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ON INDUCTIVE LOGIC 

RUDOLF CARNAP 

?1. INDUCTIVE LOGIC 

Among the various meanings in which the word 'probability' is used in every- 
day language, in the discussion of scientists, and in the theories of probability, 
there are especially two which must be clearly distinguished. We shall use for 
them the terms 'probabilityl' and 'probability2'. Probabilityl is a logical con- 
cept, a certain logical relation between two sentences (or, alternatively, between 
two propositions); it is the same as the concept of degree of confirmation. I 
shall write briefly "c" for "degree of confirmation," and "c(h, e)" for "the degree 
of confirmation of the hypothesis h on the evidence e"; the evidence is usually 
a report on the results of our observations. On the other hand, probability2 
is an empirical concept; it is the relative frequency in the long run of one property 
with respect to another. The controversy between the so-called logical con- 
ception of probability, as represented e.g. by Keynesl, and Jeffreys2, and others, 
and the frequency conception, maintained e.g. by v. Mises3 and Reichenbach4, 
seems to me futile. These two theories deal with two different probability con- 
cepts which are both of great importance for science. Therefore, the theories 
are not incompatible, but rather supplement each other.5 

In a certain sense we might regard deductive logic as the theory of L-implica- 
tion (logical implication, entailment). And inductive logic may be construed 
as the theory of degree of confirmation, which is, so to speak, partial L-implica- 
tion. "e L-implies h" says that h is implicitly given with e, in other words, that 
the whole logical content of h is contained in e. On the other hand, "c(h, e) = 

3/4" says that h is not entirely given with e but that the assumption of h is 
supported to the degree 3/4 by the observational evidence expressed in e. 

In the course of the last years, I have constructed a new system of inductive 
logic by laying down a definition for degree of confirmation and developing a 
theory based on this definition. A book containing this theory is in prepara- 
tion. The purpose of the present paper is to indicate briefly and informally 
the definition and a few of the results found; for lack of space, the reasons for the 
choice of this definition and the proofs for the results cannot be given here. The 
book will, of course, provide a better basis than the present informal summary 
for a critical evaluation of the theory and of the fundamental conception on 
which it is based.6 

1 J. M. Keynes, A Treatise on Probability, 1921. 
2 H. Jeffreys, Theory of Probability, 1939. 
3R. v. Mises, Probability, Statistics, and Truth, (orig. 1928) 1939. 
4H. Reichenbach, Wahrscheinlichkeitslehre, 1935. 
5 The distinction briefly indicated here, is discussed more in detail in my paper "The 

Two Concepts of Probability," which will appear in Philos. and Phenom. Research, 1945. 
6 In an article by C. G. Hempel and Paul Oppenheim in the present issue of this journal, 

a new concept of degree of confirmation is proposed, which was developed by the two 
authors and Olaf Helmer in research independent of my own. 
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ON INDUCTIVE LOGIC 

?2. SOME SEMANTICAL CONCEPTS 

Inductive logic is, like deductive logic, in my conception a branch of semantics. 
However, I shall try to formulate the present outline in such a way that it does 
not presuppose knowledge of semantics. 

Let us begin with explanations of some semantical concepts which are im- 
portant both for deductive logic and for inductive logic.7 

The system of inductive logic to be outlined applies to an infinite sequence of 
finite language systems LN (N = 1, 2, 3, etc.) and an infinite language system 
LO,. LO refers to an infinite universe of individuals, designated by the in- 
dividual constants 'al', 'a2', etc. (or 'a', 'b', etc.), while LN refers to a finite uni- 
verse containing only N individuals designated by 'a', 'a2', 'aN'. Individual 
variables 'x', 'x2', etc. (or 'x', 'y', etc.) are the only variables occurring in these 
languages. The languages contain a finite number of predicates of any degree 
(number of arguments), designating properties of the individuals or relations 
between them. There are, furthermore, the customary connectives of nega- 
tion ('~, corresponding to "not"), disjunction ('V', "or"), conjunction ('-', 
"and"); universal and existential quantifiers ("for every x," "there is an x"); 
the sign of identity between individuals '=', and 't' as an abbreviation for an 
arbitrarily chosen tautological sentence. (Thus the. languages are certain 
forms of what is technically known as the lower functional logic with identity.) 
(The connectives will be used in this paper in three ways, as is customary: (1) 
between sentences, (2) between predicates (?8), (3) between names (or variables) 
of sentences (so that, if 'i' and 'j' refer to two sentences, 'i V j' is meant to refer 
to their disjunction).) 

A sentence consisting of a predicate of degree n with n individual constants 
is called an atomic sentence (e.g. 'Pal', i.e. 'al has the property P', or 'Ra3a5', 
i.e. 'the relation R holds between a3 and as'). The conjunction of all atomic 
sentences in a finite language LN describes one of the possible states of the domain 
of the N individuals with respect to the properties and relations expressible in 
the language LN. If we replace in this conjunction some of the atomic sentences 
by their negations, we obtain the description of another possible state. All 
the conjunctions which we can form in this way, including the original one, are 
called state-descriptions in LN. Analogously, a state-description in Lo is a class 
cont,aining some atomic sentences and the negations of tie remaining atomic 
sentences; since this class is infinite, it cannot be transformed into a conjunction. 

In the actual construction of. the language systems, which cannot be given 
here, semantical rules are laid down determining for any given sentence j and 
any state-description i whether j holds in i, that is to say whether j would be 
true if i described the actual state among all possible states. The class of those 
state-descriptions in a language system L (either one of the systems LN or L.) 
in which j holds is called the range of j in L. 

The concept of range is fundamental both for deductive and for inductive 
logic; this has already been pointed out by Wittgenstein. If the range of a 

7 For more detailed explanations of some of these concepts see my Introduction to Seman- 

tics, 1942. 
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sentence j in the language system L is universal, i.e. if j holds in every state- 
description (in L), j must necessarily be true independently of the facts; there- 
fore we call j (in L) in this case L-true (logically true, analytic). (The prefix 
'L-' stands for "logical"; it is not meant to refer to the system L.) Analogously, 

if the range of j is null, we call j L-false (logically false, self-contradictory). If 
j is neither L-true nor L-false, we call it factual (synthetic, contingent). Sup- 
pose that the range of e is included in that of h. Then in every possible case in 
which e would be true, h would likewise be true. Therefore we say in this case 
that e L-implies (logically implies, entails) h. If two sentences have the same 
range, we call them L-equivalent; in this case, they are merely different formula- 
tions for the same content. 

The L-concepts just explained are fundamental for deductive logic and there- 
fore also for inductive logic. Inductive logic is constructed out of deductive 
logic by the introduction of the concept of degree of confirmation. This intro- 
duction will here be carried out in three steps: (1) the definition of regular c- 
functions (?3), (2) the definition of symmetrical c-functions (?5), (3) the defini- 
tion of the degree of confirmation c* (?6). 

?3. REGULAR C-FUNCTIONS 

A numerical function m ascribing real numbers of the interval 0 to I to the 
sentences of a finite language LN is called a regular m-function if it is constructed 
according to the following rules: 

(1) We assign to the state-descriptions in LN as values of nm any positive real 
numbers whose sum is 1. 

(2) For every other sentence j in LN, the value m(j) is determined as follows: 
(a) If j is not L-false, m(') is the sum of the m-values of those state-descrip- 

tions which belong to the range of j. 
(b) If j is L-false and hence its range is null, m(j) = 0. 

(The choice of the rule (2) (a) is motivated by the fact that j is L-equivalent 
to the disjunction of those state-descriptions which belong to the range of j 
and that these state-descriptions logically exclude each other.) 

If any regular m-function m is given, we define a corresponding function c 
as follows: 

(3) For any pair of sentences e, h in LN, where e is not L-false, c(h, e) = m(e-.h) 
rn(e) 

m(j) may be regarded as a measure ascribed to the range of j; thus the func- 
tion m constitutes a metric for the ranges. Since the range of the conjunction 
e h is the common part of the ranges of e and of h, the quotient in (3) indicates, 
so to speak, how large a part of the range of e is included in the range of h. The 
numerical value of this ratio, however, depends on what particular m-function 
has been chosen. We saw earlier that a statement in deductive logic of the form 
"e L-implies h" says that the range of e is entirely included in that of h. Now 
we see that a statement in inductive logic of the form "c(h, e) = 3/4" says that 
a certain part-in the example, three fourths-of the range of e is included in 

74 



ON INDUCTIVE LOGIC 

the range of h.8 Here, in order to express the partial inclusion numerically, it 
is necessary to choose a regular m-function for measuring the ranges. Any 
m chosen leads to a particular c as defined above. All functions c obtained in 
this way are called regular c-functions. 

