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SIMPLIFIED SEMANTICS FOR 

BASIC RELEVANT LOGICS 

INTRODUCTION 

When C. I. Lewis pioneered modern modal logic, he proposed a 
number of systems (S4, S5, etc.) in proof-theoretic form. When suit- 
able world-semantics for these systems were produced, it became clear 
that these systems were but the tip of an ice-berg. Moreover, in the 
light of the semantics, it became clear that the basic (normal) logic 
was none of those that Lewis had suggested, but the system now 
called K. This has the most general semantics, other (normal) systems 
being obtained by adding extra conditions on the binary relation, R. 

To a certain extent, the history of relevant logics parallels this 
development. When Anderson and Belnap pioneered relevant logic, 
they proposed a number of systems (E, R, etc.) in proofs theoretic 
form. When suitable world-semantics for these systems were pro- 
duced, it became clear that these systems were but the tip of an ice- 
berg. Moreover, in the light of the semantics, it became clear that the 
basic (affixing) logic was none of those that Anderson and Belndp had 
suggested, but the system now called B (or BM if we drop all con- 
straints on *). This had the most general semantics: other (affixing) 
systems being obtained by adding extra conditions on the ternary 
relation, R. 

The parallel diverges at this point, however; for whereas there are 
no conditions on the binary R for K, the ternary R for B is subject to 
several conditions - including a hereditariness condition. (See 
Routley et al., 1982, ch. 4.) The point of this paper is essentially to 
show how these conditions can be removed, making the parallel exact 
again. In doing so we simplify the semantics of relevant logics 
substantially. 

In the first part of the paper we will consider the basic positive 
logic, B+. In the second half we will consider negation-extensions of 
B+. There are two strategies for handling negation in relevant logic: 
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one uses the Routley *-operation; the other uses four-valued seman- 
tics (Routley et al., lot, cit.). We consider both approaches. The 
extant four-valued semantics for relevant logics contain a complica- 
tion over and above constraints on R: they require two ternary 
relations (one to state truth conditions; the other to state falsity 
conditions). A feature of the present semantics is that only a single 
ternary relation is needed. Thus, the four-valued semantics are doubly 
simplified. Moreover, an interesting divergence emerges here. All 
negative systems add De Morgan laws to B+. The basic negative 
system with the Routley * adds, in addition, contraposition; that for 
the four-valued semantics adds, instead, double negation. (B itself, 
adds both.) 

We concentrate in this paper on the semantics of the basic affixing 
relevant systems. It is clear that simplified semantics for all (affixing) 
relevant logics, along the lines given here, are to be expected. But 
since details are not as straightforward as might be expected, we leave 
this topic for another occasion. 

1.1. AN AXIOM SYSTEM FOR B+ 

First, let us start with an axiom system for Bf . The axioms are as 
follows (where standard scope conventions are in force): 

Al a+a 

A2 a+avp [8+av/l] 

A4 a A (B v Y) --, (a A P) v Y 

A5 (a -+ PI A (a 9) + (a + B A Y) 

A6 (a + 19 A @ + v) -+ (a v B -+ Y) 

If ai . . . a,,//3 is a rule scheme, we define its disjunctive form to be the 
scheme q v a, . . . q v a,/q v /3. The rules for B+ are the following 
plus their disjunctive forms: 
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R2 4 81a * B 

R3 a --) /I, y + S/(fi -+ 7) + (a -b 6). 

It should be noted that special cases of R3 (using Al and Rl) are: 

Prefixing: y + 6&r + y) 3 (a -+ 6) 

Sutlixing: a + B/W -+ 19 + (a -+ 19 

Transitivity: a -+ D, B + r/a -+ Y 

If C is a set of formulas and sl is a formula then X t a is defined in the 
standard (classical) fashion. 

