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Nash Bargaining
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• Today we’re going to discuss bargaining experiments.  This 
will give us an opportunity to talk about how details of 
experimental designs grow out of the questions they are 
supposed to answer, and the theories they are intended to 
explore.

• The first part of the story will have to do with how 
experimental results helped change the kind of theories of 
bargaining that economists concentrate on.

• That being the case, I’ll have to start the story by reminding 
you about some of the salient features of John Nash’s 
(1950) model of bargaining.  It was perhaps the principal 
model of bargaining in the economic literature for a long 
time--certainly through the beginning of the 80s--and 
experimental results played a large role in exposing its 
shortcomings as a descriptive theory.  (These experiments 
in turn led to the exploration of a number of robust empirical 
regularities, which we’ll explore later, and to some new 
theory, in several different directions.) 
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Nash’s model of bargaining
• 2 bargainers are faced with a set A of alternatives.  The rules are that, 

if they both agree on some alternative a in A, then a will be the 
outcome.  Otherwise (i.e. if they fail to agree on an outcome) there is a 
fixed disagreement outcome d which will be the result.

• Under these rules, each player may veto any outcome other than d.
• Let u1 and u2 be expected utility functions representing the preferences 

of players’ 1 and 2.  
• Let S be the set of feasible utility payoffs from an agreement, i.e.
• S = {x = (u1(a), u2(a)) | a is in A}
• And let d be the utility payoffs to the players from a disagreement, i.e.

d = (u1(d), u2(d)) 
• The “complete information hypothesis” is that, when the set (S,d) is 

known (*) to both bargainers, it provides all the information needed to 
“solve” the bargaining problem.  Formally, Nash proposed to study 
solutions to the bargaining problem embodied in functions which would 
determine utility payoffs to both bargainers from the data (S,d). 

f:{(S,d)} Æ R
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• But how to make the utilities, (S,d) known?  I.e. 
how should the experiment be designed so that 
we know what a particular theory f:{(S,d)} Æ R 
predicts?

• Early experiments assumed linear utility in 
money: ui: R →R : ui(x)=x.

• So if A = {(x1, x2)| x1 + x2 ≤ k}, these experiments 
were interpreted as if (S,d) = (A,0)

• This kind of design turned out to be 
unpersuasive to game theorists, who felt that an 
experiment that assumes everyone’s utility 
function is the same cannot do justice to a 
theory that models all individual differences as 
differences in utilities.   
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So Roth and Malouf (1979)
Introduced binary lottery games:

A = {All lotteries over ($L1, $s2), ($s1, $L2)} ∪ {($s1,$s2)}
Where L is the large prize, s is the small prize, and people 

bargain over probabilities of getting the large prize L.

Theorem: If ui is an arbitrary utility function for money, and q 
is a lottery that gives player i probability q of receiving $Li,
then we can the unit and the zero point such that 

ui(q $L1 + (1-q)$s1) = q.  
(i.e. we set ui($L1)=1 and ui($s1) = 0) 

So (S,d) is  (up to affine transformations of each axis) the 
convex hull of (0,0), (1,0), and (0,1).
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Nash characterized a particular solution f via four axioms (1,2,3,5)

1. Independence of equivalent utility transformations: 
f(T(S,d)) = T(f(S,d)) for T(xi) = aixi+bi ai>0

(i.e. fi (T(S,d) = aifi (f(S,d)) + bi)
[This is intended and mostly interpreted to be merely a statement 
about meaningfulness (*)]

2.  Independence of Irrelevant Alternatives: if S’ contains S, and f(S’,d) 
is in S, then f(S,d) = f(S’,d)
(this was the controversial axiom)

3.  Pareto optimality 
f(S,d) = x  such that for no y in S is y ≥ x  

4. Individual rationality f(S,d) ≥ v where v is the disagreement payoff  

5. Symmetry: If S is symmetric  then  f1(S,d) = f2(S,d)
[S symmetric means (x1,x2) is in S iff (x2,x1) is also in S.]
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The Nash Bargaining Solution:

Requirements:
S is convex, compact, and there exists an x 

such that x>d for both players where d is 
the threat point payoff.