One might perhaps have the feeling that the metric nt should not be chosen 
once for all but should rather be changed according to the accumulating experi- 
ences.9 This feeling is correct in a certain sense. Howiever, it is to be satisfied 
not by the function m used in the definition (3) but by another function m, 
dependent upon e and leading to an alternative definition (5) for the correspond- 
ing c. If a regular m is chosen according to (1) and (2), then a corresponding 
function me is defined for the state-descriptions in LN as follows: 

(4) Let i be a state-description in LN, and e a non-L-false sentence in LN. 
(a) If e does not hold in i, me(i) = 0. 

(b) If e holds in i, m,(i) = -r(i) 
m(e) 

Thus m, represents a metric for the state-descriptions which changes with the 
changing evidence e. Now me(j) for any other sentence j in LN is defined in 
analogy to (2) (a) and (b). Then we define the function c corresponding to m 
as follows: 

(5) For any pair of sentences e, h in LN, where e is not L-false, c(h, e) = me(h). 

It can easily be shown that this alternative definition (5) yields the same val- 
ues as the original definition (3). 

Suppose that a sequence of regular m-functions is given, one for each of the 
finite languages LN (N = 1, 2, etc.). Then we define a corresponding m-func- 
tion for the infinite language as follows: 

(6) m(j) in L,o is the limit of the values m(j) in LN for N -- oo. 

c-functions for the finite languages are based on the given m-functions accord- 
ing to (3). We define a corresponding c-function for the infinite language as 
follows: 

(7) c(h, e) in L. is the limit of the values c(h, e) in LN for N - oc. 

The definitions (6) and (7) are applicable only in those cases where the spec- 
ified limits exist. 

We shall later see how to select a particular sub-class of regular c-functions 
(?5) and finally one particular c-function c* as the basis of a complete system of 
inductive logic (?6). For the moment, let us pause at our first step, the defini- 
tion of regular c-functions just given, in order to see what results this definition 
alone can yield, before we add further definitions. The theory of regular c- 
functions, i.e. the totality of those theorems which are founded on the definition 

8 See F. Waismann, "Logische Analyse des Wahrscheinlichkeitsbegriffs," Erkenntnis, 
vol. 1, 1930, pp. 228-248. 

9 See Waismann, op. cit., p. 242. 
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stated, is the first and fundamental part of inductive logic. It turns out that we 
find here many of the fundamental theorems of the classical theory of prob- 
ability, e.g. those known as the theorem (or principle) of multiplication, the 
general and the special theorems of addition, the theorem of division and, 
based upon it, Bayes' theorem. 

One of the cornerstones of the classical theory of probability is the principle 
of indifference (or principle of insufficient reason). It says that, if our evidence e 
does not give us any sufficient reason for regarding one of two hypotheses h and 
h' as more probable than the other, then we must take their probabilitiesi as 
equal: c(h, e) - c(h', e). Modern authors, especially Keynes, have correctly 
pointed out that this principle has often been used beyond the limits of its 
original meaning and has then led to quite absurd results. Moreover, it can 
easily be shown that, even in its original meaning, the principle is by far too gene- 
ral and leads to contradictions. Therefore the principle must be abandoned. 
If it is and we consider only those theorems of the classical theory which are 
provable without the help of this principle, then we find that these theorems 
hold for all regular c-functions. The same is true for those modern theories of 
probability1 (e.g. that by Jeffreys, op.cit.) which make use of the principle of 
indifference. Most authors of modern axiom systems of probabilityl (e.g. Keynes 
(op.cit.), Waismann (op.cit.), Mazurkiewiczl?, Hosiasson", v. Wright'2) are 
cautious enough not to accept that principle. An examination of these systems 
shows that their axioms and hence their theorems hold for all regular c-functions. 
Thus these systems restrict themselves to the first part of inductive logic, which, 
although fundamental and important, constitutes only a very small and weak 
section of the whole of inductive logic. The weakness of this part shows itself 
in the fact that it does not determine the value of c for any pair h, e except in 
some special cases where the value is 0 or 1. The theorems of this part tell us 
merely how to calculate further values of c if some values are given. Thus it is 
clear that this part alone is quite useless for application and must be supple- 
mented by additional rules. (It may be remarked incidentally, that this point 
marks a fundamental difference between the theories of probabilityl and of 
probability2 which otherwise are analogous in many respects. The theorems 
concerning probability2 which are analogous to the theorems concerning regular 
c-fulnctios constitute not only the first part but the whole of the logico-mathe- 
matical theory of probability2. The task of determining the value of prob- 
ability2 for a given case is-in contradistinction to the corresponding task for 
probability,-an empirical one and hence lies outside the scope of the logical 
theory of probability2.) 

10 St. Mazurkiewicz, "Zur Axiomatik der Wahrscheinlichkeitsrechnung," C. R. Soc. 
Science Varsovie, Cl. III, vol. 25, 1932, pp. 1-4. 

11 Janina Hosiasson-Lindenbaum, "On Confirmation," Journal Symbolic Logic, vol. 5, 
1940, pp. 133-148. 

12 G. H. von Wright, The Logical Problem of Induction, (Acta Phil. Fennica, 1941, Fasc. 
III). See also C. D. Broad, Mind, vol. 53, 1944. 
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?4. THE COMPARATIVE CONCEPT OF CONFIRMATION 

Some authors believe that a metrical (or quantitative) concept of degree of 
confirmation, that is, one with numerical values, can be applied, if at all, only in 
certain cases of a special kind and that in general we can make only a comparison 
in terms of higher or lower confirmation without ascribing numerical values. 
Whether these authors are right or not, the introduction of a merely compara- 
tive (or topological) concept of confirmation not presupposing a metrical concept 
is, in any case, of interest. We shall now discuss a way of defining a concept of 
this kind. 

For technical reasons, we do not take the concept "more confirmed" but 
"more or equally confirmed." The following discussion refers to the sentences 
of any finite language LN. We write, for brevity, "MC(h, e, h', e')" for "h is 
confirmed on the evidence e more highly or just as highly as h' on the evidence e"'. 

Although the definition of the comparative concept MC at which we aim will 
not make use of any metrical concept of degree of confirmation, let us now 
consider, for heuristic purposes, the relation between MC and the metrical 
concepts, i.e. the regular c-functions. Suppose we have chosen some concept 
of degree of confirmation, in other words, a regular c-function c, and further a 
comparative relation MC; then we shall say that MC is in accord with c if the 
following holds: 

(1) For any sentences h, e, h', e', if MC(h, c, h', e') then c(h, e) > c(h', e'). 

-Iowever, we shall not proceed by selecting one c-function and then choosing 
a relation MC which is in accord with it. This would not fulfill our intention. 
Our aim is to find a comparative relation MC which grasps those logical rela- 
tions between sentences which are, so to speak, prior to the introduction of any 
particular mn-metric for the ranges and of any particular c-function; in other 
words, those logical relations with respect to which all the various regular c- 
functions agree. Therefore we lay down the following requirement: 

(2) The relation MC is to be defined in such a way that it is in accord with 
all regular c-functions; in other words, if MC(h, e, h', e'), then for every regular 
c, c(h, e) > c(h', e'). 

It is not difficult to find relations which fulfill this requirement (2). First 
let us see whether we can find quadruples of sentences h, e, h', e' which satisfy 
the following condition occurring in (2): 

(3) For every regular c, c(h, e) > c(h', e'). 

It is easy to find various kinds of such quadruples. (For instance, if e and e' 
are any non-L-false sentences, then the condition (3) is satisfied in all cases 
where e L-implies h, because here c(h, c) = 1; further in all cases where c' L- 
implies -h', because here c(h', e') = 0; and in many other cases.) We could, 
of course, define a relation MC by taking some cases where we know that the 
condition (3) is satisfied and restricting the relation to these cases. Then the 
relation would fulfill the requirement (2); however, as long as there are cases 
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which satisfy the condition (3) but which we have not included in the relation, 
the relation is unnecessarily restricted. Therefore we lay down the following 
as a second requirement for MC: 

(4) MC is to be defined in such a way that it holds in all cases which satisfy 
the condition (3); in such a way, in other words, that it is the most compre- 
hensive relation which fulfills the first requirement (2). 

These two requirements (2) and (4) together stipulate that MC(h, e, h', e') 
is to hold if and only if the condition (3) is satisfied; thus the requirements 
determine uniquely one relation MC. However, because they refer to the c- 
functions, we do not take these requirements as a definition for MC, for we in- 
tend to give a purely comparative definition for MC, a definition which does not 
make use of any metrical concepts but which leads nevertheless to a relation 
MC which fulfills the requirements (2) and (4) referring to c-functions. This 
aim is reached by the following definition (where '= Df' is used as sign of defini- 
tion). 

