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 Parametric Certainty Equivalence Procedures
 in Decision-Making Under Uncertainty
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 Leif Johansen, Oslo*

 (Received June 30, 1980)

 1. Introduction

 Certainty equivalence procedures are popular in connection with
 decision-making under uncertainty because they simplify an other-
 wise complicated decision problem to something similar to decision-
 making under certainty. In management science and in the theory
 of economic policy and planning the best known case of certainty
 equivalence (known especially from several works by H. Theil) is
 the case of a quadratic objective function combined with a struc-
 tural model with additive error terms with a constant variance-co-

 variance matrix. The certainty equivalence results in this case lead
 to simple and practical computational procedures. They are strong
 in the sense that they do not require specific forms of the probability
 distributions involved apart from the existence and constancy of the
 first and second order moments. On the other hand, in many contexts
 the quadratic form is not very attractive, partly because of the at-
 titude towards risk implied by this function, and partly because of
 the symmetry properties of the quadratic function.

 The purpose of this paper is to introduce a somewhat more
 general type of certainty equivalence procedure than the usual one,
 to be called "parametric certainty equivalence". The idea is to formu-
 late a procedure for deriving the optimal decisions under uncertainty
 which is similar to the one which would be valid under certainty
 by permitting some adjustments of the values of parameters involved.
 A quite attractive case of such parametric certainty equivalence can

 * I am grateful to Karl M o en e for his assistance in the preparation of
 this paper. 4
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 258 L. Johansen:

 be established on the basis of an objective function expressed in
 terms of combinations of exponential functions. In several respects
 this formulation is more attractive than the quadratic objective func-
 tion; on the other hand, it makes it necessary to assume the error
 terms to be normally distributed.
 For computational procedures it is useful to compare the expo-

 nential objective function with the quadratic function. Computa-
 tional methods which are valid for the quadratic case may be used
 as parts of an iterative scheme which solves the problem for the
 case of exponential objective functions.
 The discussion of the objective function to be proposed in this

 paper gives rise to some considerations concerning the concept of
 risk aversion, which will be taken up in an appendix.

 2. Concepts of Certainty Equivalence

 I shall not try to review all definitions of certainty equivalence
 found in the literature on decision-making under uncertainty, but
 only give a representative definition in general terms. Next I shall
 introduce the concept of "parametric certainty equivalence".

 We consider a decision problem involving the following variables:

 X - a variable or a vector of variables to which we attach pre-
 ferences;

 a = a decision or action which may in a purely quantitative case
 be represented by a vector of instrument variables;

 A = a set of possible actions, i. e. we have a e A;
 Z = a vector of random variables.

 The values obtained for x are determined by the action taken
 and the random variables by a reduced form system which we
 write as

 x = f(a,z). (2.1)

 The objective function is written as

 U = U(x; oc) (2.2)

 where a is a vector of parameters entering the form of the objective
 function.

 The decision problem is to make a decision a so as to maximize
 the expected value of U. In making the decision a we do not know
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 Parametric Certainty Equivalence Procedures in Decision-Making 259

 the actual values of the random variables z , but only the proba-
 bility distribution of z. We let the optimal decision be a *. This is
 determined by

 Max E [Ü (*; a)] = Max E [U (f (a, z); oc)]. (2.3)
 aeA aeA

 A certainty equivalence procedure for solving the problem (2.3)
 will consist in replacing the stochastic variables by some represen-
 tative non-stochastic values z and then solving the problem

 Max U (/ (a, z) ; a) (2.4)
 aeA

 where z is derived from the probability distribution of z in a pre-
 scribed manner. In most cases the expected values will serve, i. e.
 one will set z - E (z).

 Sometimes a procedure like (2.4) is called a certainty equivalence
 procedure with no further reservation. However, the solution of (2.4)
 will of course, in general, not be the same as a solution of the
 original problem (2.3). The term "equivalence" then seems some-
 what misleading. At least for the present purpose I shall reserve the
 term certainty equivalence for the case in which the solution of
 (2.4) leads to the same solution a * as the solution of (2.3), and the
 solution procedure indicated by (2.4) will then be called a certainty
 equivalence procedure.

 In order to distinguish this case from the case to be described
 below we shall call it simple certainty equivalence. The simplicity
 refers to the fact that the same vector of parameter values a is used
 in the certainty equivalence procedure (2.4) as in the formulation
 of the original problem (2.3).

 The most well-known case of simple certainty equivalence is
 the case of a quadratic objective function and a structure (2.1)
 where random elements enter in an additive manner. The expected
 value of the objective function can then be written as

 E[U{x; a)] = U (£ (*) ; a) + C (2.5)

 where C is a term depending on the variance-covariance matrix of
 X. If the random elements z enter additively in the structure (2.1)
 and have zero expectations, then we can write

 x = F(a)+ Hz , E {x)= F (a) (2.6)

 where H is a constant matrix. The equivalence between the out-
 17*
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 260 L. Johansen:

 comes of (2.3) and (2.4) then follows. (It should be observed that
 this equivalence is valid regardless of the form of the possibility
 set A and the form of the function F. The essential thing, in addi-
 tion to the quadratic form of the objective function, is the fact that
 the variance-covariance matrix of x is independent of the action a
 chosen, which is secured if z has a constant variance-covariance
 matrix and z enters additively as indicated in (2.6).)

