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Numbers Can Be Just What They Have To*

CoLIN McLARTY
Case Western Reserve University

Benacerraf (1965) tells of two children taught arithmetic on Zermela-Frankel set
theoretic foundations (ZF). They learn that numbers are sets but they differ as to
which set each number is. Erie learns each natural number is the set of its
_predecessars. So 0 is the empty set and 4 is {0,1,2,3}. Johnny learns each is the
singleton of its immediate predecessor. For him Q is also empty but 4 is {3}. This
makes no difference to the arithmetic they learn so Benacerraf says the boys have
equal claims to know what numbers are. But when contrary claims are equally
true, bhath are false. By an obvious generalization any identification of numbers
with sets is wrong. Numbers can not be sets.

Mare rigorously, Benacerraf calls any set with the structure of the natural
numbers (in effect, any set modelling the 2nd order Peano axioms) a “progres-
sion”. He says arithmetic is “the science that elabarates the abstract structure that
all progressions have in common merely in virtue of being progressions” (1965
p.70). Any progression of ZF sets has uniquely individuating properties, and thus
properties irrelevant to arithmetic, and so it can not be the numbers of arithmetic.

Benacerraf calls for a theory of “abstract structures™ within ZF (1965 p.70).
Abstract structures will not be sets. Rather, speaking of the natural numbers as an
abstract structure will be a fagon de parier for the properties common to all
progressions. There can be similar treatment of other structures, say the real
mumbers or whatever. This idea is widely influential under the name of “struc-
turalism™ but remains problematic in its particulars. (Compare Heliman 1989,
Parsons 1990, Resnik 1981 and 1982 and Shapiro 1983.)

Another point of view, though, says ahstract structure is subtle but not so
complex, and the irrelevant features of ZF sets are just technicalities. In fact, the
structuralist program. is already fulfilled or obviated, depending on haow you look
at it, hy categorical set theory (first described in Lawvere 1964). Sets and
functions in this theory have only structural properties. There is no need and no
place for a further theory of abstract structures.
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For example categorical set theory includes progressions, models of the 2nd
order Peano axioms, usually called “natural number objects”. The plural is used
advisedly as there are provably infinitely many of them, all isomorphic to one
another. The striking contrast with ZF is that all these natural number abjects
have exactly the same properties. They do not just have the same provabie
praperties but rather, for any property in the theory, it is provable that if one of
them has it they all do. Each of these progressions has only the structure that all
have in common. So categorical set theory meets the demands Benacerraf puts
on a structuralist account of mathematics.

To demonstrate this claim [ give axioms for a fragment of categorical set
theary, i.e. for a fragment of the theory of the topos of sets. These axioms suffice
for elementary arithmetic and for the results proved here. Anyone who knows the
topos of sets will see all our remarks also apply to it. For more detail and broader
context see Mcl.arty (1992). I also pursue the mock pedagogical form in some
detail, to tell against the implication in Feferman (1977) and Mayberry (1977)
that the categorical approach is pure formalism, unintelligible except by inter-
preting it in some ‘real’ set theory. I hope to show that finitary sets and arithmetic
relate as easily to categorical set theory as to ZF.

One last preliminary. We define an “isomorphism™ of sets to be a function
f: A— B with an inverse f~! : B — A, That is, the compasite f~! o f is the
identity function on A, while f » f~!is the identity on B. By an easy proof these
are the one-to-ane anto functions. The definition is standard in mathematics. A
group isomorphism is a group homomorphism with an inverse homomorphism.
An isomorphism of topological spaces is a continuous function with a continuous
inverse (which requires more than being one-to-one and onte). Classical set
theorists rarely speak of “isomorphism™ of sets in any sense, so they pose no
obstacle to our usage.!

