to be filled in every partic-
ular instance. Thus, the claim that something is a representation
amounts to an invitation to spell out how exactly ω comes to denote
the target system α and what K is (Frigg [2010a]).

The key of course is none other than the sought after translation manual. How
it might be found is to be determined on a case by case basis. Contessa tries to
say something more general. The model-user

adopts an interpretation of the [model] in terms of the target ...and
this interpretation provides the user with a set of systematic rules
to “translate” facts about the vehicle into (putative) facts about
the target (Contessa [2011])

The interpretation sounds at first like a way of seeing the model that treats
certain aspects as representational and others as adventitious. This is tantamount
in Contessa’s view to adopting a set of systematic rules that translate facts about
the vehicle into facts about the target. But, seeing the model a certain way
falls far short of learning systematic translation rules. If on the other hand the
interpretation involves more than a way of seeing—if it is defined so as to provide
rules— then it is not clear that actual model-users ever adopt interpretations,
or how they find the ones that are worth adopting. Adam Morton pushes back
further, to the reasons for our initial choice of model. A candidate model, to
attract our attention, must (among other things)

give predictions that are reliable in specific but rarely explicitly
specified respects. (Morton [1993], 663)
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And now one might argue as follows.12 The model-chooser should have some
idea, surely, of the type of reliability that motivated her choice. And how does
knowing the relevant type of reliability fall short of knowing a translation manual
mapping truths S about ω to truths ρ(S ) about α? Again we face a dilemma.
Either a “type of reliability” is tantamount to a translation manual, or it falls
short, providing, as it might be, a specification of the range over which the model
is trustworthy, without a specification of the message worthy of trust. If it falls
short of a translation manual, then the argument never gets off the ground. If it
suffices for a translation manual, then while model-choosers may have “some idea”
of how the model is reliable, and “some idea” of how to wring predictions out of
it, they do not normally know what the manual says ; the predictions licensed by
a property of the model are, as Morton says, rarely explicitly specified.

To narrow the search space it might help to consider the form that reliable
predictions or claims must take. A number of proposals have been made, or hinted
at, about the implication for α of the fact that ω satisfies S. The implication might
be that

(1) α has features analogous to the features that ω needs to satisfy S
(2) a model of S has a part (“appearances,” e,g,) isomorphic to part of α13

(3) α is such as to make S true in a certain story, the “story of ω”14

(4) an analog for α of S answers an analog for α of the question S addresses

These, however, all allude in one way or another to ω, which we saw above to
cause trouble. A ρ(S ) partly about ω is vulnerable to the objections raised at the
end of section 2 to a real content that portrays α as resembling ω in a certain
respect. Look for example at (1). No one can understand the features that (1)

12Not that Morton argues this way. I’m just mining his work for constraints on a translation
manual.

13Van Fraassen [1980], 64.
14Frigg [2010b], Toon [2010], Godfrey-Smith [2009], Levy [2012] and Levy [2015] all explore the

idea of treating truth in the model as a kind of fictional truth, or pretense-worthiness in a Walton-
style prop-oriented make believe game (Walton [1993]). But although these authors cite Walton,
they seem mostly—Levy [2015] is an exception—to ignore his picture of how make-believe can
be used in the cause of real-world representation. The point of prop-oriented make-believe for
Walton is to give information about the props—the real-world items determining what is to be
pretended. To utter S in the context of a game G is supposed to be a way of representing the
props as in a condition to make S pretense-worthy in that game. If we’re trying to represent the
solar system, the prop should be the solar system. Suppose we were to identify props with model
descriptions, as Frigg appears to; this in Walton’s scheme means that the point of uttering S is
to give descriptions of model-descriptions. Likewise if the props are the models themselves. The
point of uttering S in connection with a representational device is not to give information about
the device; that would be like treating Crotone is in the arch of the Italian boot as a guide to
the model of Italy whereby Italy is a boot. It’s to give information about the world. (To be
sure, one can follow Walton in his theory of make-believe entities, without following him on the
representational point of such entities. As far as I know only Levy goes all the way.)