 Simple certainty equivalence is elegant and useful when it is
 valid, but one might feel that uncertainty then enters in an almost
 trivial way. The existence of uncertainty does not make us change
 our decision as compared with what we would do in the absence
 of uncertainty. In this sense simple certainty equivalence is perhaps
 too elegant and too strong.

 There are essentially two different ways in which the presence
 of uncertainty might have more interesting and realistic consequences.
 One way is to assume that the random elements enter in a different
 way, so that the variance-covariance matrix of x will depend upon
 the decision a. [See for instance W. Brainard (1967) and L. Jo-
 hansen (1973) and (1978).] The other direction is to introduce
 another form of the objective function, especially permitting forms
 implying less symmetry than the quadratic function. [The relevance
 of asymmetric objective functions has been emphasized especially
 by R. N. Waud (1976); see also the discussion in L. Johansen
 (1978).]

 For non-quadratic, asymmetric objective functions it is not easy
 to obtain simple certainty equivalence results. However, one may
 obtain "parametric certainty equivalence". This means that there
 will be equivalence between the results of a procedure like (2.4)
 and the problem as formulated in (2.3), with the modification that
 the parameter vector a in (2.3) is replaced by a modified vector in
 the procedure as given by (2.4).

 Let G be the distribution function of the random elements in x>
 i.e. of x - E(x)=Hz in the case of (2.6). This distribution will
 depend on the distribution of z and on the matrix H, but not on
 the decision a. We then introduce a modified parameter vector ã
 as a function of the original parameter vector a and the form of
 the distribution function, i. e.

 5 = y>(«,G), (2.7)

 where the vector 5 has the same number of elements as a and cor-

 responds to a element by element. When the form of G is known,
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 Parametric Certainty Equivalence Procedures in Decision-Making 261

 G may be represented by a parameter vector characterizing the
 distribution.

 We can now formulate the optimization problem

 Max U ( f ( a , z); ã) (2.8)
 aeA

 where again z is a non-stochastic representative value of z9 for
 instance E (z). We then say that (2.7, 2.8) represents a certainty
 equivalence procedure if the solution of this problem leads to the
 same decision cř as the solution of the problem in the original
 formulation (2.3).

 The "non-simple" aspect of this procedure is that we have to
 establish a function ip which indicates how the original parameter
 vector should be transformed into a new parameter vector <x, de-
 pending on properties of the distribution function G.

 It is seen that the problem as formulated by (2.8) is of precisely
 the same form as the form into which (2.3) would collapse if the
 distribution of z , and accordingly of x, degenerated into the case of
 full certainty so that the expectations operator could be removed.
 We should expect the transformation (2.7) to be such that it gives
 5 = a for the case in which G degenerates in this manner.

 The problem as formulated by (2.8) involves no more complexity
 than what originates from the form of the objective function U, the
 structural form f and the form of the possibility set A, i. e. those
 elements which are present also in the case of full certainty. The
 usefulness of the formulation (2.8) as a substitute for the original
 formulation (2.3) then depends on whether or not we can establish
 a sufficiently simple transformation ip to give the vector ã to be
 used in (2.8).

 In the following section we shall derive such a procedure for
 the case of an objective function constructed by combining expo-
 nential functions. We shall also restrict the probability distribution
 of the random elements to belonging to the class of normal distri-
 butions. Instead of entering the form G as an argument in the
 transformation (2.7), we can then of course enter the parameters of
 the normal distribution.

 Although the procedure in the case of parametric certainty equiv-
 alence is the same as under certainty, once the modified parameter
 vector oc has been established, the decision actually taken will now
 in general be different under uncertainty than under certainty be-
 cause the parameter values ã used in calculating the decision a from
 (2.8) will depend on the probability distribution of the random
 elements and influence the decision.
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 262 L. Johansen:

 3. Exponential Objective Functions

 For a scalar x the exponential objective function is

 U (x) = - Be~ (B > 0, ß>0). (3.1)

 This is a nicely increasing function with decreasing slope:

 « (x) = ^-=ßBe-**, u'(x) = ^-= -ß*Be~ß*. (3.2)
 In the context of decisions under uncertainty this form implies a
 constant degree of absolute risk aversion:

 m' (X)

 - u (x) = ß = coef^cîent absolute risk aversion. (3.3)

 For a vector of variables x = (xi> . . . , xn) a sum of exponential
 functions will yield the objective function:

 U{x) = -Z Bie-h*i (Bi > 0, ft > 0). (3.4)

 In this form the function implies strong separability, which is of
 course a restrictive assumption in many contexts. Otherwise the
 function has attractive properties. It has nicely shaped indifference
 curves (which cut the axes). The corresponding expansion curves
 are linear and parallel.