Finitist Beginnings
Imagine sisters, Tasha and Brittany, whaose parents taught them arithmetic in full
logical rigor. Tasha was a few years older and went first, beginning with extreme
finitism. She learned to count to ten. She learned to recite the numbers from one
to ten and also to count up to ten cows, boxes, or fingers. Then she learned to
count to one hundred, and the system for counting to a thousand. She was not so
demanding as to ask how much further this went.

This beginning included the idea of a set. Her parents pointed out that if there
are four children in the yard and then they separate to go home, they are still four
children. There is a ser containing just those children, and it has four elements
even when they are not all in one place. In ather words the elements of a set need
na unifying property beyond being the elements of the set.

Tasha learned to add sets of different things. If she has a set of nine books and
Brittany has a set of seven then there is the set of sixteen books that either Tasha
has or Brittany does. The girls tolerate no joint or ambigucus ownership of
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books. She aiso learned to multiply sets, so that if T is the set of Tasha’s books,
and B the set of Brittany’s, then T X B is the set of ordered pairs <t,b> with t
one of Tasha's books and b one of Brittany's. Counting up showed that T X B has
sixty three elements.

Tasha’s workbook gave pictorial examples of disjoint unions up to ten plus
ten, showing how many elements each had. She checked these by counting and
memorized them as addition facts. She did the same with products up to ten times
ten. The examples were pictures of ducks or beach balls or whatever but Tasha
saw that they did not depend on the particular elements. She could squint until
she could not tell what the elements were and yet still count them.

Then Tasha learned about functions. She was taught, in all due finitist rigor,
that a function f from a set A to a set B is any rule assigning a value f(x) in B to
each element x of A. If A is the set of children on her block, and B the set of
houses on it, there is a function f from A to B where each f(x) is the house x lives
in. You can imagine other examples.

. She learned every set A has an identity function called 1, with 1 ,(x) = x for

allx in A. And if C is a singleton set then every set has exactly one functian to C.
She was shown how any product T X B has a function p, to T, with p,(<x,y>)
= x far every pair <x,y> in T X B, and a similar p, to B. And given any
function f from A to B, and any g from B to C, there is a composite function g » f
whase value for any x in A is g(f(x)) in C.

Ahstract Sets

Tasha soon knew more arithmetic than she had memorized. She could in fact add
five to thirty four, or eight to forty six with a moment’s thought, though neither
was in her table of addition facts. She could multiply a hundred by two. But to
learn general arithmetic she had to learn of the set of all natural numbers. Her
parents did not think there were that many cows, ducks ar books around nor did
they think it mattered. They thought it beneath the dignity of mathematics to
worry about such things. Truth to tell, they felt the same about actual or possible
inscriptions, space-time points and regions, and anything else of the sort. How-
ever nice such things may be, arithmetic, the parents felt, did not depend on
them.

Nar did they choose to start with transfinitely iterated set collection (as in any
axiom of infinity for ZF). That idea hardly seemed to lie at the beginning of
arithmetic. It seemed to lie nowhere outside of some axiomatic set theories. They
preferred to stick with set forming operators that Tasha would use in the rest of
her mathematics.

They told Tasha that what she had seen so far were concrete sets in that they
collect concrete individuals. But she already knew that counting and arithmetic
did not depend on what the elements were, Now she was to learn about absiract
sets and functions. These are idealizations of the concrete anes, and can repre-
sent them, but they are described by their functions to each other rather than by
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cancrete elements. From here on the words "set” and “function” refer to abstract
sets and functions unless we specify concrete anes.

Her parents wrate f : A — B to say f is a function from the set A to the set B.
And they said any g : B — C has a composite g o f : A — C with f. They did
nat define g » f by an action an elements of A. Rather, they would soon define
elements in terms of functions. For now they gave axioms, saying composition is
associative and there are identity functions: For any further h : C — D we have
(hog)af=h(geof) EverysetA hasa function 1, : A— Asuchthatfo. 1, =
fand 1, o h = h for any functions £ : A — B and h : C — A. In other wards,
sets and functions form a category.