MODELS AND REALITY 13

attributes to α if they are not acquainted with ω. (1)-type information is shareable
only between theorists working with the same ω. Possession of features analogous
to those by which ω satisfies S does not cause possession of features analogous to
those by which ω satisfies S ′. The model’s role should be to induce a content in
which it does not itself figure.

8. Translation

The problem as we’ve been conceiving it so far (but not much longer) is how to
translate a truth S about the model into a truth ρ(S ) about the world, that is, a
truth full stop. In schematic form:

N:
S holding in a model suitably related to α testifies,
not to the truth of S itself in α, but
the truth in α of a hypothesis ρ(S ) suitably related to S.

This way of setting the problem up requires us to identify ρ(S ), however—which
has been proving difficult. We should ask ourselves whether a translation of S into
α-ese is really necessary.

You might think it clearly is necessary, since S untranslated is (normally) false
about α. But there are other alethic commendations we can give to a sentence
besides truth. Perhaps all that S aspires to is to be partly true in α—true apart
from an issue we’re properly ignoring. Or perhaps it aspires only to be true about
a certain aspect of α. Or it might aim to be true about α where a subject matter
of particular interest is concerned. The idea more generally is that, rather than
attempting to translate S into a claim that is wholly true, we might try to scale
“wholly true” back to a compliment that S is worthy of as it is.

How would this work in practice? Let S be Kepler’s Law that the planets trace
elliptical orbits. This law, although false in α, is true in a model with gravitational
forces only and a single planet revolving around a massive central body like the
Sun.15 Now, what is the fact about α that is indicated by Kepler’s Law holding
in the model? That Kepler’s Law is true in α about the matter of planetary

motion due to centripetal gravitational forces. Another fact indicated
is that Kepler’s Law is roughly true in α, or true about the matter of planetary
motion give or take a certain fudge factor. Schema N thus gives way to

M:
S holding in a model suitably related to α testifies,
not to S ’s truth simpliciter in α, but
its truth in α as far as subject matter m is concerned

15 See Cartwright [1983] for the idea that laws hold only in simplified models, and Yablo
[2014], 84-5 for discussion.
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Continuing along the same lines, gases are modeled as collections of randomly
moving, perfectly elastic, point-sized, non-interacting particles trapped in a per-
fectly smooth and rigid container. Pressure rises in such a model with the number
and speed of the particles colliding with the container’s wall. This cannot be said
of real gases, since gas particles are not literally point-sized, and they interact; the
wall is not really smooth or rigid, it is made of atoms; the particles do not really
collide with these atoms but are repelled by them electromagnetically.

So what is going on here? I don’t honestly know but people tell me things like
the following. The number and speed of collisions stand in for the kinetic energy
of the impinging particles. The particles are moving randomly so that the mean
kinetic energy of impinging particles is constant throughout. They are imagined
as point-sized lest some of this energy be lost to rotation. The original statement
may not be true overall in α, but it is true of an aspect of α, namely, pressure
as a function of mean translational kinetic energy.

Consider next Schelling’s grid model of housing preferences. This model has
families relocating if and only if fully three quarters of their neighbors are of a
different race; they are content in other words to have three same-race neighbors
and five of a different race. The surprising thing is that racial segregation results
after a few iterations of this enlightened-seeming process. The emergence of racially
divided neighborhoods shows how segregation could have arisen “innocently,” out
of a desire not to be outnumbered 3:1 in the neighborhood (Schelling [2006]).

What is the lesson of Schelling’s model for our world? Not that racial segre-
gation results from dislike of racial isolation. This is true in the model but not
necessarily in the world. The lesson is that racial segregation could result just
from dislike of isolation, as far as the statistical evidence goes. Or, to say it a bit
differently, the original statement gets a certain aspect of our world right, namely,
how much racial animus is required for segregation. It tells us how could
have arisen innocently, compatibly with the statistical data that seem to rule it
out.