 A sum-of-exponentials utility function was used for illustrative
 purposes by J. Chipman (1965). For applications in consumer de-
 mand theory such utility functions were used by R. A. Pollak
 (1971); see also L. Johansen (1979).

 In some applications of objective functions it may be necessary
 to have functions which permit saturation levels for some variables.
 This is especially important if we want a function which can serve
 as an alternative to quadratic objective functions which are usually
 constructed as quadratic forms in the deviations from some most
 desired values of the various variables. For the scalar case a peaked
 function can be obtained by adding another exponential term in
 (3.1) so as to write

 U (x) = - Be~ß* - Cey* (B, C, ß, y > 0) (3.5)

 with the signs of the coefficients as stipulated to the right in (3.5).
 The marginal utility corresponding to this function, and its

 derivative, will be

 u (x) =ßBe~fi*-yCev*, u' (*) = -ß2Be~fi*-y2Ceyx. (3.6)

 It is seen that we always have decreasing marginal utility.
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 Parametric Certainty Equivalence Procedures in Decision-Making 263

 This utility function will have a maximum for x determined by

 ßBe~ßx-y Ceyx = 0, (3.7)
 or

 (3.8)

 If we want to write the objective function in terms of deviations
 from the most desired value x * as given by (3.8), it is convenient,
 in addition to x* as defined by (3.8), to introduce the constant K
 defined as follows:

 i

 K=[{ßB)r(yCy]ß+y (3.9)

 Then (3.5) can be written as

 U (*) = -K [j «-*<*-*»> + J er (*-«•)] (3.10)
 From this form the marginal utility can be written as

 u (x)=K [*-*<*-**> (3.11)

 from which it is seen that we have positive marginal utility for
 x < x* and negative marginal utility for x > x*, and of course u (x) = 0
 for x - x *. For ß=y the function is evidently symmetric around
 x = x *, but for ß^y the function is not symmetric. For ß>y the
 function will be steeper to the left of x* than to the right of x*,
 and for ß<y the function will be steeper to the right of x*. By
 suitable choices of the parameters we can make U{x) fall off as
 steeply as we like to the left of x* and be as close to flat as we
 like to the right of x* (or vice versa), which may be relevant for
 cases in which we are concerned to express something like a critical
 value for a variable.

 With several variables we can write

 U (x) = -Z (Bie-Pi*i + CieVi*i). (3.12)

 In general we could have a sum of two exponentials for some
 variables and only one for others.

 4. Parametric Certainty Equivalence with Exponentional Utility
 Functions

 The basic fact which creates the possibility of a convenient
 parametric certainty equivalence in the case of exponential utility
 functions is the following: If x is a stochastic variable, normally
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 264 L. Johansen:

 distributed with expectation E (x) and variance o^2, then the ex-
 pected value of the objective function (3.1) is

 E [U (*)] = -Be~ß [£(*)-(1/2)0*r,]. (4.1)

 This result is well known and easily established by direct integra-
 tion. Formula (4.1) is very useful in many contexts in which a
 decision problem has only one target variable, for instance "income".
 Then E (x) is the expected value of income and ax2 is the variance
 of income. If we have a decision problem in which the decision a e A
 is to be determined so as to maximize E [U (*)], and the economic
 mechanism is such that the decision a will influence E (x) or ax2
 or both, then the optimal decision can be determined by maximizing
 E (x) - y 2 ß<Jx2, and the role of ß as a measure of risk aversion is
 brought out in a very clear way. This fact was noticed quite early
 and utilized in a very interesting study of the production planning
 of American farmers by R. J. Freund (1956), a study which has
 later been followed up by others; see also the discussion in L.
 Johansen (1978). The same fact has been utilized in portfolio
 analysis, see for instance J. M. Parkin et al. (1970). In a related
 context it has been shown by M. S aito (1977) that convenient
 results, though not of a certainty equivalence type, can also be ob-
 tained when the exponential utility function is combined with a
 distribution function of the gamma type. Combinations with the
 Cauchy distribution and with the Poisson distribution give rise to
 parametric certainty equivalence results equally convenient as in the
 case of the normal distribution, but the normal distribution is in
 most cases more attractive. Relevant formulas from which these

 assertions are easily seen are given for instance in R. L. Keeney
 and H. Raiffa (1976).

 The formula given by (4.1) is closely related to properties of the
 lognormal distribution. In fact, since e~ßx - {ex)~ß and ex is lognor-
 mally distributed when x is normal the expected value of e~ßx fol-
 lows from the formulas for moments of the lognormal distribution.