We note that the disjunctive forms of Rl - R3 are not normally 
included in axiomatisations of B+. However, B and all the related 
systems we shall refer to in this paper are known to be prime, i.e., if 
1 a v /I then t-r or l-p. (This is proved for B in Slaney, 1987. Simple 
variants of Slaney’s metavaluation techniques establish the results for 
B+ , BM and BD.) The admissibility of the disjunctive rules in the 
standard axiomatisation follows straightaway. Before we turn to the 
semantics we pause to establish one useful bit of proof theory. 

LEMMA 0. if a k j? then y v a t- y v p. 
Proof. The proof is by a quite orthodox induction over the length 

of proofs, and is omitted. 

COROLLARY. Zf z t y and /I t y then a v p t y. 
Proof. By the Lemma, r v fi t y v p and y v /I t y v y; but 

9 v y t y (Al, R2, A6, Rl). The result follows by transitivity of 
deducibility. 

1.2. SEMANTICS FOR E+ 

An interpretation for the language is a Ctuple (g, W, R, I), where W 
is a set (of worlds); g E W (the base world); R is a ternary relation on 
W; and Z assigns to each pair of world, w, and propositional parameter, 
p, a truth value Z(~V, p) E ( 1, O}. Truth values at worlds are then 
assigned to all formulas by the following conditions: 

1 = I(w, a v fi) iff 1 = f(w, r) or 1 = Z(w, p), 
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1 = Z(w, a A /I) iff 1 = Z(w, a) and 1 = Z(w, /?), 

1 = Z(g, a + /I) iff for all x E W (if 1 = Z(x, a) 
then 1 = Z(x, a)). 

For x # g: 
1 = Z(x, a -+ 8) iff for all y, 2 E W 

(if Rxyz then (if 1 = Z(y, a) then 1 = Z(z, B)). 

Giving a + B different truth conditions at g and elsewhere is the 
heart of the matter. At g a -P #I receives S5 truth conditions. Else- 
where a + /? receives the standard ternary truth conditions. We note 
that we could give ternary truth conditions at all worlds, at the cost 
of introducing the modeling condition: Rgxy iff x = y. This at once 
reduces the ternary relation to a binary one at g and also makes g 
access all worlds. (This was, in fact, how the simplified semantics were 
discovered.) 

Semantic consequence is now defined in terms of truth preservation 
at g: 

0 b a iff for all (g, W, R, Z) 

(if 1 = Z(g, D) for all p E 0 then 1 = Z(g, a)). 

1.3. SOUNDNESS 

We can now demonstrate the soundness of the semantics. 

THEOREM 1. ZfX t a &en z t= a. 
Proof. The proof is by a simple induction over the length of 

proofs. The details are straightforward. We do the induction case for 
the disjunctive form of. R3 as an example. Suppose that q v (a --, /?) 
and q v (y + 6) are true at g (i.e. Z(g, n v (a + fl)) = 1, etc). Then 
either q is true at g, and hence n v ((p + 7) + (a + 6)) is true at g, 
or else a -+ p and y + S are true at g. Let w be any world and let 
(/3 + y) be true at w. We show that a --) 6 is true at w. Suppose that 
w # g, Rwxy and a is true at x. Since a + p is true at g, p is true at 
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X. Thus, since /I + 7 is true at IV, */ is true at y; and since 7 + 6 
is true at g, 6 is true at y. Thus, .x + 6 is true at NJ. The case for 
w = g is similar. It follows that (/I + 7) -+ (a + 6), and hence 
9 v ((j? -9 y) -+ (a + 6)), are true at g. 

I .4. COMPLETENESS: KEY NOTIONS 

We now establish completeness. The proof uses standard techniques 
(see, especially Routley et al., op cit., pp. 306-8, 336-9). We give it 
in full, partly because we are proving completeness of consequence 
rather than theoremhood, which is a bit stronger than usual; partly to 
unify some of the terminology used there; and partly to make the 
paper self contained. For starters, let us give the definitions of all key 
concepts. 

(i) If II is a set of sentences, let II, be the set of all members of II 
of the form x + 8. 

(ii) Z k, r iff Z u IT, l- a. 
(iii) ZZ is a II-theory it? 