A final example is Fisher’s equillibrium model of 1:1 sex ratios. Fisher claims,
as I understand it, that there are forces at work that would lessen numerical
disparities if the numbers got out of whack. These forces operate, in his model, by
exerting selective pressure on a hypothetical gene that biases the sex of offspring
toward males.

Suppose that females were in the majority at some point in evolutionary history.
Newborn boys would then have better mating prospects than newborn girls, so that
those with the male-favoring gene will have on average more grandchildren. The
male-biased grandparent may not have more children, but there more boys among
their children. These on account of their rarity will mate more frequently, putting
copies of the male-tending gene into more grandchildren. And so on and so on, for
as long as males have the mating advantages conferred by being in the minority.
(Mutatis mutandis if males were more common.)
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Fisher’s story does not have to be true in all details (or at all) to shed light on
actual sex ratios. It serves at the very least a as a proof of concept for the idea of
selectional pressures favoring genes that deskew unequal populations. But it could
conceivably be more than that, for we might get similar dynamics if sex ratios get
out of whack for other reasons.

Suppose that some resource (food, say) is divided equally between the sexes.
Then as the male population dwindles, each man becomes better fed, which in-
creases longevity and thus the number of males. Or perhaps men protect women
from predators, while women protect men from poisonous fruit. As males become
more uncommon, women are increasingly preyed upon, bringing their portion of
the population down to male levels. As females become more uncommon, men
increasingly die of poisoning, bringing their representation down to female levels.

These are just-so stories, of course. But there would if any such story worked
be a compliment we could pay to Fisher’s theory even if it was false: the theory is
true about the tendency of unequal sex ratios to correct themselves.

The structure of all these cases seems broadly similar. We have a statement S
that is true in ω but false in α. S ’s truth in ω signals somehow its truth in α
about a subject matter m that ω and α agree on. Altogether then: for S to be in ω
indicate its truth in α about—and here we fill in the appropriate subject matter:

(1) The Earth traces an elliptical orbit
is true in ω and false in α; but true in α about
planetary motion due to central gravitational forces.

(2) Pressure rises as point particles collide harder with the wall
is true in ω and false in α; but true in α about
how mean translational kinetic energy relates to pressure.

(3) Desire for >2 same-race neighbors in 8 leads to 7 such neighbors in 8.
is true in ω and false in α; but true in α about
how fear of racial isolation can lead to racial segregation

(4) Selective pressures on sex-bias genes make uneven ratios unstable
is true in ω and false in α; but true in α about
the instability and self-correctingness of uneven sex ratios

9. Subject-Matter

The role of subject matter for us is to be the kind of thing sentences can be true
about in a world, even if they’re not true outright in a world. It doesn’t matter
for this purpose whether subject matters are “of sentences,” or whether there is
such a thing as the subject matter of A’ for particular sentences A.16 Subject
matters for our purposes can be entities in their own right. David Lewis initiated

16I happen to think there is such a thing, but that’s another story (Yablo [2014])
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this approach in “Statements partly about observation” (Lewis [1988]). The 19th

century, for instance, is a kind of subject matter, for Lewis. It’s the kind he calls
parts-based.

A subject matter m is parts-based, if for worlds to be alike with respect to m

is for corresponding parts of those worlds to be intrinsically indiscernible. The

19th century is parts-based because worlds are alike with respect to it if and
only if the one’s 19th century is an intrinsic duplicate of the other’s 19th century.
The 19th century, note, is not to be confused with the 19th century. The first
is a part of one particular world (ours), or of its history. The second is a way of
grouping worlds according to what goes on in their respective 19th centuries.

This approach is not sufficiently general, Lewis observes. Take the matter of
how many stars there are. There is no “star-counter” part of the universe, such
that worlds agree in how many stars they contain if and only if the one’s counter
is an intrinsic duplicate of the other’s. Facts about how many stars there are are
not stored up in particular spatio-temporal regions.