 In the following we are mainly interested in objective functions
 formed as sums of exponentials, either as (3.4) or as in the more
 general case (3.12) where all Bi> 0 and Q> 0 at least for some i.
 Then the reduction to maximizing something like E(x)-1/ zßox2,
 which is valid for the case of one variable no longer works. But
 we can write (4.1) as

 E [U (*)] = (4.2)
 or as

 E [U (*)] = - Be- '*<*> where B = BeW***. (4.3)
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 Parametric Certainty Equivalence Procedures in Decision-Making 265

 By this formulation we can link up objective functions like (3.4) or
 (3.12) with the general idea of parametric certainty equivalence pro-
 cedures from section 2. For the objective function (3.4) we can con-
 sider the parameter vector a as introduced in section 2 to be

 * = (Bi9...9Bn,ßi,...,ßn). (4.4)

 If now xi, . . . , Xn are normally distributed with expected values
 E (xi) and variances at2, then from (3.4) we have

 E [U {x; oc)] = -Z Bie-fii E <*«> (4.5)

 which means that we can write

 E[U(x;a)] =U (E (*);5) (4.6)

 where the modified parameter vector ã is given by

 a = (Bl, . . . , Bn> ßl , . . • ? ßn) =

 (Bie(l/2) ? Bne(V2) ßn*an*9 ßly . . . ? ßn)m (4.7)

 The function ip introduced in section 2, which transforms the original
 parameter vector a into the modified parameter vector ã now cor-
 responds to the transformation from (4.4) to (4.7). In section 2 we
 indicated that the transformation will depend on the distribution
 of the random elements. We have now limited the class of distri-
 butions to the normal distribution. In (4.7) we see that the trans-
 formation is influenced by the variances of xi, . . . , xn. If the variances
 go to zero, then we have 5 = a.

 Similar considerations hold, of course, when we have an ob-
 jective function of the type (3.12). We then have

 E [U (x)] = -r (Bie-M**) + Čte***«)) (4.8)
 where

 Bi = Biewer, Čt = Cie(1/2)yi*ai' (4.9)

 Again (4.6) is valid, now with the parameter vector a enlarged so
 as to include the yt and G, and correspondingly for á.

 These formulas now give rise to a parametric certainty equiv-
 alence procedure as indicated in general by (2.8). Suppose that the
 model relating outcomes to actions is as indicated by (2.6). Then
 from the distribution of the random elements z we must establish
 the variances of xi9 . . . , xn . (In many cases these will be known
 directly, as the random elements in the reduced form equations.)
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 266 L. Johansen:

 Then we modify the parameters of the objective function as indi-
 cated by (4.7) or (4.9). Then the problem of maximizing E [U(x;<x)]
 is the same as maximizing U ( E(x ); <x) because of (4.6). E{x) is again
 equal to F (a) corresponding to (2.6). It is then clear that maximizing
 U ( F (a) ; ã) with respect to as A gives the same result as the prob-
 lem in the original form. The mathematical form of the modified
 problem is precisely the same as the form of the original problem
 if uncertainty were absent, but the parameter vector has been
 modified. In other words, we have a parametric certainty equiva-
 lence procedure.
 The modification of the parameters involved in the procedure

 outlined above affects only Bi, . . .,Bn (and Ci, . . ., Cn when these
 are relevant), not ßi (and yi, ...,y»). This would be true
 also for the procedure emerging if xi, . . . , xn were distributed accord-
 ing to the Cauchy distribution. On the other hand, in the procedure
 which would emerge if xi9 . . . , xn were distributed according to the
 Poisson distribution the parameters ßi, . . . , ßn (and yi, . . . , yn)
 would be affected by the transformation.

 An objective function like (3.5) consisting of a positive and a
 negative exponential function, combined with an assumption about
 normality of the error terms, has been used by A. Kunst m an for
 representing asymmetric preferences in the context of a dynamic
 control problem (in an unpublished paper which came to my atten-
 tion during the preparation of this paper). Also in decision theory
 objective functions consisting of two exponentials, combined with
 the normal probability distribution, have been used, see especially
 R. L. Keeney and H. Raiff a (1976). However, Keeney and Raif fa
 use exponentials with exponents of the same sign, the purpose being
 mainly to use a functional form which permits the degree of risk
 aversion to change with the value of the argument instead of being
 constant as indicated by (3.3) for the case of one exponential func-
 tion. Neither Kunstman, nor Keeney and Raiffa, explore the
 possibility of certainty equivalence procedures which is the main
 concern of this paper.

 5. Consequences of Uncertainty

 This section gives some illustrations of the consequences of un-
 certainty when the objective function belongs to the class considered
 above. We restrict considerations to the case in which the variances of
 xi , . . . , Xn are not influenced by the decision a so that the certainty
 equivalence procedure is valid. In contrast to the case of certainty
 equivalence based on quadratic objective functions the existence of
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 Parametric Certainty Equivalence Procedures in Decision-Making 267

 uncertainty will in the present case influence the decision through
 the transformation of the parameters of the objective function.

 Consider first the objective function (3.4) for n = 2, i. e.