(5) MC(h, e, h', e') = ,f the sentences h, e, h', e' (in LN) are such that e and e' 
are not L-false and at least one of the following three conditions is fulfilled: 
(a) e L-implies h, 
(b) e' L-implies -h', 
(c) e' h' L-implies e h and simultaneously e L-implies hVe'. 

((a) and (b) are the two kinds of rather trivial cases earlier mentioned; (c) com- 
prehends the interesting cases; an explanation and discussion of them cannot 
be given here.) 

The following theorem can then be proved concerning the relation MC defined 
by (5). It shows that this relation fulfills the two requirements (2) and (4). 

(6) For any sentences h, e, h', e' in LN the following holds: 
(a) If MC(h, e, h', e'), then, for every regular c, c(h, e) > c(h', e'). 
(b) If, for every regular c, c(h, e) g c(h', e'), then MC(h, e, h', e'). 

(With respect to Lo, the analogue of (6)(a) holds for all sentences, and that of 

(6)(b) for all sentences without variables.) 

?5. SYMMETRICAL C-FUNCTIONS 

The next step in the construction of our system of inductive logic consists in 

selecting a narrow sub-class of the comprehensive class of all regular c-functions. 
The guiding idea for this step will be the principle that inductive logic should 
treat all individuals on a par. The same principle holds for deductive logic; for 

instance, if '. a .b * *' L-implies '--b--c--' (where the first expression in quotation 
marks is meant to indicate some sentence containing 'a' and 'b', and the second 
another sentence containing 'b' and 'c'), then L-implication holds likewise be- 
tween corresponding sentences with other individual constants, e.g. between 
'. d* c -.' and '--c--a--'. Now we require that this should hold also for induc- 
tive logic, e.g. that c('-b--c--', ' -a- .b .') = c('--c--a--', '. .d c- -'). It seems 
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that all authors on probabilityl have assumed this principle-although it has 
seldom, if ever, been stated explicitly-by formulating theorems in the following 
or similar terms: "On the basis of observations of s things of which si were 
found to have the property M and s2 not to have this property, the probability 
that another thing has this property is such and such." The fact that these 
theorems refer only to the number of things observed and do not mention 
particular things shows implicitly that it does not matter which things are 
involved; thus it is assumed, e.g., that c('Pd', 'Pa. Pb.'Pc') = (Pc', 'Pa Pd- 
'Pb'). 

The principle could also be formulated as follows. Inductive logic should, 
like deductive logic, make no discrimination among individuals. In other 
words, the value of c should be influenced only by those differences betwveen in- 
dividuals which are expressed in the two sentences involved; no differences be- 
tween particular individuals should be stipulated by the rules of either deductive 
or inductive logic. 

It can be shown that this principle of non-discrimination is fulfilled if c belongs 
to the class of symmetrical c-functions which will now be defined. Two state- 
descriptions in a language LN are said to be isomorphic or to have the same 
structure if one is formed from the other by replacements of the following kind: 
we take any one-one relation R such that both its domain and its converse domain 
is the class of all individual constants in LN, and then replace every individual 
constant in the given state-description by the one correlated with it by R. If 
a regular m-function (for LN) assigns to any two isomorphic state-descriptions 
(in LN) equal values, it is called a symmetrical m-function; and a c-function 
based upon such an m-function in the way explained earlier (see (3) in ?3) 
is then called a symmetrical c-function. 

?6. THE DEGREE OF CONFIRMATION C* 

Let i be a state-description in LN. Suppose there are ni state-descriptions in 
LN isomorphic to i (including i itself), say i, i', i", etc. These ni state-descrip- 
tions exhibit one and the same structure of the universe of LN with respect 
to all the properties and relations designated by the primitive predicates in LN. 
This concept of structure is an extension of the concept of structure or relation- 
number (Russell) usually applied to one dyadic relation. The common struc- 
ture of the isomorphic state-descriptions i, i', i", etc. can be described by their 
disjunction i V i' V i" V . Therefore we call this disjunction, say j, a 
structure-description in LN. It can be shown that the range of j contains only the 
isomorphic state-descriptions i, i', i", etc. Therefore (see (2)(a) in ?3) m(j) 
is the sum of the m-values for these state-descriptions. If m is symmetrical, 
then these values are equal, and hence 

(1) m(j) = ni X m(i). 

And, conversely, if m(j) is known to be q, then 

(2) m(i) = m(i') = m(i") -. = q/ni. 
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This shows that what remains to be decided, 'is merely the distribution of 
m-values among the structure-descriptions in LN. We decide to give them 
equal m-values. This decision constitutes the third step in the construction of 
our inductive logic. This step leads to one particular m-function m* and to the 
c-function c* based upon m*. According to the preceding discussion, m* is 
characterized by the following two stipulations: 

(3) (a) m* is a symmetrical m-function; 
(b) m* has the same value for all structure-descriptions (in LN). 

We shall see that these two stipulations characterize just one function. Every 
state-description (in LN) belongs to the range of just one structure-description. 
Therefore, the sum of the m*-values for all structure-descriptions in LN must 
be the same as for all state-descriptions, hence 1 (according to (1) in ?3). Thus, 
if the number of structure-descriptions in LN is m, then, according to (3)(b), 

1 
(4) for every structure-description j in LN, m*(j) - . 

Therefore, if i is any state-description in LN and n, is the number of state-descrip 
tions isomorphic to i, then, according to (3)(a) and (2), 

(5) m*(i)- 1 
mni 

(5) constitutes a definition of m* as applied to the state-descriptions in Ln . 
On this basis, further definitions are laid down as explained above (see (2) and 

(3) in ?3): first a definition of m* as applied to all sentences in LN, and then a 
definition of c* on the basis of m*. Our inductive logic is the theory of this 

particular function c* as our concept of degree of confirmation. 
It seems to me that there are good and even compelling reasons for the stipu- 

lation (3)(a), i.e. the choice of a symmetrical function. The proposal of any 
non-symmetrical c-function as degree of confirmation could hardly be regarded 
as acceptable. The same can not be said, however, for the stipulation (3)(b). 
No doubt, to the way of thinking which was customary in the classical period 
of the theory of probability, (3)(b) would appear as validated, like (3) (a), by the 

principle of indifference. However, to modern, more critical thought, this mode 
of reasoning appears as invalid because the structure-descriptions (in contra- 
distinction to the individual constants) are by no means alike in their logical 
features but show very conspicuous differences. The definition of c* shows a 

great simplicity in comparison with other concepts which may be taken into 
consideration. Although this fact may influence our decision to choose c*, it 

cannot, of course, be regarded as a sufficient reason for this choice. It seems to 
me that the choice of c* cannot be justified by any features of the definition which 
are immediately recognizable, but only by the consequences to which the defini- 
tion leads. 

There is another c-function Cw which at the first glance appears not less plaus- 
ible than c*. The choice of this function may be suggested by the following 
consideration. Prior to experience, there seems to be no reason to regard one 
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state-description as less probable than another. Accordingly, it might seem 
natural to assign equal m-values to all state-descriptions. Hence, if the number 
of the state-descriptions in LN is n, we define for any state-description i 

(6) mw(i) = 1/n. 

This definition (6) for nmw is even simpler than the definition (5) for m*. The 
measure ascribed to the ranges is here simply taken as proportional to the 
cardinal numbers of the ranges. On the basis of the mw-values for the state- 
descriptions defined by (6), the values for the sentences are determined as before 
(see (2) in ?3), and then Cw is defined on the basis of mw (see (3) in ?3).13 

In spite of its apparent plausibility, the function Cw can easily be seen to be 
entirely inadequate as a concept of degree of confirmation. As an example, 
consider the language L1o1 with 'P' as the only primitive predicate. Let the 
number of state-descriptions in this language be n (it is 2101). Then for any 
state-description, mw = 1/n. Let e be the conjunction Pal Pa2 Pa3 ... Paloo 
and let h be 'Pao1l'. Then e-h is a state-description and hence mw (e - h) = 1/n. 
e holds only in the two state-descriptions e-h and e. - h; hence mw(e) = 2/n. 
Therefore cw(h, e) = ?. If e' is formed from e by replacing some or even all of 
the atomic sentences with their negations, we obtain likewise cw(h, e') = ? . 
Thus the Cw-value for the prediction that alo0 is P is always the same, no matter 
whether among the hundred observed individuals the number of those which 
we have found to be P is 100 or 50 or 0 or any other number. Thus the choice 
of cw as the degree of confirmation would be tantamount to the principle never 
to let our past experiences influence our expectations for the future. This would 
obviously be in striking contradiction to the basic principle of all inductive 
reasoning. 