Or consider the subject matter of observables,17 which van Fraassen uses to de-
fine an empirically adequate theory. This is prima facie a parts-based subject mat-
ter, like the Sun. Worlds are observationally equivalent just if their observables—
whatever in them can be seen, or heard, or etc—are intrinsically alike. But again,
dirt can be seen, and among dirt’s intrinsic properties are some that are highly
theoretical, for instance, the property of being full of quarks. It is not supposed
to count against a theory’s empirical adequacy that it gets subatomic structure
wrong.
Observables—what an empirically adequate theory should get right—is best

regarded as a non-parts-based subject matter, like the number of stars. Worlds
are alike with respect to observables if they’re observationally indistinguishable;
they look and feel and sound (etc) the same.18

10. Partitions

A parts-based subject matter, whatever else it does, induces an equivalence
relation on, or partition of, “logical space.”19 Worlds are equivalent, or cell-mates,
if corresponding parts are intrinsically alike.

17Lewis calls it observation.
18What becomes then of the idea, seemingly essential to constructive empiricism, that T need

only be true to the observable part of reality, if observables does not correspond to a part of
reality? See Chapter 1 of Yablo [2014].

19Lewis [1988]. An equivalence relation ≡ is a binary R that’s reflexive (everything bears R to
itself), symmetric (if x bears R to y, then y bears R to x ), and transitive (if x bears R to y and
y bears it to z, then x bears R to z ). A partition is a decomposition of some set into mutually
disjoint subsets, called cells. Equivalence relations are interdefinable with partitions as follows:
x ’s cell [x ] is the set of ys equivalent to x ; x≡y if they lie in the same cell.
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A non-parts-based subject matter, however, also induces an equivalence relation
on logical space: worlds are equivalent, or cell-mates, just in case they are indis-
cernible where that subject matter is concerned. If m is the number of stars, ≡m

is the relation one world bears to another just if they have equally many stars. But
then, if one wants a notion of subject matter that works for both cases, let them
be not parts but partitions. The second notion subsumes the first while exceeding
it in generality.

So, to review—one starts out thinking of subject matters as parts of the world,
like the western hemisphere or Queen Victoria or the 19th century. These then give
way to world-partitions, which are ways of grouping worlds. Should the grouping
be on the basis of goings on in corresponding world-parts, we get the kind of subject
matter that, although still thoroughly partitional, looks back to world-parts for
its identity-conditions.

A subject matter (or topic, or matter, or issue) on this view is a system of
differences, a pattern of cross-world variation.20 Where the identity of a set is
given by its members, the identity of a subject matter is given by how things are
liable to change where it is concerned:

SM:
m1 = m2 iff worlds differing on the one differ also with respect to the other.

This might seem too abstract and structural. To know what m1 is as opposed
to m3 doesn’t seem to tell us what goes into a world’s m1-condition, as opposed to
its m3-condition. Surely though I do grasp a subject matter m, if I can never tell
you what the proposition m(w) that specifies how matters stand in w where m is
concerned.

But, subject matters as just explained do tell us what w is like where m is
concerned. The proposition we’re looking for is meant to be true in all and only
worlds in the same m-condition as w ; on an intensional view of propositions, it is
the set of worlds in the same m-condition as w. That proposition is already in our
possession. To be in the same m-condition as w is to be m-equivalent to w, and the
set of worlds m-equivalent to w is just w ’s cell in the partition. A worlds m-cell is
thus the proposition saying how matters stand in it m-wise.

Lewis writes nos for the number of stars. How do we find the proposition
specifying how matters stand in a world where nos is concerned? Well, w has a
certain number of stars, let’s say a billion. Its nos-cell is the set of worlds with
exactly as many stars as w. The worlds with exactly as many stars as w are
th4us the ones with a billion stars. The worlds with a billion stars comprise the
proposition that there are a billion stars. That it contains one billion stars sums

20Linguists have their own notion of topic; a sentence’s topic/focus structure is something like
its subject/predicate structure. Topics in the linguist’s sense may or may not be reflected in a
sentence’s subject matter.
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up w ’s nos-condition quite nicely. By transitivity of identity, its nos-cell sums up
its nos-condition quite nicely.