 U (x; a) = - Bie~ßlXl - I$2e~ßiX2 (5.1)

 with the corresponding expected value according to (4.5 - 4.7)

 U (E (*); S) = -Bie-ßiEM-B2e-ß'EM

 where Bi = Bie^ßi2<Ji2 and B2 = B2e(1/2W*a2. (5.2)

 If there were no uncertainty involved, then variation of the
 decision a within the set A would generate a feasible set in the
 xi, X2-plane, and we should choose from among these feasible points
 so as to maximize (5.1). The indifference curves of (5.1) in the
 xi9 X2-plane would then be relevant. The marginal rate of substitu-
 tion between xi and X2 according to this objective function is

 ^ * 2 = _ Ul (Xl) = _ ßlBl eß2X2~ßlXl /c " 3'
 dx 1 U2{X2) ß2ß2 * " '

 for constant level of U (x; oc).

 When there is uncertainty about xi and X2 of the form assumed,
 then variations of a will generate a feasible set for E (xi) and E (x2).
 The certainty equivalence procedure consists in choosing from this
 feasible set so as to maximize the value of (5.2). The contour curves
 of (5.2) will then be relevant. Corresponding to (5.3) we now have
 the following expression for the marginal rate of substitution

 dE = __ ft1**1 eßz E (xz) -ßi E (Xi) ( [ C ' 4' } dE(xi) = __ ß2B2 eßz ( [ ' 4' }
 - _ ft1 Bl p(V2) (/3i2 0i2-/Sa2aa2) pßz E{xz)-ßi E{xx)

 ß2ß2

 for constant level of U (E(x); Sc).

 Now compare corresponding points in the jci, ^2-plane and in
 the E (xi), E (^2) -plane for increasing uncertainty. We then see that
 the marginal rate of substitution, and in fact the whole set of con-
 tour curves, remain the same if

 ßi<Ji=ß2(J2. (5.5)

 This means that if the product of the coefficient of partial risk
 aversion and the standard deviation remains the same for both
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 268 L. Johansen:

 variables, then the marginal rate of substitution does not change.
 Furthermore, an increase in uncertainties which is such that the un-
 certainty as measured by the standard deviation increases more for
 the variable with the smaller partial risk aversion than for the
 variable with the larger risk aversion may leave the decision unaf-
 fected. Otherwise the existence and the degree of uncertainty will
 usually influence the decision. We see from (5.4) that a partial
 increase in &i2 will make the indifference curve steeper while a
 partial increase in tf22 will make the indifference curve flatter. With
 an unaltered feasible set this will in general mean that a larger a±2
 tends to induce a change in the decision in the direction of a larger
 value of E (xi) while a larger value of ff22 tends to induce a change
 in the decision in the direction of a larger value of E (#2). Thus,
 an increase in the uncertainty referring to the value of a variable
 tends to make the decision maker safe-guard against this by taking
 a decision which implies a higher value of the expected value of the
 variable in question. If the variance is the same for both variables,
 i. e. (Ti2 = (r22, then we see from (5.4) that the indifference curve
 will become steeper because of the uncertainty if /?i>/?2, i. e. if the
 partial degree of risk aversion is larger for xi than for X2. This
 will again tend to push the decision in a direction which produces
 a larger expected value of xi> and vice versa if ß2>ßi. In other
 words, if the uncertainty is the same concerning both variables,
 then one will safeguard against the uncertainty by making larger the
 expected value of the variable to which one attaches the highest
 degree of risk aversion.
 Fig. 1 illustrates how the indifference curves are twisted when

 the variances change. The indifference curves represent the function
 E {U (x; oc))=U (E (x); 5) as defined by (5.2) for Bi = B2 = 1, ßi=0.2
 and /?2=0.4. In the flattest curve we have cri2=4 and <T22 = 24 while
 the steepest curve represents (Xi2=50 and <T22 = 1. The variances for
 the intermediate curves are indicated in the figure. The indifference
 curves correspond to levels of the function which have been adjusted
 so that they all pass approximately through a common point, thus
 giving a clear impression of the rotation of the indifference curves
 with the changes in the variances of xi and X2 . Fig. 2 illustrates the
 families of indifference curves for the same values of Bi, B2, ßi
 and /?2. The flattest indifference curves represent full certainty, i. e.
 (Xi2 = o*22 = 0, while the steeper indifference curves represent uncer-
 tainty with (Ti2=40 and <T22 = 4. (The same shift of the curves could
 have been obtained by other variances, smaller or larger, if only
 ßi2 ai2- ß22 <*22 is kept constant.) If the restrictions defining the
 feasible set are such that for instance E (xi) + E (X2) has to be less
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 than or equal to some constant, then the corresponding expansion
 paths would be as indicated in the figure, with the expansion path

 Fig. 1. Indifference curves corresponding to (5.2) for different values of cri2 and (T22.
 Curve (1): (Ti2 = 4, <T22 = 24 ; Curve (2): ai2 = 4 , <T22 = 16; Curve (3): (Xi2 = 4, cX22 = 8;