?7. LANGUAGES WITH ONE-PLACE PREDICATES ONLY 

The discussions in the rest of this paper concern only those language systems 
whose primitive predicates are one-place predicates and hence designate proper- 
ties, not relations. It seems that all theories of probability constructed so far 
have restricted themselves, or at least all of their important theorems, to proper- 
ties. Although the definition of c* in the preceding section has been.stated in a 

13 It seems that Wittgenstein meant this function Cw in his definition of probability, 
which he indicates briefly without examining its consequences. In his Tractatus Logico- 
Philosophicus, he says: "A proposition is the expression of agreement and disagreement 
with the truth-possibilities of the elementary [i.e. atomic] propositions" (*4.4); "The world 
is completely described by the specification of all elementary propositions plus the specifica- 
tion, which of them are true and which false" (*4.26). The truth-possibilities specified 
in this way correspond to our state-descriptions. Those truth-possibilities which verify 
a given proposition (in our terminology, those state-descriptions in which a given sentence 
holds) are called the truth-grounds of that proposition (*5.101). "If Tr is the number of 
the truth-grounds of the proposition "r", Trs the number of those truth-grounds of the 
proposition "s" which are at the same time truth-grounds of "r", then we call the ratio 
Trs:Tr the measure of the probability which the proposition "r" gives to the proposition 
's" "(*5.15). It seems that the concept of probability thus defined coincides with the 
function cw. 
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general way so as to apply also to languages with relations, the greater part of 
our inductive logic will be restricted to properties. An extension of this part of 
inductive logic to relations would require certain results in the deductive logic 
of relations, results which this discipline, although widely developed in other 
respects, has not yet reached (e.g. an answer to the apparently simple question 
as to the number of structures in a given finite language system). 

Let LN be a language containing N individual constants 'a', ... *aN', and p 
one-place primitive predicates 'P1', . 'Pp'. Let us consider the following ex- 
pressions (sentential matrices). We start with 'P1x P2x .. Ppx'; from this 

expression we form others by negating some of the conjunctive components, 
until we come to '-PIx. P2x ' - -Ppx', where all components are negated. 
The number of these expressions is k = 2P; we abbreviate them by 'Qx', ... 
'QkX'. We call the k properties expressed by those k expressions in conjunctive 
form and now designated by the k new Q-predicates the Q-properties with re- 
spect to the given language LN . We see easily that these Q-properties are the 
strongest properties expressible in this language (except for the L-empty, i.e., 
logically self-contradictory, property); and further, that they constitute an ex- 
haustive and non-overlapping classification, that is to say, every individual has 
one and only one of the Q-properties. Thus, if we state for each individual which 
of the Q-properties it has, then we have described the individuals completely. 
Every state-description can be brought into the form of such a statement, i.e. 
a conjunction of N Q-sentences, one for each of the N individuals. Suppose 
that in a given state-description i the number of individuals having the property 
Q1 is N1, the number for Q2 is N2, * * that for Qk is Nk . Then we call the 
numbers N1, N2, ? ? ? Nk the Q-numbers of the state-description i; their sum is N. 
Two state-descriptions are isomorphic if and only if they have the same Q-num- 
bers. Thus here a structure-description is a statistical description giving the 
Q-numbers N1, N2, etc., without specifying which individuals have the proper- 
ties Q1, Q2, etc. 

Here-in contradistinction to languages with relations-it is easy to find an 
explicit function for the number m of structure-descriptions and, for any given 
state-description i with the Q-numbers N1, * * Nk, an explicit function for the 
number ni of state-descriptions isomorphic to i, and hence also a function for 
m*(i).14 

Let j be a non-general sentence (i.e. one without variables) in L . Since 

14 The results are as follows. 

(N+ k - 1)! 
(1) m = -1)! 

N! 
(2) nN (2) ni= 

NN,! N2! Nk! 

Therefore (according to (5) in ?6): 

N1 ! N2! ...Nk!(k - 1)! 

(N- k- - 1)! 
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there are effective procedures (that is, sets of fixed rules furnishing results in a 
finite number of steps) for constructing all state-descriptions in which j holds 
and for computing m* for any given state-description, these procedures together 
yield an effective procedure for computing m*(j) (according to (2) in ?3). How- 
ever, the number of state-descriptions becomes very large even for small language 
systems (it is kN, hence, e.g., in L3 it is more than two million.) Therefore, 
while the procedure indicated for the computation of m*(j) is effective, neverthe- 
less in most ordinary cases it is impracticable; that is to say, the number of steps 
to be taken, although finite, is so large that nobody will have the time to carry 
them out to the end. I have developed another procedure for the computation 
of m*(j) which is not only effective but also practicable if the number of in- 
dividual constants occurring in j is not too large. 

The value of m* for a sentence j in the infinite language has been defined (see 
(6) in ?3) as the limit of its values for the same sentence j in the finite languages. 
The question arises whether and under what conditions this limit exists. Here 
we have to distinguish two cases. (i) Suppose that j contains no variable. 
Here the situation is simple; it can be shown that in this case m*(j) is the same 
in all finite languages in which j occurs; hence it has the same value also in the 
infinite language. (ii) Let j be general, i.e., contain variables. Here the situa- 
tion is quite different. For a given finite language with N individuals, j can of 
course easily be transformed into an L-equivalent sentence jN without variables, 
because in this language a universal sentence is L-equivalent to a conjunction 
of N components. The values of m*(jN) are in general different for each N; and 
although the simplified procedure mentioned above is available for the computa- 
tion of these values, this procedure becomes impracticable even for moderate N. 
Thus for general sentences the problem of the existence and the practical com- 

putability of the limit becomes serious. It can be shown that for every general 
sentence the limit exists; hence m* has a value for all sentences in the infinite 
language. Moreover, an effective procedure for the computation of m*(j) for 

any sentence j in the infinite language has been constructed. This is based on a 

procedure for transforming any given general sentence j into a non-general 
sentence j' such that j and f, although not necessarily L-equivalent, have the 
same m*-value in the infinite language and j' does not contain more individual 
constants than j; this procedure is not only effective but also practicable for 
sentences of customary length. Thus, the computation of m*(j) for a general 
sentence j is in fact much simpler for the infinite language than for a finite lan- 
guage with a large N. 

With the help of the procedure mentioned, the following theorem is obtained: 
If j is a purely general sentence (i.e. one without individual constants) in the 

infinite language, then m*(j) is either 0 or 1. 

?8. INDUCTIVE INFERENCES 

One of the chief tasks of inductive logic is to furnish general theorems concern- 
ing inductive inferences. We keep the traditional term "inference"; however, 
we do not mean by it merely a transition from one sentence to another (viz. 
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from the evidence or premiss e to the hypothesis or conclusion h) but the deter- 
mination of the degree of confirmation c(h, e). In deductive logic it is sufficient 
to state that h follows with necessity from e; in inductive logic, on the other 
hand, it would not be sufficient to state that h follows-not with necessity but 
to some degree or other-from e. It must be specified to what degree h follows 
from e; in other words, the value of c(h, e) must be given. We shall now indicate 
some results with respect to the most important kinds of inductive inference. 
These inferences are of special importance when the evidence or the hypothesis 
or both give statistical information, e.g. concerning the absolute or relative 
frequencies of given properties. 

If a property can be expressed by primitive predicates together with the ordi- 
nary connectives of negation, disjunction, and conjunction (without the use of 
individual constants, quantifiers, or the identity sign), it is called an elementary 
property. We shall use 'M', 'M", 'M1', 'M2', etc. for elementary properties. 
If a property is empty by logical necessity (e.g. the property designated by 
'P. - P') we call it L-empty; if it is universal by logical necessity (e.g. 'PV 
P'), we call it L-universal. If it is neither L-empty nor L-universal (e.g. 'P1', 
'P1. '-' P2), we call it a factual property; in this case it may still happen to be 
universal or empty, but if so, then contingently, not necessarily. It can be 
shown that every elementary property which is not L-empty is uniquely anal- 
ysable into a disjunction (i.e. or-connection) of Q-properties. If M is a disjunc- 
tion of n Q-properties (n _ 1), we say that the (logical) width of M is n; to an 
L-empty property we ascribe the width 0. If the width of M is w (= 0), we call 
w/k its relative width (k is the number of Q-properties). 