A further axiom posited a set | such that every set has exactly one function to
1. So 1 is an abstract singleton. They defined an element of a set A to be any
function from 1 to A, that is any % : 1 — A. It follows immediately that 1 has
exactly one element. Given an element x of A and a function f : A — B, they
could write f(x) for the composite f o x. In this notation the rule (g « f)(x) =
2(f(x)} is a case of the associativity of composition, while 1,(x) = x 1s a case of

" the identity axiom.
They added the following axioms:

Products) For any sets A and B there is a set A X B and 2 pair of functions
p,: AxB— Aandp, : A X B — Bsuch that: Given any set S and pair of
functions f: 8 — A and g : S — B there is a unique function <f,g> : § —
A ¥ B with p/<f,g> = fand p, o« <f.g>> = g.

Equalizers) For any sets A and B and functions f and g both from A to B,
there is a function e : E— A with foe = g o ¢ and such that: For any
functionh : T — A with f o h = g o h there exists a unique u : T — E with
esu =h.

Coproducts) For any sets A and B there is a set A + B and a pair of functions
i,:A—> A+ Bandi,: B— A+ Bsuch that: Given any set S and pair of
functions f: A — S and g : B — S there is a unique function ({) : A +
B—Swith({)oi, =fand () o1, = g.

Nontriviality) The functions i, and i, from | to 1 + 1 are not the same.

The axioms so far were simple enough abstractions of ideas Tasha already
applied to finite concrete sets. The product A X B corresponds to her familiar
products. By the definition of element, an element of A X B is any <x,y>
where x is an element of A and y an element of B. When subsets are defined
belaw, the equalizer ¢ : E — A of f and g will turn out to he the subset of A
containing those elements x with f(x) = g(x). The copraduct A + B is a disjoint
union. Nontriviality guarantees that 1 + 1 has twa different elements. It will be
used later to show the number O is not a successor.2



NUMBERS CAN BE IUST WHAT THEY HAVE TO 491

The next axiom requires the idea of a subset or, more precisely, of an abstract
subset inclusion. A subset inclusion into a set A is defined to be any one-to-one
function i ; § — A. That is, any function i such that, for any elements x and y of
S, if i(x) = i(y) then x = y. We often write i : § >~ A to show that i is 4 subset
inclusion. As a standard abuse of language from category theory we refer to
either i or § as a “subset” of A.3

Given any subset i : S =— A and any element x : | — A we say X is in the
subset i if there is some h : 1| — 8§ with x = i « h. In other words, the element x
factors through the subset inclusion. For every set A the identity 1, : A>— Alisa
subset and containg every element of A. It is easy to see that any equalizer
e : E— A for functions f and g on A is a subset, by the uniqueness of u in the
definition of an equalizer, and it contains just those elements x of A with f(x) =
g(x).

Given two subsets i : 8§ > A and j : T >— A we say i is included in j, and
write 1 C j, if there is some function h : § — T such thati = j o h. That is, if i
factors through j. So for example every subset i of A is included in 1, since i =
 la ol We say 1 I8 equivalent to j as a subset of A, and write i = J, if both i C |
and j C i. Clearly, if i C j then every element x of A ini is also inj. The converse
fajls in most categories, and so characterizes sets. So Tasha got anather axiom:

1 Generates) For any subsets i and j of a set A, if every element x of A iniis
alse in j, then i € j.

It follows immediately that i = j if and only if i and j have exactly the same
elements of A in them. An easy theorem shows that a function is fully deter-
mined by its effects an elements:

THEOREM 1: For any sets A and B and functions { and g both from A to B,
if f(x) = g(x) for every element x of A thenf = g.