(a) if ~1, /I E C then a A B E C 
(b) if t, a --f j? then (if a E X then /I E C) 

(iv) X is prime iff (if z v /I E Z then a E C then /I E C). 
(v) If X is any set of sets of formulas the ternary relation R on X is 

defined thus: 

RXAiff(ify+SEZthen(ifyErthen6EA)) 

(vi) C FE A iff for some 6, . . . 6, E A Z k, 6, v . . . v 6, 
(vii) t, C --f A iff for some CJ, . . _ a,, E Z and 6, . . . 6, E A 

t, a, A . . . A 0” + 6, v . . . v 6”, 
(viii) C is II-deductively closed iff (if C bK a then a E C). 

(ix) If 0 is the set of formulas, (C, A) is a II-partition ifE 
(a) C u A = @ 
(b) tt, C + A. 

In all the above if II is a, the prefix ‘II-’ will simply be omitted. 
thus, a (a-theory is simply a theory, etc. 
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1.5. EXTENSION LEMMAS 

We now prove a number of lemmas. The first group concerns exten- 
sions of sets with various properties. 

LEMMA 1. Zf (EC, A) is a II-partition then IX is a prime H-theory. 
Proof. Suppose u, fi E X but u A /,l $ C. Then a A B E A. Hence 

I-, X -+ A. Contradiction. Next, suppose that a E Z and t, cz + #l but 
/? 4 X. Then /3 E A, in which case l-, C + A. Contradiction. Finally, 
suppose that a v fi E Z but a 4 C and /? 4 X then a, j3 E A. Hence, 
t, Z + A. Contradiction. 

LEMMA 2. Zf V, Z + A then there are C’ GJ C and A’ ZJ A such that 
(X’, A’> is a H-partition. 

Proof. Leta,,a,,... be an enumeration of the set of formulas, @. 
Define Xi, Ai, i E o, by induction. C, = X; A,, = A. 

Then 

If tt, Ci u {ai) + Ai then Xi+, = Ci u {ai} and Ai+, = Ai 
otherwise Xi+, = Ci and Ai,., = Ai u (al}. 

C’ = U&andA = u Ai. 
i-z0 i-za, 

Clearly Z’ u A’ = @. It therefore remains to show that Y, Z’ + A’. 
By the compactness of lR it suffices to show that for no i Y, Xi + Ai. 
This is proved by induction on i. It is true for i = 0 by definition. 
Suppose that it is true for i = j but not i’= i + 1. Then we must 
have both of: 

l-n Cj u {a/} --, Aj 

t,T$+ Aju (ai>. 

So for some conjunctions of members of Cj, 6,) c2, and some disjunc- 
tions of members of Aj, 6,) &: 

I-, 0, A aj + S,, 

l-,oz-+S2 v aj. 
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Now, t, u, A 02 + 02 

SO t, UI A U2 + 62 V 3Lj 

but t, u, A c2 --f u, 

SO t, U, A 02 + (62 V clj) A Ul 

Thus, tnU, A O2 --f 82 V (Ctj A CT,) 

Now since t-, IJ, A uj + 6, 

But 

Hence 

so 

i.e. 

(A31 

CR41 

(A31 

645) 

(A49 R3) 

642, R3) 

642) 

646) (*I 

CR31 

Contradiction. We flagged one step (*) for future reference. 

COROLLARY. Let C be a n-theory, A be closed under disjunction, 
and C n A = a. Then there is a C’ 2 X such that C’ n A = @ and 
C’ is a prime H-theory. 

Proof. First, observe that ti, X + A, for otherwise there would be 
6 . . . 7 6, E A such that 6, v . . . 
by Lemmas 1 and 2. 

v 6, E IZ n A. The result follows 

LEMMA 3. ZfZ tF A then there is C’ 1 C, A’ 2 A such that (Z’, A’) 
is a partition and C’ is deductively closed. 