The concepts of width and relative width are very important for inductive 
logic. Their neglect seems to me one of the decisive defects in the classical 
theory of probability which formulates its theorems "for any property" without 
qualification. For instance, Laplace takes the probability a priori that a given 
thing has a given property, no matter of what kind, to be ?. However, it seems 
clear that this probability cannot be the same for a very strong property (e.g. 
'P1 -P2 P3') and for a very weak property (e.g. 'P1VP2VP3'). According to our 
definition, the first of the two properties just mentioned has the relative width 
8, and the second -. In this and in many other cases the probability or degree 
of confirmation must depend upon the widths of the properties involved. This 
will be seen in some of the theorems to be mentioned later. 

?9. THE DIRECT INFERENCE 

Inductive inferences often concern a situation where we investigate a whole 
population (of persons, things, atoms, or whatever else) and one or several 
samples picked out of the population. An inductive inference from the whole 
population to a sample is called a direct inductive inference. For the sake of 
simplicity, we shall discuss here and in most of the subsequent sections only the 
case of one property M, hence a classification of all individuals into M and - M. 
The theorems for classifications with more properties are analogous but more 
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complicated. In the present case, the evidence e says that in a whole popula- 
tion of n individuals there are ni with the property M and n2 = n - nl with 
-M; hence the relative frequency of M is r = ni/n. The hypothesis h says that 
a sample of s individuals taken from the whole population will contain s1 individ- 
uals with the property M and s2 = s - s with ~ M. Our theory yields in this 
case the same values as the classical theory.15 

If we vary s , then c* has its maximum in the case where the relative frequency 
sl/s in the sample is equal or close to that in the whole population. 

If the sample consists of only one individual c, and h says that c is M, then 
c*(h, e) = r. 

As an approximation in the case that n is very large in relation to s, Newton's 
theorem holds.'6 If furthermore the sample is sufficiently large, we obtain as 
an approximation Bernoulli's theorem in its various forms. 

It is worthwhile to note two characteristics which distinguish the direct in- 
ductive inference from the other inductive inferences and make it, in a sense, 
more closely related to deductive inferences: 
(i) The results just mentioned hold not only for c* but likewise for all sym- 
metrical c-functions; in other words, the results are independent of the particular 
m-metric chosen provided only that it takes all individuals on a par. 
(ii) The results are independent of the width of M. This is the reason for the 
agreement between our theory and the classical theory at this point. 

?10. THE PREDICTIVE INFERENCE 

We call the inference from one sample to another the predictive inference. 
In this case, the evidence e says that in a first sample of 8 individuals, there are 
s1 with the property M, and s2 =s - si with - M. The hypothesis h says that 
in a second sample of s' other individuals, there will be sl with M, and s2 = 
s' - s with - M. Let the width of M be wl; hence the width of - M is w = 
k - ow K 

15 The general theorem is as follows: 

*(h, e) _ \s/s/ 
n 

(:) 
16 C*(h, e) r) r(l - 

r)"2. 

17 The general theorem is as follows: 

(Si + Sl + Wl - 1)(S + 2 + 2 - 1) 

c*(h, e) 2- A 2 
s+ s+ k - 1 

\ J S 
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The most important special case is that where h refers to one individual c only 
and says that c is M. In this case, 

(1) c*(h, e) = Si + wl 
s+ k 

Laplace's much debated rule of succession gives in this case simply the value 
sl+ I S for any property whatever; this, however, if applied to different proper- s+2 
ties, leads to contradictions. Other authors state the value sl/s, that is, they 
take simply the observed relative frequency as the probability for the prediction 
that an unobserved individual has the property in question. This rule, how- 
ever, leads to quite implausible results. If sl = s, e.g., if three individuals have 
been observed and all of them have been found to be M, the last-mentioned 
rule gives the probability for the next individual being M as 1, which seems 
hardly acceptable. According to (1), c* is influenced by the following two 
factors (though not uniquely determined by them): 

(i) wl/k, the relative width of M; 
(ii) si/s, the relative frequency of M in the observed sample. 

The factor (i) is purely logical; it is determined by the semantical rules. (ii) is 
empirical; it is determined by observing and counting the individuals in the 
sample. The value of c* always lies between those of (i) and (ii). Before any 
individual has been observed, c* is equal to the logical factor (i). As we first 
begin to observe a sample, c* is influenced more by this factor than by (ii). As 
the sample is increased by observing more and more individuals (but not in- 
cluding the one mentioned in h), the empirical factor (ii) gains more and more 
influence upon c* which approaches closer and closer to (ii); and when the sample 
is sufficiently large, c* is practically equal to the relative frequency (ii). These 
results seem quite plausible.'s 

The predictive inference is the most important inductive inference. The 
kinds of inference discussed in the subsequent sections may be construed as 
special cases of the predictive inference. 

18 Another theorem may be mentioned which deals with the case where, in distinction 
to the case just discussed, the evidence already gives some information about the individual 
c mentioned in h. Let M1 be a factual elementary property with the width wt (wIl 2 2); 
thus M, is a disjunction of wl Q-properties. Let M2 be the disjunction of t2 among those 
wt Q-properties (1 _ W2 < wi); hence M2 L-implies M1 and has the width W2. e specifies first 
how the s individuals of an observed sample are distributed among certain properties, and, 
in particular, it says that s8 of them have the property M1 and 82 of these s8 individuals 
have also the property M2; in addition, e says that c is Mi; and h says that c is also M2. 
Then, 

s 2+ wtg 
*(h, e) - 8 + 

81 + WI 

This is analogous to (1); but in the place of the whole sample we have here that part of it 
which shows the property M1. 
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?11. THE INFERENCE BY ANALOGY 

The inference by analogy applies to the following situation. The evidence 
known to us is the fact that individuals b and c agree in certain properties and, 
in addition, that b has a further property; thereupon we consider the hypothesis 
that c too has this property. Logicians have always felt that a peculiar difficulty 
is here involved. It seems plausible to assume that the probability of the 
hypothesis is the higher the more properties b and c are known to have in com- 
mon; on the other hand, it is felt that these common properties should not simply 
be counted but weighed in some way. This becomes possible with the help of 
the concept of width. Let Mi1 be the conjunction of all properties which b and 
c are known to have in common. The known similarity between b and c is the 
greater the stronger the property Mi, hence the smaller its width. Let M2 be 
the conjunction of all properties which b is known to have. Let the width of M1 
be wl, and that of M2, w2 . According to the above description of the situation, 
we presuppose that M2 L-implies Mi but is not L-equivalent to M ; hence wl > 
w2. Now we take as evidence the conjunction e.j; e says that b is M2, and j 
says that c is Ml. The hypothesis h says that c has not only the properties 
ascribed to it in the evidence but also the one (or several) ascribed in the evidence 
to b only, in other words, that c has all known properties of b, or briefly that c 
is M2. Then 

(1) c*(h, e.j) = + 1 

j and h speak only about c; e introduces the other individual b which serves to 
connect the known properties of c expressed by j with its unknown properties 
expressed by h. The chief question is whether the degree of confirmation of h 
is increased by the analogy between c and b, in other words, by the addition of 
e to our knowledge. A theorem19 is found which gives an affirmative answer to 
this question. However, the increase of c* is under ordinary conditions rather 
small; this is in agreement with the general conception according to which 
reasoning by analogy, although admissible, can usually yield only rather weak 
results. 

Hosiasson20 has raised the question mentioned above and discussed it in detail. 
She says that an affirmative answer, a proof for the increase of the degree of 
confirmation in the situation described, would justify the universally accepted 
reasoning by analogy. However, she finally admits that she does not find such 
a proof on the basis of her axioms. I think it is not astonishing that neither the 
classical theory nor modern theories of probability have been able to give a 
satisfactory account of and justification for the inference by analogy. For, as 
the theorems mentioned show, the degree of confirmation and its increase depend 

19 c*(h, e.j) WI - W2 

c*(h, j) w2(wI + 1) 

This theorem shows that the ratio of the increase of c* is greater than 1, since w, > wa. 
20 Janina Lindenbaum-Hosiasson, "Induction et analogie: Comparaison de leur fonde- 

ment," Mind, vol. 50, 1941, pp. 351-365; see especially pp. 361-365. 
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here not on relative frequencies but entirely on the logical widths of the proper- 
ties involved, thus on magnitudes neglected by both classical and modern 
theories. 

The case discussed above is that of simple analogy. For the case of multiple 
analogy, based on the similarity of c not only with one other individual but with 
a number n of them, similar theorems hold. They show that c* increases with 
increasing n and approaches 1 asymptotically. Thus, multiple analogy is shown 
to be much more effective than simple analogy, as seems plausible. 