Players have complete information over S,d.

The negotiated outcome maximizes (x1-
d1)(x2-d2) where xi is player i’s negotiated 
payoff and di is the threat point payoff 
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The binary lottery game design controls for the predictions 
of the theory, i.e. it allows us to know (S,d), and 
therefore f(S,d).  [It isn’t a control for the behavior of the 
bargainers…]

The complete information hypothesis (and the auxiliary 
assumption that players are utility maximizers with utility 
functions ui(xi) that have as arguments only their own 
payoff)  now predicts that 

information about the prizes won’t effect the 
outcome of bargaining. (!)

• That is, up to choice of origins and scales, (S,d) isn’t 
sensitive to the prizes $Li and $si, and under the 
assumption that each player’s preferences concern his 
own payoffs only, it isn’t sensitive to whether each player 
knows the other’s prizes.
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The experimental environment:
• Each participant sat at a visually isolated terminal of a networked 

computer laboratory.
• Participants could send each other text messages (which passed 

through a monitor’s terminal) containing anything other than information 
about personal identity (e.g. “I am sitting in station 24 of the foreign 
language building, wearing a blue windbreaker” was not allowed).

• They could also send numerical proposals.
• After a message or a proposal was entered, it appeared on the screen 

with a prompt asking whether you wanted to edit it or transmit it to your 
bargaining partner.

• In order to accept a numerical proposal (i.e. shares of lottery tickets to 
win the high prize), you had to transmit the identical proposal back.  (e.g. 
my share = 67%, your share =33%)

• There was a fixed time period, and a clock on the screen counted off the 
time.

• If agreement on a numerical proposal had not been reached by the end 
of the time period, the game ended with disagreement.
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Early experiments
The strong prediction of the complete information 

hypothesis is easily refuted by experiments in 
which e.g.

$s1 = $s2 = 0, and $L1 > $L2.

• When neither player knows the other’s prizes, 
outcomes cluster closely around 50-50 
agreements at which each player gets half the 
lottery tickets.

• But when both players know $L1 and $L2, 
player 2 suddenly wants (and often gets) more 
than half of the lottery tickets.
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• So experiments show us an unpredicted effect of 
information about prize values.

• One of the nice things about experimentation is 
that, when we have a robust phenomenon, we 
can explore it in a detail unimaginable in field 
data.

• In particular, we see that when the players know 
each others’ prizes, the outcomes are different 
than when they do not.  From a variety of theory, 
we know that common knowledge is different 
from simple shared information.  

• In the lab we can explore these relatively subtle 
but potentially important issues.
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digression on common knowledge 
Something is called “common knowledge” if not only do 
• I know it and 
• you know it, but 
• I know that you know it, and you know that I know it; and
• I know that you know that I know it, and you know that I know that 

you know it; and
Every sentence of that form of any length is true.
• (Also, “I know that you know that he knows that she knows...)
Loosely speaking, we think of events becoming common knowledge 

when they happen in public, so I see it, you see it, I see you see it, 
etc.

Common knowledge is a convenient “overkill” assumption, when we 
don’t want to assume that something is well known.

It also has subtle, non-obvious consequences, that can make the 
assumption that a bit of information is common knowledge  far more 
powerful than simply assuming that they all know it.

Consider the famous story of the red hats…



13

"The red hat problem"
• Consider a group of people, say 100, sitting in a circle, each wearing a hat 

that is either red or blue.  Each person can see every hat but his own.  As it 
happens, all 100 hats are red, but no one knows the color of his own hat.  
No one is allowed to speak.  (It is common knowledge that everyone in the 
room is "perfectly rational.")