Proof: We repeat the construction of C’, A’ in Lemmas 2, but 
replacing occurrences of the form t, X + Y by ones of the form 
X 1 Y. As before, it follows that X’ tf A. We leave the reader to work 
through the details. There is one subtlety, however, at the step we 
flagged (*). Given that: 

CT, A Uj t 6, V 6, 
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the Corollary of Lemma 0 is required to conclude that: 

6, v (a, A aji) I- 6, v 82. 

Now since X’ Y A’ it follows that If Z + A’ by Rl. Hence (X’, A’) is 
a partition. It remains to show that C’ is deductively closed. Suppose 
that X’ t a but a $ C’. By construction, there is an i such that 
Ci u (a} k Ai. But then C’ t A’, contradiction. 

COROLLARY. If Zi If a then there is a II 2 C such that a 4 II, lYI is 
a prime n-theory and ll is IWeductively closed. 

Proof. Let A in the Lemma be (a). Let H be X’. Then by the 
Lemma H 2 C and a $ H. By Lemma 1, H is a prime theory. By the 
Lemma H is deductively closed, and since H t, a entails H I- a, it 
follows that IT is H-deductively closed. It remains to show that H is a 
H-theory. Suppose that t, a + /? and a E II; then clearly II I- B. 
Hence /I E H by deductive closure. 

1.6. COUNTER-EXAMPLE LEMMAS 

The second group of lemmas establishes that there are certain theories 
with properties that are crucial in the recursion case for + in the 
proof of the main theorem. 

LEMMA 4. If II k a prime II-theory, is II-deductively closed and 
a + /I $ II, then there is a prime H-theory, r, such that a E I- and /? +! r. 

Proof. Let X = {y; a + y E II}. C is a H-theory. For suppose that 
y,, y2 E C. Then a + y,, a -+ yz E II. Thus t-R a + y, A y2 (A5), so 
y, A yz E C by H-deductive closure. And suppose that I-, y + 6 and 
y E X Then a --, y E II; hence a + 6 E H by R3 and H-deductive 
closure. Moreover, clearly a E C and /I v . . . v /I $ X. Let A be the 
closure of (/?} under disjunction. Then C n A = 0. The result 
follows by the corollary of Lemma 2. 

LEMMA 5. If C, r, A are II-theories, ROTA and 6 $ A then there are 
prime l-I-theories. r’, A’, such that r’ 2 r, 6 $ A’ and RW’A’. 

Proof. Under the conditions of the Lemma, we first construct a 
A’ such that 6 4 A’ and RCTA’. Let 0 be the closure of {St under 
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disjunction. A n 0 = a since t 6 v . . . v b + 6 and A is a 
theory. By the corollary of Lemma 2, there is a A’ 2 A such that 
A’ n 0 = fa. Finally, since RZI’A and A’ 3 A, RCTA’. 

Next, we construct I’ so that r’ ‘1 I- and RCT’A’. Let: 

0 is closed under disjunction. For suppose that CI,, a2 E 0. Then there 
are &, /3r 4 A, such that r, + /?, , x, + #& E C. Since A’ is prime 
fi, v & 6 A; and a, v CQ + p, v b2 E C since C is a theory - 
details are left as an exercise. So a, v z2 E 0. Moreover I n 0 = 
0. For suppose a E I n 0. then 38 $ A’ such that z + p E C. But 
RCTA’; contradiction. 

Thus we can apply the corollary of Lemma 2 to obtain a prime 
H-theory, I’ such that I’ 2 I- and I’ n 0 = 0. It remains to show 
that RW’A’. Suppose that u + #I E C and that a E I”. Then Q 4 0. 
Hence /I E A. 

LEMMA 6. Let X be a prime H-theory and 7 --f 6 $ X:. Then there are 
prime II-theories, r’, A’ such that RCT’A’, 7 E l-‘, 6 # A’. 