PROQGEF: If f(x) = g(x) for every element x of A then every element of A is in
the equaiizer e : E >— A of f and g. Thus 1, C e. But then from f. e =
goeweconclude fol, =gol,andsof =gm

To represent a concrete set, say a set D of ducks, by an abstract set A is to
associate each element of D with an element of A. That is, each duck is associ-
ated to a function from 1 to A. We might as well identify each duck with such a
function (nothing in the axioms says functions are not ducks). Then for any
subset § > A each duck in A is either in S or is not. Subsets of A are determined
up to equivalence by the ducks in them. If the elements of B are (or are associ-
ated to) certain heachbalis, then the elements of A X B are {or are assaciated ta)
pairs <d,b> with d a duck and b a beachball, and so on. Of course stipulating
that the elements of A are certain ducks is stipulating that A has a non-structural
property. Only the purely abstract part of set theory is purely structural.
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What Numbers Have To Be

What the natural numbers have to do is support recursive definitions. That is, a
set N of natural numbers must have an element Q0 and a successor function
s : N — N with this property: Given any set A with a selected element x and a
function f : A — A there is a unique function u : N — A such that u{0} = x and
u(s(n}) = f(u(n}} for every n in N. We say u is defined by the recursion data x,f.
Any triad N,0,s with this property is called a natural number object. The idea is
due to Lawvere.

Actually, arithmetic requires slightly more than this. The numbers must sup-
port recursive definitions with parameters. For any parameter set P and parame-
trized initial condition x : P — A and function f : A X P — A there must be a
unique function u: N x P — A such that u(0.p) = x(p) and u(s(n),p) =
f(u(n),p) for every element p of P and n of N. Such a naturai number object is
calied stable. If any natural number object is stable so are they all {within a given
category). This follows from Theorem 3 below, whase proof does not use stabil-

ity.
" The final axiom Tasha got at this stage was:

Infinity) There is a stable natural number abject N,0,s.

Tasha learned that numbers are elements of N. Thus 1 = s(0) and 2 = s(s(Q))
and so on. Do not confuse the number 1 with the singleton set 1. Tasha could
count elements of sets by pairing them with these numbers. And for every
number n there is a subset [n] =— N containing those numbers iess than n.* So
she could also say a set A has n elements if it is isomorphic to [n].

She learned to define addition by parametrized recursion data 0 + m = m and
s(n) + m = s(n + m). She saw that this agreed with the addition facts she had
learned before. She defined multiplication by 0 . m = 0 and s(n) . m = (n . m)
+ m. This agreed with her old multiplication facts, as far as they went. And
addition and muitiplication still corresponded to disjoint unions and products of
sets, only now for all finite sets.

She noticed there is a function f : N — 1 + 1 defined by f(0) = i; and f(s(n))
= iy. Since i # i, she concluded that ¢ is not s{n) for any n. A little manipulation
shawed there is an immediate predecessor function h : N — N, defined by h(0)
= 0 and h(s(n)) = n, and so she concluded that s was one-to-one. She even
showed that any subset of N including 0 and closed under successor is all of N.
More precisely:

THEOREM 2: Leti : I > N be any subset of N such that 0 is in I and there
issomep:I— Iwithisp=5oi. Inather words the restriction p of s to [
takes all its values in L. Then i = 1.
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FROOF: Certainly i C 1y. Define h : N — I by h(0) = 0 and h(s(n)) =
p(h(n}}. Then i« h(0) = 0 and i - h(s(n)) = s({i « h{n}}), so i « h has recur-
sion data O,s. Thusioh = 1, and so 1y C i.m

Thus she verified the Peano axioms for N,0,s, and she was on her way to
recursive function theory, though her parents did not push her too far along just
yet. When she turned 16 they taught her about pawer sets, completing the axioms
for the topos of sets (and rendering the coproduct axiom redundant). That
changed nothing from the point of view of ‘indiscernibility’ as discussed below.

The Girls Discuss Arithmetic

Brittany got the same education as Tasha, except that she was fond of calligraphy
and having seen primes used in her parents’ math books she called her natural
number abject N’,0",s". The girls found they agreed entirely on arithmetic, and
on which sets had n elements for each number n. But they wondered whether in
. fact Tasha’s N,0,s were the same as Brittany’s N’,{’,s’. Britanny quickly found:

THEOREM 3: N and N' are isomorphic.