 Curve (4): ffi2=4, o"a2 = 1 ; Curve (5): <xi2 = 50, <T22 = 1

 Fig. 2. Families of indifference curves and corresponding expansion paths for
 increasing values of xi + X2 and E (*1) + E (xz)

 under uncertainty below the expansion path under certainty. The
 expansion paths are linear and parallel, with a slope given ßi/ß2 = V2.
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 Next consider the case of a peaked curve formed by adding a
 negative and a positive exponential function. We consider the in-
 fluence of uncertainty on this curve for one variable, i. e. we have

 U (x; oc) = - Be-fi* - Ce r* (5.6)
 and

 U ( E (*); ã) = -Be-ßzW-Cey*™ (5.7)

 where B = Be<1/2>^8, C = CeW+.

 The effects of the uncertainty will in this case be most clearly shown
 by rewriting the form of (5.7) in accordance with the reformulation
 given by (3.8 - 3.10). This gives

 U {E (*); ã) = -K [i-e-PIBW-si + i-grlBW-n] (5.8)
 where

 1

 k=[(ßB)r{yC)fi]ß+y (5.9)
 and

 ** = ln {ßB)ß+" (yC) =** + V2 (ß~y) cr2- (5.10)

 In these formulas B and C are as given in connection with (5.7),
 and x * is the value given by (3.8).

 Formula (5.10) gives the most desired value of E (x) when there
 is uncertainty. It is seen from the expression to the right that this
 most desired value deviates from the most desired value under cer-

 tainty, x*9 if we have ß^y. The deviation is greater the greater is
 the deviation from symmetry by ß- y and the greater is uncertainty
 as measured by a2. If ß>y the preference function (5.6) is more
 strongly curved to the left than to the right, and the most desired
 value of E (x) under uncertainty is accordingly moved to the right
 by formula (5.10), so as to decrease the chance of getting a value
 of x to the left of x* as compared with the probability of getting a
 value of x to the right of x *, and vice versa for ß <y.

 The maximal value of the function now studied will be less

 than zero. From (5.8) it is seen that the maximal value will be

 -(¿+7)* (5-u>
 where K is given by (5.9). It is seen that this value will be lower
 (more below zero) the larger is the variance or2 since a larger a2
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 increases both B and C. This is a natural consequence of the con-
 cavity of the function. The increase in K with the increase in the
 variance <x2 also means that the function will be more strongly
 peaked when the uncertainty is greater. This is of no consequence
 if we have only one argument in the preference function. However,
 if we have more than one variable so that a trade-off between this

 Fig. 3. The form of (5.7) or (5.8) for different values of a2

 variable and other variables is relevant, then this stronger peaked-
 ness with larger uncertainty is of interest. It then means that we
 will be less willing to let the expected value of the variable in
 question deviate from its most desired value x*.

 Fig. 3 shows the form of the function (5.7) or (5.8) for different
 levels of uncertainty. The values of the parameters are B = 15,
 C = l, /? =0.3 and y = 0.5. The upper curve represents the case of no
 uncertainty, i. e. a2 - 0. In this case we have x*=2.75. The next
 curve has a2 =9, then cr2 = l 6, and finally a2 =20.25 (a =4.5). From
 its value 2.75 under no uncertainty the most desired value of E (x),
 x*, shifts to 1.85 for the second curve, 1.15 for the third curve, and
 0.72 for the last curve in the figure. The direction of the shift is
 determined by the fact that in this case we have ß<y so that the
 function falls off more steeply to the right than to the left. The
 figure also shows how the maximal value declines with increasing
 uncertainty, and suggests the more sharply peaked form of the curve
 for larger uncertainty.
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 The effects elucidated above would be relevant for decision-

 making under uncertainty in general, and more specifically for in-
 stance for the theory of consumer choice under uncertainty along
 the lines suggested in Y. A mi hud (1977).

 6. Some Practical Suggestions

 Preference functions involving exponentials should be rather con-
 venient from a practical point of view. There are two practical
 aspects involved: The question of how to establish a preference
 function, and the methods of solving the optimization problem to
 which the preference function is applied.

 Most of the interview methods which have been suggested for
 other forms of preference functions, especially quadratic functions,
 could be taken over and used in connection with exponential pre-
 ference functions with minor modifications. [For a survey and dis-
 cussion of some such methods, see for instance L. Johansen (1974).]
 Careful discussion and practical examples of how to establish pre-
 ference functions for use in decisions under uncertainty, including
 preference functions of the exponential type, are given in R. L.
 Keeney and H. Raiffa (1976).