11. Ways to Be

Where does this leave us? The subject matters in (10) seemed too abstract
and structural to tell us what is going on m-wise in a given world. But each m

determines a function m(...) that encodes precisely that information. It works
backwards, too; one can recover the equivalence relation from the function, by
counting worlds m-equivalent if they are mapped to the same proposition.21 m can
thus be conceived as (i) an equivalence relation—that’s what it is “officially”—or
(ii) a partitition, or (iii) a specification for each world of what is going on there
m-wise. The number of stars, for instance, can be construed as a function taking
each k -star world w to the proposition There are exactly k stars.

The problem may seem to recur at a deeper level. How are we to get an intuitive
handle on the function m(...) taking worlds to their m-conditions? It’s one thing if
m(...) is introduced in the first place as specifying how many stars a world contains.
But all we know of specification functions considered in themselves is that they
are mathematical objects (sets, or partial sets, presumably) built in such and such
ways out of worlds. It is not clear how we are to think about sets like this, other
than by laying out the membership tree and describing the worlds at terminal
nodes as best we can.

Each specification function m(...) has associated with it a set of propositions,
expressing between them the various ways matters can stand where m is concerned.
(A proposition goes into the set if it is m(w) for some world w.) The operation is
again reversible: to find m(w), look for the proposition to which w belongs.

A subject matter can also be conceived, then, as (iv) a set of propositions. Sets
of this type function in semantics as what is expressed by sentences in the interrog-
ative mood. Questions, as they are called, stand to interrogative mood sentences
Q as propositions stand to sentences S in the indicative mood.22 To find a Q
expressing a particular set of propositions, look for one to which those proposi-
tions are the possible answers. This Q gives us an immediately comprehensible
designator for the set of propositions at issue.23

What, for instance, is the Q to which There are exactly k stars, for specific
values of k, are the possible answers? It is How many stars are there? We are
dealing, then, with the issue or matter of how many stars there are. What

21This won’t work, of course, with any old function from worlds to sets of them. The propo-
sition associated with w must be true in it; the propositions associated with different worlds
should be identical or incompatible.

22I will sometimes use “question” sloppily as standing also for the sentences.
23By pointing us to the corresponding indirect question. The indirect question corresponding

to Do cats paint? is whether cats paint. The indirect question corresponding to Why do they
paint? is why cats paint.
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is the question addressed by She said BLAH to Francine, for specific values of
BLAH? It is She said WHAT to Francine? Thinking how to answer What did
she say to Francine? is considering the matter of what she said to Francine.
The question addressed by Cats paint is Do cats paint? ; the corresponding subject
matter is whether cats paint. The question addressed by Cats paint to relieve
tensionis Why do cats paint?. Pondering that question is reviewing the matter of
why cats paint.24

12. Targeting (3): Directed Truth

That S holds in a certain model ω tells us, or can tell us, that S is true, period,
where a certain subject matter is concerned. How does it do this? Recall that
we earlier reconceived the target system as a world α, and decided to think of the
model as a world or mini-world ω. This makes both into the kinds of thing that
can be alike, or different, where a subject matter is concerned. And now we can
elaborate schema M in two different ways:

M∃: S is true in α where m is concerned iff it is true simpliciter in a world ω
that is equivalent to α where m is concerned.

For S to be true about m in α means (according to M∃) that S, should it be false
in α, is at any rate not false because of how matters stand with respect to m. This
admits of a simple test: S is not false about how matters stand m-wise iff one can
make it true without changing how matters stand m-wise. The role, anyway one
role, a model ω can play is to witness this possibility—the possibility of morphing
our world into an S -world without disrupting the state of things m-wise.

Now, what kind of compliment we are paying S, when we call it true about m?
Does truth about the subject matter under discussion make S “as good as true”
for discussion purposes? Does “true about m” function in descriptions of @ the
way truth simpliciter does? One has to be careful here.