PROOF: Define v : N — N by recursion data 0,s, and define w : N — N’
by 0',s". Then v o« w(0) = 0 and v » w(s{n)} = s5(n), so v o w has data 0,s
and the only function from N to N with these data is 1. Similarly w o v =
ly-.m

That seemed like progress, but then Tasha noticed there are provably infinitely
many natural number objects, Given N,0,s she could recursively define infinitely
many isomorphisms from N to itself and she had this theorem:

THEQOREM 4: If h : N — M is an isomorphism then M, h(Q), h « sh—! is
also 2 natural number object.

PROOF: Take any x:1— A and {: A — A, and the corresponding u :
N—A. Then uoh "M — A has u-h~!(h{0)) = x and ush-!
thesoh Hm)) = fu o h~(m))} for ail m in M. Uniqueness is left to the
reader.m

COROLLARY: Different isomorphisms h and k from N to N give different
natural number objects N,h(0),h o § - h—! and N,k{0),k .5 o« k™1.

PROOF: Trivially, h has recursion data h(0), h » $ « h—!, while k has k¢0},
k « 8 o k71 Different functions have different data.m

In other words any isomorphic rearrangment of the succesor function in a
natural number abject gives a new successor function and so a new natural
number object, Tasha concluded that even if she assumed N = N’ she could not
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prove O = 0" or s = s’. On the other hand the girls found nothing they could
prove ahout N,0,s to distinguish it from N’,0°,s’. That was hardly surprizing,
since they only knew N,0.s and N’,0',s" were both natural number objects.

Then they found something much stranger. They found N,0,s and N’,0' s
pravably indiscernible. Take any formula P(3X,f,g) in their set theary with no
constants and no free variables except the set variable X and the function vari-
ables { and g. The girls could prove the biconditional

P(N,0,5) < P(N",0",s")

The two patural number objects provably have all the same properties. Even if
P(N,0,s) is undecided, neither provable nor refutable, its equivalence to
P(N’,0’ 5} is still a theorem.3

In fact there is a predicate NNO(X f,g) saying X,f,g is a natural number
ohject, and the girls could prove the generalized indiscemnibility resule

[NNO(X,f,g) & NNO(Y,h,k)] — [P(X.f,g) « P(Y,h,k)]

All naturai number objects are indiscernible in this theory. They provably have
all the same properties.

The girls used a proof thearetic argument hased on switching N,0,s and
N’,0',s’. They formalized the following definition of an operator F in their set
theory.

If A and B are any sets ather than N or N', f and g any functians, and
v : N' — N the isomorphism defined in Theorem 3, then:

FA=A and FN=N' and FN'=N

If f:A— B then Ff=f
If f:A— N then Ff = v lof:A—= N
If f:N— B then Ff={.v:N'— B

If f:N— N then Ff = vl ofav:N' — N’
If f:N— N’ then Ff = v ofov:N' — N

and similar clauses with N’ in place of N and switching the roles of v and v—!.

They easily proved FO = O’ and Fs = ¢’ and vice versa. Two more facts are
crucial. First, F preserves the atomic relations of the set theory. That is, provably
in the set theory, if £ : C— D then Ff : FC — FD, and F{g « f} = Fg - Ff, and
F{ls) = lge for any sets C and D and functions f and g.6 Second, C = FFC and {
= FFf for any set C and function f. So every set and function is provably a value
of F as well as having a value under F.

Given any formula Q of the set theory form Qg by putting F before every
constant and free variable in Q. Then Q <> Qg is provable. For quantifier free
formulas Q use the first and second facts on F. To add quantifiers notice that, by
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the second fact, a formula holds for all (some) sets C iff it holds for all (some)
sets FC, and similarly for functions.