ProoJ We show that there are H-theories I, A such that RZA., 
y E I-, 6 4 A. The result then follows by Lemma 5. Let: 

Clearly, y E I. Moreover, 6 4 A. For suppose 6 E A. Then there is an 
a E r such that a --f 6 E Z. Thus, t, y --) a, and so t,(u + S) + 
(y -+ 6). Hence “/ --f 6 E X since C is a H-theory. It remains to show 
(i) that r is a H-theory; (ii) that A is a H-theory; (iii) that RCTA. 

(i) Suppose that 01,, u2 E I. Then t-. y + r, and t, y + a2. Thus, 
t, y -+ x, A rz (A5), i.e. a, A a2 E I. Suppose that a E I and 
t, u -+ q. Then t, y + 11 (R3), i.e. ye E I. 

(ii) Suppose q, , q2 E A. Then there are a,, a2 E I such that a, + q,, 
ir2 + qz E C. Hence, by the application of various rules z, A a2 + 
q1 A qz E Z. (Details are left as an exercise.) Thus, q, A q2 E X. 
Now suppose that 4 E A and kn q + cp. Then there is an a E r 
such that a + 17 E C. Thus, r + cp E Z (as above), i.e. cp E A. 
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(iii) Suppose that 9 + $ E E and cp E I-, then $ E A, by definition 
of A. 

1.7. COMPLETENESS 

We are now in a position to prove the completeness of the axiom 
system. 

THEOREM 2. Zf 0 t OL then 0 k a. 
Proof. We prove the contrapositive. Suppose that 0 It a. By the 

corollary of Lemma 3 there is a II 2 0 such that cx $ II, II is a 
prime II-theory and II is II-deductively closed. Define the interpreta- 
tion ‘$I = (II, X, R, Z), where X is the set of all prime II-theories 
(R being restricted to X3) and Z is defined thus. For every world, 
C and propositional parameter, p: 

Z(Z,p) = 1 iffp E X. 

We show that this condition holds for an arbitrary formula, /I: 

Z(C,j?) = 1 iffBEC. (**) 

It follows that ‘9I is a counter-model for the inference, and hence that 
C y a. 

The proof of (**) is by recursion over the formation of jI. The 
recursion cases for A and v are as follows: 

I = Z(Z, y A S) iff 1 = Z(C, y) and 1 = I@:, 6) 
iffy E E and 6 E X (Rec. Hypothesis) 
iffy A ~EC (E is a theory) 

1 = Z(X, y v 6) iff 1 = Z(E, y) or 1 = Z(C, 6) 
iffy E E or 6 E E (Rec. Hypothesis) 
iffy v 6 E X (C is a prime theory) 

The case for + splits into two, depending on whether or not I: = II: 

1 = Z(II, y --f 6) iff VT E X (if 1 = Z(T, y) then 1 = Z(I, 6)) 
iff VT E X (if y E r then 6 E I) (Rec. Hypothesis) 
iffy+6EII (r is a II-theory, 

and Lemma 4) 
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IfX # I-I: 

1 = Z(c, y + 6) iff VT, A E X (if Rz:TA then (if 1 = Z(T, 7) 
then 1 = Z(A, 6))) 

iff VT, A E: X (if RDA then (if y E r then 6 E A)) 
(Rec. Hypothesis) 

iffy+aEI: (Definition of R 
and Lemma 6) 

Hence, the result is proved. 

2.1. NEGATION 

We now turn to negation-extensions of B’ . Negation extensions of 
B+ all add De Morgan Laws: 

A7 1(a A fi)c)-lx v1p, 

A8 1% Alpc*-l(u v 8). 

The basic negative system when negation is handled with the Routley 
*-operator, adds, in addition, contraposition. 

R4 u + /l/i/I? --f ia. 

We call this system BM. (We note that this axiomatisation contains 
slight redundancies. Contraposition, together with positive axioms 
suffices to prove each of A7 and A8 in one direction. Details are left 
as an exercise.) To model BM, an interpretation is extended to a 
Stuple (g, W, R, *, Z> where g, W, R, and Z are as before, and * is a 
one place function from W to W. The truth conditions for negation 
are: 

1 = Z(w, ix) 8 1 # Z(w, a*). 