?12. THE INVERSE INFERENCE 

The inference from a sample to the whole population is called the inverse 
inductive inference. This inference can be regarded as a special case of the 

predictive inference with the second sample covering the whole remainder of 
the population. This inference is of much greater importance for practical 
statistical work than the direct inference, because we usually have statistical 
information only for some samples and not for the whole population. 

Let the evidence e say that in an observed sample of s individuals there are sl 
individuals with the property M and s2 = s - sl with - M. The hypothesis h 

says that in the whole population of n individuals, of which the sample is a part, 
there are nl individuals with M and n2 with M (nl _ si, n2 _ s2). Let the 
width of M be wl, and that of - M be W2 = k - w,. Here, in distinction to the 
direct inference, c*(h, e) is dependent not only upon the frequencies but also 

upon the widths of the two properties.21 

?13. THE UNIVERSAL INFERENCE 

The universal inductive inference is the inference from a report on an observed 
sample to a hypothesis of universal form. Sometimes the term 'induction' has 
been applied to this kind of inference alone, while we use it in a much wider 
sense for all non-deductive kinds of inference. The universal inference is not 
even the most important one; it seems to me now that the role of universal 
sentences in the inductive procedures of science has generally been overestimated. 
This will be explained in the next section. 

Let us consider a simple law 1, i.e. a factual universal sentence of the form 
"all M are M"' or, more exactly, "for every x, if x is M, then x is M"', where M 
and M' are elementary properties. As an example, take "all swans are white". 
Let us abbreviate 'M- - M" ("non-white swan") by 'M,' and let the width of 

21 The general theorem is as follows: 

n +- w - l\/n2 + t2- 1\ 

n+- k- 1) 
\ n- s 

Other theorems, which cannot be stated here, concern the case where more than two proper- 
ties are involved, or give approximations for the frequent case where the whole population 
is very large in relation to the sample. 
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M1 be wi. Then I can be formulated thus: "M1 is empty", i.e. "there is no in- 
dividual (in the domain of individuals of the language in question) with the 
property M1" ("there are no non-white swans"). Since I is a factlal sentence, 
M1 is a factual property; hence wl > 0. To take an example, let wl be 3; hence 
M1 is a disjunction of three Q-properties, say Q V Q'V Q". Therefore, I can be 
transformed into: "Q is empty, and Q' is empty, and Q" is empty". The weakest 
factual laws in a language are those which say that a certain Q-property is empty; 
we call them Q-laws. Thus we see that 1 can be transformed into a conjunction 
of w, Q-laws. Obviously I asserts more if Wi is larger; therefore we say that 
the law I has the strength wl. 

Let the evidence e be a report about an observed sample of s individuals such 
that we see from c that none of these s individuals violates the law I; that is to 
say, e ascribes to each of the s individuals either simply the property - M1 or 
some other property L-implying - M . Let 1, as above, be a simple law which 
says that M1 is empty, and wl be the width of M1; hence the width of - M1 is 
W2 = k - w1. For finite languages with N individuals, c*(l, e) is found to de- 
crease with increasing N, as seems plausible.22 If N is very large, c* becomes 
very small; and for an infinite universe it becomes 0. The latter result may 
seem astonishing at first sight; it seems not in accordance with the fact that 
scientists often speak of "well-confirmed" laws. The problem involved here will 
be discussed later. 

So far we have considered the case in which only positive instances of the law 
1 have been observed. Inductive logic must, however, deal also with the case 
of negative instances. Therefore let us now examine another evidence e' which 
says that in the observed sample of s individuals there are sl which have the 
property M1 (non-white swans) and hence violate the law 1, and that s2 = s - si 
have - Ml and hence satisfy the law 1. Obviously, in this case there is no point in 
taking as hypothesis the law I in its original forms, because I is logically incom- 

22The general theorem is as follows: 

s + k- 1\ 

(1) c*(l, e) = 1 
N+ k- 1 

\ W 

In the special case of a language containing 'M1' as the only primitive predicate, we have 

w, = 1 and k = 2, and hence c*(l, e) -. The latter value is given by some authors 

as holdig generally (see Jeffreys, op.cit., p. 106 (16)). Hoever, it seems plausible that as holding generally (see Jcffrcys, op.cit., p. 106 (16)). 1-lowever, it seems plausible that 
the degree of confirmation must be smaller for a stronger law and hence depend upon wl. 

If s, and hence N, too, is very large in relation to k, the following holds as an approxima- 
tion: 

(2)2 

For the infinite laguage L we obtain, according to definition (7) in 3: 
For the infinite language L~ we obtain, according to definition (7) in ?3: 
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patible with the present evidence e', and hence c*(l, e') = 0. That all individuals 
satisfy 1 is excluded by e'; the question remains whether at least all unobserved 
individuals satisfy I. Therefore we take here as hypothesis the restricted law 
I' corresponding to the original unrestricted law 1; 1' says that all individuals 
not belonging to the sample of s individuals described in e' have the property 

Mi. w1 and w2 are, as previously, the widths of M1 and M1 respectively. 
It is found that c*(l', e') decreases with an increase of N and even more with an 
increase in the number sl of violating cases.23 It can be shown that, under 
ordinary circumstances with large N, c* increases moderately when a new in- 
dividual is observed which satisfies the original law 1. On the other hand, if 
the new individual violates I, c* decreases very much, its value becoming a small 
fraction of its previous value. This seems in good agreement with the general 
conception. 

For the infinite universe, c* is again 0, as in the previous case. This result 
will be discussed in the next section. 

?14. THE INSTANCE CONFIRMATION OF A LAW 

Suppose we ask an engineer who is building a bridge why he has chosen the 
building materials he is using, the arrangement and dimensions of the supports, 
etc. He will refer to certain physical laws, among them some general laws of 
mechanics and some specific laws concerning the strength of the materials. On 
further inquiry as to his confidence in these laws he may apply to them phrases 
like "very reliable", "well founded", "amply confirmed by numerous experi- 
ences". What do these phrases mean? It is clear that they are intended to 
say something about probabilityl or degree of confirmation. Hence, what is 
meant could be formulated more explicitly in a statement of the form "c(h, e) is 
high" or the like. Here the evidence e is obviously the relevant observational 
knowledge of the engineer or of all physicists together at the present time. But 
what is to serve as the hypothesis h? One might perhaps think at first that h is 
the law in question, hence a universal sentence I of the form: "For every space- 
time point x, if such and such conditions are fulfilled at x, then such and such 
is the case at x". I think, however, that the engineer is chiefly interested not in 
this sentence 1, which speaks about an immense number, perhaps an infinite 
number, of instances dispersed through all time and space, but rather in one 
instance of 1 or a relatively small number of instances. WVhen he says that the 
law is very reliable, he does not mean to say that he is willing to bet that among 
the billion of billions, or an infinite number, of instances to which the law applies 
there is not one counter-instance, but merely that this bridge will not be a 
counter-instance, or that among all bridges which he will construct during his 

lifetime, or among those which all engineers will construct during the next one 
23 The theorem is as follows: 

(s + k- 

c*( Sr,ie _ ,1 + wI 
N + k - 1\ 

\ 81 + WI J 
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thousand years, there will be no counter-instance. Thus h is not the law I itself 
but only a prediction concerning one instance or a relatively small number of 
instances. Therefore, what is vaguely called the reliability of a law is measured 
not by the degree of confirmation of the law itself but by that of one or several 
instances. This suggests the subsequent definitions. They refer, for the sake 
of simplicity, to just one instance; the case of severlal, say one hundred, instances 
can then easily be judged likewise. Let e be any non-L-false sentence without 
variables. Let I be a simple law of the form earlier described (?13). Then we 
understand by the instance confirmation of 1 on the evidence e, in symbols 
"cC (1, e)", the degree of confirmation, on the evidence e, of the hypothesis 
that a new individual not mentioned in c fulfills the law 1.24 

The second concept, now to be defined, seems in many cases to represent still 
more accurately what is vaguely meant by the reliability of a law 1. We suppose 
here that I has the frequently used conditional form mentioned earlier: "For 
every x, if x is M, then x is M'" (e.g. "all swans are white"). By the qualified- 
instance confirmation of the law that all swans are white we mean the degree of 
confirmation for the hypothesis h' that the next swan to be observed will likewise 
be white. The difference between the hypothesis h used previously for the in- 
stance confirmation and the hypothesis h' just described consists in the fact that 
the latter concerns an individual which is already qualified as fulfilling the 
condition M. That is the reason why we speak here of the qualified-instance 
confirmation, in symbols "c*i".25 The results obtained concerning instance con- 
firmation and qualified-instance confirmation26 show that the values of these 
two functions are independent of N and hence hold for all finite and infinite 
universes. It has been found that, if the number sl of observed counter-instances 

24 In technical terms, the definition is as follows: 
c'(l, e) = Df c*(h, e), where h is an instance of I formed by the substitution of an individual 

constant not occurring in e. 
26 The technical definition will be given here. Let I be 'for every x, if x is M3, then x is 

M". Let I be non-L-false and without variables. Let 'c' be any individual constant 
not occurring in e; let j say that c is MA, and h' that c is M'. Then the qualified-instance 
confirmation of I with respect to 'M' and 'M" on the evidence e is defined as follows: 
c*i('M', 'M", e) = Df c*(h', e.j). 