The first result, P(N,0,s) <> P(N’, 0" 5"), is the case where Q is P(N,0,s). The
meta-proof can be adapted to variables X,f,g and Y,h,k with the antecedent
assumption that NNO(X,f,g) & NNO(Y,h,k) to yield the generalized indis-
cernibility resule.

Indiscernibility is no special feature of natural number ohjects. Any two
isomarphic objects are indiscernible in this set theory. Let Isom(X,Y) be the
formula saying X and Y are isomorphic, that is saying there is a function from X
to Y with an inverse. Let P(X) be any formula with no constants and no free
variahles but the set variable X. Then a similar simpler argument shows this is
provahle:

Isom(¥,Y) — ( P(X) <> P(Y) )

These results say in unusual technical detail what category theorists often say
" briefly. Isomorphic abjects in any category have all the same properties.

Other Set Theories

There is no such indiscernibility in ZF. A model of the Peano axioms in ZF is,
like a natural number object, actually a triple N,0,s of a set and element of it and
a successor function. Suppose all we know of N,0,s and N’.,0',s" in ZF is that
bath model those axioms. Then, as in categorical set theory we can prove N and
N' isamorphic, we can not prave whether or not N = N”, and anything we can
prave about N,0,s we can also prove about N',0',s’. But we can not prove
indiscernibility.

In ZF most properties P(N,0,s) of models of the Peano axioms are undeter-
mined by the Peano axioms. Some models of the Peano axioms have P and not
others. Let P(N,0,s) say that every element of N is a singleton, for instance. If
P(N,0,s) is undetermined then the case of the generalized indiscernibility state-
ment using P is provably false. No madel of the Peano axioms (or of any axioms}
in ZF has only the properties that all have in common. That is Benacerraf’s
point. But the point fails for categorical set theory. Sets there, like Benacerraf’s
numbers, have only structural relations.

An indiscernibility result analogous to ours does hold in 2nd order lagic. See
the Elementary Equivalence Theorem in Hellman (1989) p.41. But 2nd order
logic and our fragment of set theary are bath too weak for substantial mathemat-
ics. Hellman (1989 p.44ff) shows how a good deal of mathematics can be
jammed into 2nd order logic by codings. At the same time he shows how
unpleasant this is for any but formalist purposes, and in his Chapter 3 he argues
that it really will not work even for all the mathematics needed in modermn
physics.
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The problem is to get a strong enough set theory, without the anti-
structuralism of ZF itself.7 To do that we can extend the axioms above to the
axioms for the topos of sets. The extension requires only a power set axiom,
stated in the style of those above but slightly more invalved.® These axioms have
the strength of Zermelo set theory (i.e. ZF without choice or replacement) with
only bounded quantifiers allowed in the separation axiom. The axiom of choice
is easily added, as are unbounded separation or replacement if you want them.
See Mclarty (1992) Chapter 22. At that point “all of mathematics” is availabie in
this set theory just as it is in ZF, but with the same structuralist indiscernibiiity
result as we proved for the weaker fragment.

Sorting It Out

Tasha and Brittany agreed with Benacerraf that “Arithmetic is therefore the
science that elaborates the abstract structure that all progressions have in com-
mon merely in virtue of being progressions™ (1965 p.70). So it was the science of
natural number objects. Brittany was puzzied by another quate she found, saying
a mathematical structure should be seen as “the form of a possible system of
related objects, ignoring the features of the objects that are nat relevant to the
interrelations™ (Shapiro 1983 p.535). Her education had not taught her any way
for the elements of a natural number object to have any features but their arithme-
tic interrelations. What was there to ignore?

When Tasha got to college she heard of a boy there, Ernie, who had also
learned arithmetic with faoundations. She met him one day over lunch. Ernie and
his friend Johnny had learned ZF and had concluded that numbers can not be sets
sa when Tasha spoke of the set of natural numbers he immediately asked what
she thought that was. As she began explaining indiscernibility he got confused.
“Just tell me,” he said, “what set is 7" She said “0 is not a set, it is an element of
N™. He answered “But elements of sets are sets!” and she got confused. They
found they bad very different ideas about sets.