Truth about m, considered as a modality, is possibility-like: A is true about m

in a world just if it could be true, for all that that world’s m-condition has to say
about it. The logic of directed truth, on this view, can to some extent be read off
the logic of possibility. This is fine for some purposes. Sometimes all we want from
truth about m in α is that S could be true in the same m-conditions as obtain in
α. This is how it works, for instance, with models of the solar system that replace
planets with point masses stationed at each planet’s center of gravity, or (as far
as I can understand this issue) the models in solid state physics that have “quasi-
particles” like phonons standing in for diffuse and large-scale vibrations.25 The
possibility-like notion of truth about m seems to suffice when, roughly speaking,
there is only one ω for a given α, or S is satisfied by all the models of interest if
any.

24See Silver and Busch [2006].
25See Gelfert [2003] and Falkenburg [2015]. Thanks to Jay Hodges for the example.
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A particularly vivid example is invoking mathematical objects to increase ex-
pressive power. Take The rabbit population in Australia was 27 × 2n on the nth

day of 1866.. This is not true outright in α, if α lacks numbers, as maintained by
most if not all Australians. But it would still be true about how matters stood
physically, if the rabbit population allowed this. That it could also be false under
such conditions is not a problem. There is essentially only one way of fitting a
physical world out with numbers.

Sometimes though it is a problem. A hypothesis and its negation can be possible
at the same time. Similarly there is nothing to stop them from both being true
about m. That a world’s m-condition permits each of A and ¬A to be true doesn’t
mean it permits them both to be true together. Truth about m is not agglomerative.
Call this the phenomenon of quasi-contradiction.

How much of a problem is it if truths where m is concerned contradict each other?
That depends on whether the contradiction is off-topic. (There is a problem only
if A and ¬A say contradictory things about m.) Take the statement that The
author of Principia Mathematica taught at Harvard. This gets something right,
in that Whitehead taught there. Its negation, however, also gets something right,
since Russell did not teach at Harvard. There is nothing contradictory about only
Whitehead teaching at Harvard!

That A and ¬A can both be true about m, as long as they are consistent in what
they say about m, is a nice outcome. But we pay a heavy price for it: truth about m
is not closed under conjunction.26 To obtain a notion of truth-about that is closed
under conjunction, we need to put a universal quantifier in for the existential in
M∃. This can done along Kratzerian lines (Kratzer [1977]) as follows.

M∀: S is true in α where m is concerned iff it holds in all the best ωs that
are equivalent to α where m is concerned.

Here I am imagining subject matters fitted out with an extra relation >; one
of two m-equivalent worlds is better than another just if it better illuminates what
is going on m-wise, by e.g., containing fewer distorting influences or irrelevant
complications. The best motion due to gravity-equivalents of α, for instance,
will have gravity as their only force and gravitationally induced motion as their
only motion. This is important lest Objects never move comes out true in our
world about motion due to gravity, thanks to a Zeno world where gravitational
forces are exactly cancelled out by other forces.

13. Conclusion

Not a lot has been accomplished in this paper. A rough analogy has been
developed between how numbers boost (can boost) expressive power and how
models do. Sometimes the best way to get our point across is to advance a sentence
S not as true full stop, but true about certain subject matter. we can do with

26Dorr [2010].
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a false sentence. S ’s truth here in α about a subject matter m is analyzed as its
truth simpliciter in a world ω that is just like ours where m is concerned. The
principal difference is that ω in the numbers case is (assuming nominalism) more
complicated than our world; it contains both a duplicate of α and a bunch of
mathematicalia that are missing from α. Whereas ω in the case of models is
simpler than our world, that being the whole point of working with models.

The main ideas about models have been that (i) translating truths in the model
into truths about the target system is difficult, but (ii) there’s an alternative:
rather than trying to morph S into a truth about α, we can morph “true” into
“true as far as m goes.”27 This provides a format but does not otherwise get us
very far. The question now is, where do we look for a n m of which it’s illuminating
to know that S is true about it in α = the actual world? I don’t know.28
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