26 Some of the theorems may here be given. Let the law 1 say, as above, that all M are 
M'. Let 'MA' be defined, as earlier, by 'M.-M" ("non-white swan") and 'M2' by 'M.M" 
("white swan"). Let the widths of M, and M2 be w1 and w2 respectively. Let e be a report 
about s observed individuals saying that Si of them are MI and s2 are M2, while the remaining 
ones are -M and hence neither M1 nor M2. Then the following holds: 

(1) c*(l, e) - 1 - sl -w. 
s +- k 

(2) c* ('M', 'M", e) = 1 - _ 
sl + w 

sI + W1 + S2 + W2 

The values of c? and cqi for the case that the observed sample does not contain any individ- 
uals violating the law I can easily be obtained from the values stated in (1) and (2) by taking 
si = 0. 
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is a fixed small number, then, with the increase of the sample s, both c* and 
c?i grow close to 1, in contradistinction to c* for the law itself. This justifies 
the customary manner of speaking of "very reliable" or "well-founded" or 
"well confirmed" laws, provided we interpret these phrases as referring to a high 
value of either of our two concepts just introduced. Understood in this sense, 
the phrases are not in contradiction to our previous results that the degree of 
confirmation of a law is very small in a large domain of individuals and 0 in the 
infinite domain (?13). 

These concepts will also be of help in situations of the following kind. Sup- 
pose a scientist has observed certain events, which are not sufficiently explained 
by the known physical laws. Therefore he looks for a new law as an explanation. 
Suppose he finds two incompatible laws I and 1', each of which would explain the 
observed events satisfactorily. Which of them should he prefer? If the domain 
of individuals in question is finite, he may take the law with the higher degree of 
confirmation. In the infinite domain, however, this method of comparison 
fails, because the degree of confirmation is 0 for either law. Here the concept 
of instance confirmation (or that of qualified-instance confirmation) will help. 
If it has a higher value for one of the two laws, then this law will be preferable, 
if no reasons of another nature are against it. 

It is clear that for any deliberate activity predictions are needed, and that 
these predictions must be "founded upon" or "(inductively) inferred from" 
past experiences, in some sense of those phrases. Let us examine the situation 
with the help of the following simplified schema. Suppose a man X wants to 
make a plan for his actions and, therefore, is interested in the prediction h that 
c is M'. Suppose further, X has observed (1) that many other things were M 
and that all of them were also M', let this be formulated in the sentence e; (2) 
that c is M, let this be j. Thus he knows e and j by observation. The problem 
is, how does he go from these premisses to the desired conclusion h? It is clear 
that this cannot be done by deduction; an inductive procedure must be applied. 
What is this inductive procedure? It is usually explained in the following way. 
From the evidence e, X infers inductively the law 1 which says that all M are 
M'; this inference is supposed to be inductively valid because e contains many 
positive and no negative instances of the law 1; then he infers h ("c is white") 
from 1 ("all swans are white") and j ("c is a swan") deductively. Now let us see 
what the procedure looks like from the point of view of our inductive logic. One 
might perhaps be tempted to transcribe the usual description of the procedure 
just given into technical terms as follows. X infers 1 from e inductively because 
c*(l, e) is high; since l.j L-implies h, c*(h, e.j) is likewise high; thus h may be 
inferred inductively from e.j. However, this way of reasoning would not be 
correct, because, under ordinary conditions, c*(1, e) is not high but very low, and 
even 0 if the domain of individuals is infinite. The difficulty disappears when 
we realize on the basis of our previous discussions that X does not need a high 
c* for I in order to obtain the desired high c* for h; all he needs is a high c*q for l; 
and this he has by knowing e and j. To put it in another way, X need not take 
the roundabout way through the law I at all, as is usually believed; he can in- 
stead go from his observational knowledge e .j directly to the prediction h. That 
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is to say, our inductive logic makes it possible to determine c*(h, e.j) directly 
and to find that it has a high value, without making use of any law. Customary 
thinking in every-day life likewise often takes this short-cut, which is now justi- 
fied by inductive logic. For instance, suppose somebody asks Mr. X what color 
he expects the next swan he will see to have. Then X may reason like this: he 
has seen many white swans and no non-white swans; therefore he presumes, 
admittedly not with certainty, that the next swan will likewise be white; and he 
is willing to bet on it. He does perhaps not even consider the question whether 
all swans in the universe without a single exception are white; and if he did, he 
would not be willing to bet on the affirmative answer. 

We see that the use of laws is not indispensable for making predictions. 
Nevertheless it is expedient of course to state universal laws in books on physics, 
biology, psychology, etc. Although these laws stated by scientists do not have 
a high degree of confirmation, they have a high qualified-instance confirmation 
and thus serve us as efficient instruments for finding those highly confirmed 
singular predictions which we need for guiding our actions. 

?15. THE VARIETY OF INSTANCES 

A generally accepted and applied rule of scientific method says that for testing 
a given law we should choose a variety of specimens as great as possible. For 
instance, in order to test the law that all metals expand by heat, we should ex- 
amine not only specimens of iron, but of many different metals. It seems clear 
that a greater variety of instances allows a more effective examination of the law. 
Suppose three physicists examine the law mentioned; each of them makes one 
hundred experiments by heating one hundred metal pieces and observing their 
expansion; the first physicist neglects the rule of variety and takes only pieces 
of iron; the second follows the rule to a small extent by examining iron and 
copper pieces; the third satisfies the rule more thoroughly by taking his one 
hundred specimens from six different metals. Then we should say that the third 

physicist has confirmed the law by a more thoroughgoing examination than the 
two other physicists; therefore he has better reasons to declare the law well- 
founded and to expect that future instances will likewise be found to be in ac- 
cordance with the law; and in the same way the second physicist has more 
reasons than the first. Accordingly, if there is at all an adequate concept of 
degree of confirmation with numerical values, then its value for the law, or for 
the prediction that a certain number of future instances will fulfill the law, 
should be higher on the evidence of the report of the third physicist about the 

positive results of his experiments than for the second physicist, and higher for 
the second than for the first. Generally speaking, the degree of confirmation 
of a law on the evidence of a number of confirming experiments should depend 
not only on the total number of (positive) instances found but also on their 

variety, i.e. on the way they are distributed among various kinds. 
Ernest Nagel27 has discussed this problem in detail. He explains the diffi- 

culties involved in finding a quantitative concept of degree of confirmation that 

27 E. Nagel, Principles of the Theory of Probability. Int. Encycl. of Unified Science, 
vol. 1, No. 6, 1939; see pp. 68-71. 
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would satisfy the requirement we have just discussed, and he therefore expresses 
his doubt whether such a concept can be found at all. Ie says (pp. 69f): "It 
follows, however, that the degree of confirmation for a theory seems to be a 
function not only of the absolute number of positive instances but also of the 
kinds of instances and of the relative number in each kind. It is not in general 
possible, therefore, to order degrees of confirmation in a linear order, because the 
evidence for theories may not be comparable in accordance with a simple linear 
schema; and a fortiori degrees of confirmation cannot, in general, be quantized." 
He illustrates his point by a numerical example. A theory T is examined by a 
number E of experiments all of which yield positive instances; the specimens 
tested are taken from two non-overlapping kinds K1 and K2 . Nine possibilities 
P1, - * Pq are discussed with different numbers of instances in K1 and in K2. 
The total number E increases from 50 in P1 to 200 in Pg. In Pi, 50 instances 
are taken from K1 and none from K2; in P9, 198 from K1 and 2 from K2. It 
does indeed seem difficult to find a concept of degree of confirmation that takes 
into account in an adequate way not only the absolute number E of instances 
but also their distribution among the two kinds in the different cases. And I 
agree with Nagel that this requirement is important. However, I do not think 
it impossible to satisfy the requirement; in fact, it is satisfied by our concept c*. 