She asked him to describe his approach and he did, pointing out that there was
nothing like her indiscernibility in it. He told her every set was uniquely deter-
mined by its elements, which are themselves sets.

Aiming to see how this worked she asked “You mean that you define the
natural numbers as a certain specific set?”

“Well no,” he answered, “The natural numbers aren’t a set, they are a struc-
ture. You see they aren’t uniquely defined”.

“So they are like my sets?”

“Yes.”

She asked if it was the same for the real numbers, or the Euclidean plane, and
he said it was. He said all of those are abstract structures, handy ways of talking
ahout sets but not themselves sets and actually not objects at all.

“So the advantage of your set theary is that mathematicians never work with
your sets!” she said amazed.
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“You could say that,” Emnie agreed, “since mathematicians usually work with
structures. But I would say the advantage is that my sets are legitimate objects by
Leibniz's [aw and yours aren't”.

Tasha had aiways concentrated on mathematics and the only Leibniz law she
knew was the ane in calculus far derivatives of products. Ernie had to explain “[t
is a metaphysical principle that there can’t be distinet objects with na difference
between them™. She found this unmathematical and unconvineing. She thought
her set theory refuted it.

“Why do you say sets hgve to be uniquely defined when you also say the
numbers and spaces that we want to talk about can not be?” she wanted to knaw,

Ernie stood by his claim that this was merely responsibie metaphysics.

For her part, Tasha went on to study logic and learned a number of set thearies
including ZF. She got good enough at manipulating them in a formal way. But
none ever made as much sense to her as the one she had grown up with.,

Notes

*John Mayberry suggested several of the ideas here and pravoked others. I thank Helen Lauer,
Michael Resnik, and Stewart Shapiro for extensive comments. Tasha Dixon advised me on addition
facts, and Brittany Dixon on counting to ten.

tSer theorists working in ZF generally reserve the word “isomorphism™ for ordered sets and
madel structures: An order isomorphism is an erder preserving function with an order preserving
inverse. An isomorphism of models is a structure preserving function with a structure preserving
inverse.

2It is instructive to see that, except for Nontriviality, all the axioms here including the axiom of
infinity are true in a model with | the only set and its identity [, the only function.

3Ciiven the axiom ta follow, called I Generates, a function is one-te-one iff it is monic it the usual
sense of category theary.

*Consider the function f : N ¥ N — N taking each pair <p,q> te p + q + |, and the constant
function taking each pair to n. Their equalizer [n] > N % N contains those <p,q=> withp + 4 + 1
= n. The prejection [n] >— N onto the first coordinate is also one-to-one, i.e. it is a subset, and it
contains p iff p<in.

3The meta-theerem would fail it P(X,f,g) were 0 = f & s = g, arif it were f = x & g = ¥ for free
variables x and y. In each of those cases the hiconditional would imply 0 = ¢’ & s = &', which is net
pravable. The point is that natural number objects do “differ” in that each is itself and is not the
others; but do not differ in terms of any property stateable without specifying particular objects.

SWe take the praduct, equalizer, and cepraduct axioms as describing relations among sets and
functions rather than as introducing operators. We do not allow, for example, an aperator < _ taking
sets A and B to a selected product A % B since F might not preserve the selected values.

“Hellman does this by what Parsons {1990) calls “eliminative structuralism” working with ZF as a
formal theory and quantifying over medels of it. Categorical set theory is not eliminative. It works
with sets themselves structurally described, not with a formal theory and models of it.

58ee, for example, Pitts (L991), which also gives an impressively concise survey of tapos theory
very much from a logician's viewpaint. Compare Exercise 13.16 in McLarty 1992,
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