It is a simple matter to check that BM is sound with respect to these 
truth conditions. Completeness is scarcely more complicated. If X is a 
set of sentences we define: 

The canonical model, % of Theorem 2 is now just extended to 
(II, X, W, *, Z). All that needs to be checked is that this is well- 
defined, that is, that if I; is a prime I-I-theory, so is C*. 
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(i) Suppose that CL, j? E C*, i.e. ia, -~j? $ E. Then la v l/? 4 C 
(since C is prime). Hence -~(a A /I) 4 X (De Morgan). Thus, 
a A p E I;*. 

(ii) Suppose that LX E C* and t, a -P /?. Then -ra $ X and 1, lp + 
la (R4). Hence -I/? $ C, i.e. j3 E C*. 

(iii) Suppose that c1 v /I E C*. Then -r(a v j?) 4 X. Hence la A 
lj? $ LY (De Morgan), i.e. ia or --rb $ X. So a 4 X, or /I $ X. 

2.2. DOUBLE NEGATION 

The system B, itself, is obtained from BM by the addition of the 
axiom: 

A9 a+-+iia 

(making A7 and A8 completely redundant). To obtain semantics for 
B we simply require that an interpretation * satisfy the condition 
w = w**. It is an easy matter to check that this verifies A9. In the 
completeness proof we need only check that *, as defined in the 
previous section, satisfies this condition. This is done thus: 

aEZ** iffia$Z* 
iffiiaeC 
iffaEX (A91 

2.3. FOUR-VALUED SEMANTICS 

The second way of handling negation that we mentioned in the intro- 
duction is through a four-valued semantics. In this case, the basic 
logic is obtained by adding to the positive system both De Morgan 
laws and Double Negation. Let us call this system BD. (So BD is B+ 
plus A7, A8 and A9.) 

A semantic interpretation for BD is the same as that for B+ (with, 
nb, a single ternary relation and no modeling conditions), except that 
Z assigns to each world and propositional parameter a truth value in 
the set {{ 1}, {0), (1, 0}, @}. The truth conditions are as in 1.2, except 
that ‘1 = Z’ is replaced by ‘1 E I’. The truth conditions for negation 
are: 

1 E Z(w, ia) iff 0 E Z(w, a). 
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We also need to give falsity conditions now as well. These are as 
follows: 

0 cz Z(w, ia) iff 1 E Z(w, a), 

0 E Z(ru, a v j?) iff 0 E Z(w, r) and 0 E Z(w, /?), 

0 E Z(w, a A p) iff 0 E Z(w, a) or 0 E Z(w. /?). 

Whether or not a conditional is false is to be arbitrary. Hence we 
take Z to assign 0 to the value of conditionals ad lib. 

Again, it is an easy matter to check that BD is sound with respect 
to these truth and falsity conditions. The details are left as an exercise. 

2.4. COMPLETENESS 

Completeness is hardly more complicated. The only difference is that 
in the proof of the main theorem (1.7) we define the Z of the canoni- 
cal model as follows: 

1 E m P) iffpr5C 

0 E m P> iffipEX 

OeZ(X,a+fl) iffi(fx-+j?)EC. 

It then needs to be shown that the following condition is true of all 
formulas: 

1 E Z(C, /?) iff /I? E C 

0 E I(& #3) iff ifi r5 C 

and then everything works as before. The new recursion steps to 
check are those for the truth condition for negation and all the falsity 
conditions, except those for the conditional, since this is given by defi- 
nition. The new material is as follows. 