 Of special interest perhaps is the asymmetric version of the
 function given by (3.5) for one variable and used as components in
 preference functions for several variables as in (3.12). This form
 offers some obvious possibilities of simple questions which help to
 determine the parameters. If the most desired value x* is within
 the range of reasonable imagination, then this is an obvious object
 for questions. If x* has been located, then it gives the following
 constraint on the values of the parameters of (3.5):

 'nß-'ny + 'n(B/C)
 ß+y

 Another simple type of question would refer to the possibility
 of locating indifferent values of the variable, on each side of x*.
 One might for instance choose a value x' < x *, at a suitable distance
 from x*, and try to locate a value x" >x* which is indifferent
 with This would give the following type of constraint on the
 parameters:

 er*"-^*' = (B/C) (¿-f -*-*»"). (6.2)

 Conditions (6.1) and (6.2) are not sufficient to determine the
 parameters. They give only two equations referring to three variables,
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 ß , y, and B/C. [Eq. (6.2) can be rewritten in terms of deviations
 from x* corresponding to the formulation (3.10). Then we get an
 equation involving only ß and y. But B/C cannot be eliminated
 from (6.1) by any rearrangement.]

 For a utility function in one variable it is natural that we cannot
 come further on the basis of deterministic questions, since under
 certainty any monotonically increasing function would represent
 the same preferences and indifferences. For a further determination
 questions involving "lotteries" would be necessary. In R. L. Keeney
 and H. Raiffa (1976) methods of assessing a preference function
 consisting of two negative exponentials are referred to (see especially
 section 4.10.3). The type of question used is to locate certainty
 equivalents of simple 50-50 lotteries. One should only observe that
 there will in the present case be two certainty equivalents of each
 such lottery, one inside the interval between the two possible out-
 comes of the lottery, and one outside of it.

 By combining information from such questions with information
 obtained by (6.1) and (6.2) one could determine the values of ß , y,
 and B/C. However, the absolute values of B and C separately could
 not be determined by questions involving only one variable; for
 scaling of the various components of the multivariable preference
 function in proportion to each other questions involving the trade-
 offs between variables wrould be necessary.

 The computational problem for optimization with the type of
 objective function considered in this paper should not be too diffi-
 cult. The function is smooth and concave, and if the feasible region
 is not too awkward various methods of non-linear programming
 will be convenient and efficient. In any case, if one is able to solve
 the corresponding problem with a quadratic preference function,
 then one will also be able to solve the problem with the present
 preference functions, at least approximately. The simplest procedure
 would be as follows:

 1. Establish the preference function in terms of exponential
 components, either as (3.4) or as (3.12).

 2. Specify the degree of uncertainty referring to each variable xu
 as represented by the variance c r¿2. (For the certainty equiva-
 lence procedure discussed here it is necessary that this be
 independent of the decision a.)

 3. Modify the preference function so as to express it in terms
 of expected values E ( Xi ), with parameter values modified
 according to (4.7) or (4.9).

 18 Zeitschr. f. Nationalökonomie, 40. Bd., Heřt 3-4
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 4. Work out a quadratic approximation to the modified pref-
 erence function in terms of E (xi), . . ., E (xn) established
 under step 3.

 5. Solve the optimization problem with the quadratic objective
 function established under step 4.

 Computationally everything which precedes step 5 here is very
 simple, so whenever we can solve a problem involving a quadratic
 objective function, we can follow the above procedure. This does
 not give the exact solution of the original problem, but it does
 reflect the consequences of uncertainty in an approximate manner.
 By first specifying the preference function in the way indicated
 here, and then introducing uncertainty and modifying the objective
 function accordingly, it will reflect such shifts as a consequence of
 uncertainty as were illustrated in the previous figures. For instance,
 referring to fig. 3 we would, under uncertainty, use a quadratic
 approximation to a lower curve rather than to the upper curve
 which corresponds to no uncertainty. Even if this quadratic approx-
 imation is symmetric once it has been established, it will reflect the
 shift of the maximum point of the curve and the sharper curvature
 as a consequence of uncertainty. These effects will accordingly also
 be transferred to the outcome of the optimization.

 The point here is that we introduce uncertainty before we carry
 out the quadratic approximation; if we had first introduced the
 quadratic approximation, then we would be back to the simple
 certainty equivalence case in which the uncertainty would have no
 consequences for the decision.

 Now the approximation obtained by the procedure outlined
 above could clearly be improved. There is a question about the
 way in which one approximates the original preference function by
 a quadratic function. For the function U(x) as written in (3.1) we
 would have the following simple approximation at any point x°:

 U (x)« -Be'fi*0 [1-ß (x-x°)+1/2ß2 t x-x °)2]. (6.3)

 For the composite function (3.5) an approximation like (6.3)
 could be used for each term. When the approximation is taken at
 the most desired value x*, then a particularly simple expression
 emerges form the form (3.10). We then have

 U(*)» -ic(j + y) -VzK(ß+y)(x-x*)K (6.4)
 The approximations (6.3, 6.4) have been expressed in terms of x.

 As used in the five-step procedure outlined above, one would estab-
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 lish the approximation for the functions considered as functions of
 E(x ), and the parameters used would be the modified values as
 given by (4.7), (4.9), (5.9) and (5.10).