• A master of ceremonies stands in the middle of the circle, and makes the 
following announcement.  "Every sixty seconds I will ring a bell. If, when I 
ring the bell, you know that you are wearing a red hat, you should get up 
and leave the room." 

• It should be reasonably clear that no one ever leaves the room: no 
information is conveyed by the ringing of the bell.

• Suppose instead, the master of ceremonies prefaces his announcement 
with the following observation: 

•
• "There is at least one red hat in the room."  
• Notice that, since everyone in the room can see that there are at least 99 

red hats, this announcement will not surprise anyone.  Nevertheless, this 
public announcement fundamentally changes the situation:  now, the bell 
rings 99 times and no one leaves, but on the 100th ring of the bell, everyone 
gets up and leaves the room.
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• To see why, first consider the case of 2 people, instead of 100. You 
and I each see each other's red hat, but don't know the color of our 
own.  So we each know that there is at least one red hat.  But when 
this is publicly announced, it becomes common knowledge, so now 
we each not only know that there is a red hat, we each know that the 
other knows this.  So, after the first bell, when you see that I do not 
get up and leave (as I would if your hat were blue) you know that your 
hat is red, and so at the second bell you get up and leave, as do I.

Before going to the general case of n people, consider the case n=3. 
• You and I both see that the third person's hat is red, and we see each 

other seeing it.  Furthermore, we both know that the third person 
knows that there is at least one red hat (I know it because I know he 
sees your hat, you know it because you know he sees my hat).  But 
until the announcement, you don't know that I know that he knows
there is one red hat. Now for the bells: if your hat were blue, he and I 
would both ignore you and treat the problem as in the case of 2 
people, and leave at the second bell.  So when you see that we do 
not leave at the second bell, you know your hat is red, and so you 
(and we) leave at the third bell.  

• You can now prove the proposition for a group of any size by 
induction on n…☺
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• In experiments, when we want to make 
something (approximately) common knowledge, 
we do so by making it public information. 

• Consider the following experimental design, 
involving bargaining in a binary lottery game 
between two players, one of whom has a $20 
prize and one of whom has a $5 prize.  A player 
in any cell of the experimental design always 
knows his own prize. (Roth and Murnighan, 
Econometrica, 1982)



16



17

• In the common knowledge conditions, the common 
instructions informed both players about binary lottery 
games without specifying the prizes, and then told them 
that, after the common instructions were read, each 
player would receive private information of the sort 
indicated in the design. (The private info would then say, 
e.g. something like “your prize is $5, you are not being 
told the other player’s prize, but he is being told the 
value of your prize.”

• In the not common knowledge conditions, they were told 
that in the private information may or may not include 
information about the other players’ prize. (The private 
info would then say something like “your prize is $5, you 
are not being told the other player’s prize, and he may or 
may not know the value of your prize.”
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Disagreements:
 
Disagreements 
(%) 

Common 
Knowledge 

Non-Common 
Knowledge 

Neither player 
knows 

14% 8% 

Only $20 player 
knows 

20% 17% 

Only $5 player 
knows 

19% 33% 

Both Players 
know 

17% 26% 
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conclusions

• whether players know each other’s prizes makes 
a difference in the outcome.

• distribution of agreements primarily reflects 
whether $5 player knows both prizes

• common knowledge influences frequency of 
disagreements

• in the not-common knowledge conditions, the 
relationships among outcomes in observationally 
equivalent cells is consistent with equilibrium 
behavior
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Serendipity

• After many of these experiments, Roth et 
al analyzed the distribution of agreements 
over time, and found some striking 
regularities.  

• (Roth, Murnighan and Schoumaker, "The 
Deadline Effect in Bargaining: Some 
Experimental Evidence," AER, 1988.)

• The distributions over time all look like 
this…
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Expectations as an independent variable
(Roth and Schoumaker, AER, 1983)

• So far, we’ve talked about experiments which show that there is a big 
unpredicted effect of information about prizes.  The experimental designs 
attempt to control for expected utilities, and to some extent for strategies, so 
one place left in a rational actor model is expectations.  Perhaps information 
about prizes changes bargainers’ expectations about what agreements will 
prove acceptable.