1 E Z(C, iy) iff 0 E Z(X, 7) 
iff-iyez 

O~f(C,iy) iff 1 EZ(C,y) 
iffyEC 
iff iiy E X 

(Rec. Hypothesis) 

(Rec. Hypothesis) 
(A9) 
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OEZ(X,,y A 6) iffO~Z(~,y)orO~Z(~,6) 
iff-tyEXori6EC (Rec. Hypothesis) 
iffiy v -I~EI: (C is a prime theory) 
iffl(y A cS)EX 647) 

0~Z@,y v 6) iffO~Z(~,y)andO~Z(~,6) 
ifflyECandl&EX (Rec. Hypothesis) 
iff-ty A -I~EC (c is a theory) 
iffi(y v ~)EI: W) 

2.5. CONTRAPOSITION 

How to obtain a semantics for the logic B along these lines (with a 
single ternary relation) is still an open problem. It might be thought 
that we could obtain a suitable contrapossible implication by simply 
defining it as follows: 

a*fl = (a + j?) A (ij?+ia). 

The truth conditions for this conditional are clearly: 

1 E Z(g, a * p) iff for all x E W, if 1 E Z(x, a) 

then 1 E Z(x, j?) and if 0 E Z(x, B) then 0 E Z(x, a). 

For x # g: 

1 E Z(x, a ==. j?) iff for all y, z E W, if ZLY~Z 

then (if 1 E Z(y, a) then 1 E Z(z, z!?)) 

and (if 0 E Z(y, p) then 0 E Z(z, a)). 

And, indeed, this definition comes close. As may be checked, the con- 
ditional with these truth conditions satisfies Al-A4, A7-A9, Rl, R2, 
and R4; but not A5, A6 or R3. (Though it does satisfy them if the 
main conditional in A5, A6 and the conclusion of R3 - but not the 
others - is taken to be --, instead of =c-. What logic the A, v , 1, 

= fragment is, is an interesting open question. It is a logic without 
affixing but with substitutivity of equivalents, such as the logic of 
Priest, 1980.) 
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Since the failure to verify A5, A6 and R3 comes entirely from the 
failure of falsity to be preserved backwards for certain conditionals, it 
is natural to suppose that some modification of the falsity conditions 
for conditionals will rectify the matter. And in any case, falsity con- 
ditions of the kind used for BD are philosophically unsatisfactory 
since they fall foul of the principle of compositionality. For the 
semantic value of a sentence (that does not contain context-dependent 
or indexical phrases) must be a function of the semantic values of its 
components and the way they are put together, or we would not be 
able to understand the meanings of totally new sentences. And clearly, 
falsity conditions of the kind in question violate this principle. 

Two ways of giving compositional falsity conditions for --f come to 
mind immediately. The first is that used in the double-ternary four- 
valued semantics, and is as follows: 

0 E f(g, c1 --, p) iff IX E W (0 E 1(x, j?) but not 0 E Z(x, z)). 

For x # g: 

0 E Z(x, LY --f j?) iff 3y, t E W (RX-VZ, 0 E Z(y, /?) but not 0 E Z(z, a)). 

The second is the following conditions, whose naturalness arguably 
makes the logic they generate the basic affixing relevant logic on the 
four-valued approach: 

0 E Z(g, a + p) iff 3x E W (1 E Z(x, a) and 0 E Z(x, /I?)). 

For x # g: 

0 E Z(x, a + j?) iff 3y, z E W(Rxyz, 1 E Z(y, CX) and 0 E Z(z, p))) 

(see Priest, 1987, ch 6). 
With either of these falsity conditions => satisfies all the axioms and 

rules for B, as may easily be checked. However, both conditions 
verify invalid inferences in B. For example, the first verifies the 
formula: 

(a*/0 v 1(x=-P) 
and the second verifies the rule: 

%l PI-1 (2 =t- 8). 
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Therefore B is not complete with respect to these semantics. The 
variety of falsity conditions illustrates an important fact about B and 
similar depth-relevant logics. This is that they are very uninformative 
concerning the properties of negated entailments, and as such may be 
augmented by a number of plausible principles. (To a lesser extent, 
the same is true of most standard stronger relevant Iogics.) At any 
rate, determining a complete proof-theory for semantics with the 
various falsity conditions is an interesting open problem. 
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