This is shown by a theorem in our system of inductive logic, which states the 
ratio in which the c* of a law I is increased if s new positive instances of one or 
several different kinds are added by new observations to some former positive 
instances. The theorem, which is too complicated to be given here, shows that 
c* is greater under the following conditions: (1) if the total number s of the new 
instances is greater, ceteris paribus; (2) if, with equal numbers s, the number of 
different kinds from which the instances are taken is greater; (3) if the instances 
are distributed more evenly among the kinds. Suppose a physicist has made 

experiments for testing the law 1 with specimens of various kinds and he wishes 
to make one more experiment with a new specimen. Then it follows from (2), 
that the new specimen is best taken from one of those kinds from which so far 
no specimen has been examined; if there are no such kinds, then we see from (3) 
that the new specimen should best be taken from one of those kinds which con- 
tain the minimum number of instances tested so far. This seems in good agree- 
ment with scientific practice. [The above formulations of (2) and (3) hold in 
the case where all the kinds considered have equal width; in the general and more 
exact formulation, the increase of c* is shown to be dependent also upon the 
various widths of the kinds of instances.] The theorem shows further that c* 
is much more influenced by (2) and (3) than by (1); that is to say, it is much 
more important to improve the variety of instances than to increase merely 
their number. 

The situation is best illustrated by a numerical example. The computation 
of the increase of c*, for the nine possible cases discussed by Nagel, under certain 

plausible assumptions concerning the form of the law 1 and the widths of the 

properties involved, leads to the following results. If we arrange the nine possi- 
bilities in the order of ascending values of c*, we obtain this: P1, Pa, P, Pg ; 
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P2, P4, P6, P6, P8 . In this order we find first the four possibilities with a bad 
distribution among the two kinds, i.e. those where none or only very few (two) 
of the instances are taken from one of the two kinds, and these four possibilities 
occur in the order in which they are listed by Nagel; then the five possibilities 
with a good or fairly good distribution follow, again in the same order as Nagel's. 
Even for the smallest sample with a good distribution (viz., P2, with 100 in- 
stances, 50 from each of the two kinds) c* is considerably higher-under the 
assumptions made, more than four times as high-than for the largest sample 
with a bad distribution (viz. Pg, with 200 instances, divided into 198 and 2). 
This shows that a good distribution of the instances is much more important 
than a mere increase in the total number of instances. This is in accordance 
with Nagel's remark (p. 69): "A large increase in the number of positive instances 
of one kind may therefore count for less, in the judgment of skilled experimenters, 
than a small increase in the number of positive instances of another kind." 

Thus we see that the concept c* is in satisfactory accordance with the principle 
of the variety of instances. 

?16. THE PROBLEM OF THE JUSTIFICATION OF INDUCTION 

Suppose that a theory is offered as a more exact formulation-sometimes 
called a "rational reconstruction"-of a body of generally accepted but more or 
less vague beliefs. Then the demand for a justification of this theory may be 
understood in two different ways. (1) The first, more modest task is to validate 
the claim that the new theory is a satisfactory reconstruction of the beliefs in 
question. It must be shown that the statements of the theory are in sufficient 
agreement with those beliefs; this comparison is possible only on those points 
where the beliefs are sufficiently precise. The question whether the given 
beliefs are true or false is here not even raised. (2) The second task is to show 
the validity of the new theory and thereby of the given beliefs. This is a much 
deeper going and often much more difficult problem. 

For example, Euclid's axiom system of geometry was a rational reconstruction 
of the beliefs concerning spatial relations which were generally held, based on 
experience and intuition, and applied in the practices of measuring, surveying, 
building, etc. Euclid's axiom system was accepted because it was in sufficient 
agreement with those beliefs and gave a more exact and consistent formulation 
for them. A critical investigation of the validity, the factual truth, of the axioms 
and the beliefs was only made more than two thousand years later by Gauss. 

Our system of inductive logic, that is, the theory of c* based on the definition 
of this concept, is intended as a rational reconstruction, restricted to a simple 
language form, of inductive thinking as customarily applied in everyday life 
and in science. Since the implicit rules of customary inductive thinking are 
rather vague, any rational reconstruction contains statements which are neither 
supported nor rejected by the ways of customary thinking. Therefore, a com- 
parison is possible only on those points where the procedures of customary in- 
ductive thinking are precise enough. It seems to me, that on these points suffi- 
cient agreement is found to show that our theory is an adequate reconstruction; 
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this agreement is seen in many theorems, of which a few have been mentioned 
in this paper. 

An entirely different question is the problem of the validity of our or any other 

proposed system of inductive logic, and thereby of the customary methods of 
inductive thinking. This is the genuinely philosophical problem of induction. 
The construction of a systematic inductive logic is an important step towards 
the solution of the problem, but still only a preliminary step. It is important 
because without an exact formulation of rules of induction, i.e. theorems on 
degree of confirmation, it is not clear what exactly is meant by "inductive pro- 
cedures", and therefore the problem of the validity of these procedures cannot 
even be raised in precise terms. On the other hand, a construction of inductive 
logic, although it prepares the way towards a solution of the problem of induc- 
tion, still does not by itself give a solution. 

Older attempts at a justification of induction tried to transform it into a kind 
of deduction, by adding to the premisses a general assumption of universal form, 
e.g. the principle of the uniformity of nature. I think there is fairly general 
agreement today among scientists and philosophers that neither this nor any 
other way of reducing induction to deduction with the help of a general 
principle is possible. It is generally acknowledged that induction is fundamen- 
tally different from deduction, and that any prediction of a future event reached 
inductively on the basis of observed events can never have the certainty of a 
deductive conclusion; and, conversely, the fact that a prediction reached by 
certain inductive procedures turns out to be false does not show that those 
inductive procedures were incorrect. 

The situation just described has sometimes been characterized by saying that 
a theoretical justification of induction is not possible, and hence, that there is 
no problem of induction. However, it would be better to say merely that a 

justification in the old sense is not possible. Reichenbach28 was the first to 
raise the problem of the justification of induction in a new sense and to take the 
first step towards a positive solution. Although I do not agree with certain 
other features of Reichenbach's theory of induction, I think it has the merit of 

having first emphasized these important points with respect to the problem of 

justification: (1) the decisive justification of an inductive procedure does not 
consist in its plausibility, i.e., its accordance with customary ways of inductive 
reasoning, but must refer to its success in some sense; (2) the fact that the truth 
of the predictions reached by induction cannot be guaranteed does not preclude 
a justification in a weaker sense; (3) it can be proved (as a purely logical result) 
that induction leads in the long run to success in a certain sense, provided the 
world is "predictable" at all, i.e. such that success in that respect is possible. 
Reichenbach shows that his rule of induction R leads to success in the following 
sense: R yields in the long run an approximate estimate of the relative frequency 
in the whole of any given property. Thus suppose that we observe the relative 
frequencies of a property M1 in an increasing series of samples, and that we de- 
termine on the basis of each sample with the help of the rule R the probability 

28 Hans Reichenbach, Experience and Prediction, 1938, ??38 ff., and earlier publications. 
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q that an unobserved thing has the property M, then the values q thus found 
approach in the long run the relative frequency of Ml in the whole. (This is, of 
course, merely a logical consequence of Reichenbach's definition or rule of 
induction, not a factual feature of the world.) 

I think that the way in which Reichenbach examines and justifies his rule of 
induction is an important step in the right direction, but only a first step. What 
remains to be done is to find a procedure for the examination of any given rule 
of induction in a more thoroughgoing way. To be more specific, Reichenbach 
is right in the assertion that any procedure which does not possess the character- 
istic described above (viz. approximation to the relative frequency in the whole) 
is inferior to his rule of induction. However, his rule, which he calls "the" rule 
of induction, is far from being the only one possessing that characteristic. The 
same holds for an infinite number of other rules of induction, e.g., for Laplace's 
rule of succession (see above, ?10; here restricted in a suitable way so as to avoid 
contradictions), and likewise for the corresponding rule of our theory of c* (as 
formulated in theorem (1), ?10). Thus our inductive logic is justified to the 
same extent as Reichenbach's rule of induction, as far as the only criterion of 
justification so far developed goes. (In other respects, our inductive logic 
covers a much more extensive field than Reichenbach's rule; this can be seen by 
the theorems on various kinds of inductive inference mentioned in this paper.) 
However, Reichenbach's rule and the other two rules mentioned yield different 
numerical values for the probability under discussion, although these values 
converge for an increasing sample towards the same limit. Therefore we need 
a more general and stronger method for examining and comparing any two given 
rules of induction in order to find out which of them has more chance of success. 
I think we have to measure the success of any given rule of induction by the 
total balance with respect to a comprehensive system of wagers made according 
to the given rule. For this task, here formulated in vague terms, there is so far 
not even an exact formulation; and much further investigation will be needed 
before a solution can be found. 

University of Chicago, Chicago, Ill. 
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