• But many game-theoretic models of bargaining treat expectations as 
something to be derived from the data of the game.  The next experiment 
was designed to see if expectations were manipulable independently of the 
game data, in a two-stage bargaining environment studied by Harsanyi.

• All games are binary lottery games, in which one player has a $10 prize and 
one has a $40 prize.

• Stage 1:  each player states a demand pi.  If p1+p2 < 1, the game ends, and 
player i receives probability pi of winning. 

• If p1+p2 > 1, the game proceeds to stage 2.
• Stage2:  Each bargainer i can either state qi= pi or 
• qi=(1-pj).  If q1+q2 < 1, each bargainer receives probability qi of winning.  

Otherwise each bargainer receives probability 0. 
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The experimental conditions were motivated by the 
following thought experiment.

• Suppose a randomly selected individual plays a large 
number of these games, and although he doesn’t know it, 
his opponents are all confederates of the experimenter, 
and they never demand more than say, 20% for 
themselves.

• After a while, he gets used to getting 80%. He’s written 
up in the newspapers…

• Now it is your turn to bargain with him, on your own 
behalf, not as a confederate. What should you do?

Note in passing that the above thought experiment involves 
deception. Furthermore, if the deception were simply 
removed, the results would likely be different, so the 
deception plays an important role in this design. (But a 
different, cleverer design might be able to explore the 
same issues without deception. )

Something to think about: design such an experiment.
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Experimental design:
Each player played 25 2-stage games. 

“Although players were told that they bargained 
with another individual in each game, each 
individual in fact played against a programmed 
opponent (the computer) in the first 15 games”
[N.B. This was in the early 1980’s.  A.R. himself 
would think hard before using a design involving 
deception today.]

Both players knew both prizes ($40 and $10), and 
each player had the same prize throughout all 25 
games.
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Subjects were divided into 3 experimental conditions:

• “20-80”:  the agent whose prize was $40 bargained with a computer 
programmed to randomly select a first demand between 75 and 
80%, and to repeat its demand in the second stage.  The 
programmed opponent of the $10 player randomly selected a 
demand between 20 and 25%, and in stage two it accepted any 
offer giving it at least 20%.

• “50-50”: the programmed opponent of the $40 player randomly 
selected a first demand between 70 and 75%, and in stage two 
accepted any offer giving it at least 50%.  The programmed 
opponent of the $10 player randomly selected a demand between 
45 and 50%, and in stage two always repeated its demand.

• “control”:  subjects never bargained against a computer, always 
against other subjects.

After trial 15, new instructions appeared on the screen, and explained 
that in the remaining 10 trials, each player would see his 
counterpart’s history for trials 11 through 15.  (i.e. they now have a 
“reputation”)
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In trials 16-25, subjects in each group bargained 
with other members of that group.  Each game 
was played with a different, anonymous 
opponent.  Bargainers also were told their 
opponent’s first demand, whether he repeated it 
or accepted his opponent’s offer, and which 
agreement, if any, was reached in each of trials 
11 to 15 (i.e. the final 5 games against a 
programmed opponent, when each player’s 
behavior reflected his experience.)
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• So…..   a long series of experiments showed a robust 
and unpredicted effect of information.

• It identified a clear deadline effect, in an environment 
that ruled out some of the traditional explanations for 
deadline effects.

• And it also produced evidence confirming subtle aspects 
of the theory’s predictions about the qualitative effects of 
risk aversion.

• But many of the hypotheses raised about the causes of 
these effects depend on individual behavior that is hard 
to observe in the collective outcomes.  To isolate 
individual behavior, it is convenient to look at games in 
which the players move sequentially.

• We’ll discuss such games next, with particular attention 
to the remarkably simple ultimatum game.