 In the procedure suggested above one would first have to approx-
 imate the original preference function at some more or less arbitrary
 point, perhaps having a preliminary guess about the range in which
 one will find the optimal solution. For variables with a saturation
 value one might perhaps first use the approximation as given by
 (6.4). Having solved the optimization problem one could go back
 and work out a new approximation to the original preference func-
 tion at the new point found, and then repeat the procedure. For
 practical purposes it would hardly be necessary to go through many
 such rounds of iteration.

 An objective function of the sum-of-exponentials type has been
 used as a local criterion in inter-active approaches to socalled
 "multi-attribute decision-making" in management science. In this
 context both of the practical problems touched upon above, i. e.
 the problem of establishing the function numerically and of solving
 the computational problem of optimization, have been dealt with;
 see especially K. R. Oppenheimer (1978).

 Appendix:
 Some Observations on Risk Aversion

 We have observed that the coefficient of absolute risk aversion

 corresponding to the preference function (3.1) is simply /?, see (3.3).
 When such functions are combined into a sum of exponentials such
 as (3.4) the parameters ßt retain their relevance as measures of risk
 aversion; in fact, they are for instance the diagonal elements of the
 "absolute risk aversion matrix" according to the matrix measure of
 multivariate local risk aversion proposed by G. T. Duncan (1977).

 When we introduce the function (3.5), which is not monotonie
 but involves a saturation level for the variable, the measure of risk
 aversion is more problematic. For the range where the function is
 increasing, we have the following measure of absolute risk aversion:

 u'jx) _ ß*Be-ß*+y*Cer x
 u(x) _ ~ ßBe~ß*-yCer x 'x<X). 'n.i)

 On the basis of the formulation (3.10, 3.11) this can also be writ-
 ten as

 u'(x) >
 U (X) e-ß(x-x*)_ey(x-x*) h

 18*
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 If we consider the range where x > x *, then the objective function
 is decreasing. In this case it is usual to calculate the measure of
 absolute risk aversion simply by omitting the negative sign of the
 definition of the risk aversion coefficient. Corresponding to the
 formulas above we then have

 u'(x) _ ß2 Be~ßx+y2 Cevx
 u(x) _ ~ yCeV*-ßBe~ß * W>X),

 u'(x) ^ße-ß<*-**)+yer<*~**>
 U(x) ey(x-x*)_e-ß{x-x*)

 For x = x* the coefficient of absolute risk aversion does not

 exist, since at this point u(x)= 0. This difficulty concerning the
 definition of risk aversion for a non-monotonic utility function has
 been noted by R. L. Keeney and H. Ra iff a (1976). They make
 the following comment (p. 188): "Perhaps an alternative definition
 of a local risk aversion exists for this case, but this seems to be
 academic. For operational problems, a reasonable approach would
 be to divide the range of the attribute into intervals so that pref-
 erences are monotonie in each interval and then treat each interval

 separately using the theory relevant to the respective cases."
 In view of the properties of the function discussed here, it seems

 that the difficulties refer not only to the non-existence of the coef-
 ficient of risk aversion at the saturation point. The variation of the
 coefficient for the ranges where it exists is also of interest. This
 variation can most clearly be seen from the forms (A.2) and (A.4)
 above. From (A.2) it is clear that the coefficient of absolute risk
 aversion is close to ß when the value of x is much smaller than x*.
 When x increases towards x*, the numerator will remain positive
 and finite, while the denominator, which is also positive, tends to
 zero as x tends to x *. Accordingly the coefficient of risk aversion
 increases and tends to infinity as x approaches x*. From (A.4) we
 see that the behaviour in the range x>x* is similar. For x much
 larger than x* the coefficient is close to y in value, while it again
 increases and tends to infinity when x approaches x* from above.
 Since the utility function is nice and smooth throughout, it seems
 somewhat disturbing or misleading that the coefficient of risk aver-
 sion shows this dramatic behaviour not only at the point x = x *,
 but also in the ranges on both sides of x*. The decision-maker would
 hardly be so dramatically more averse to a gamble or a risk in the
 vicinity of x* than at values of x somewhat more distant from x*.
 The reason for the difficulty lies in the type of experiment used to
 define the risk aversion coefficient. This experiment is defined in
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 terms of a lottery involving different possible outcomes specified
 in terms of x, and a compensation which the decision-maker re-
 quires for being willing to undertake the risk as compared with
 having the mathematical expectation of x in the lottery as a sure
 outcome. The point now is that this compensation is also given in
 terms of x. However, at x * a marginal addition to or deduction
 from x has no value, and in the vicinity of x* the marginal value
 of x is very small. Accordingly, in the experiment defining the coef-
 ficient of risk aversion we offer the decision-maker a compensation
 in terms of a good which is of no or only very small marginal value
 to him. There is then no wonder that he requires a very large com-
 pensation in terms of this good in proportion to the size of the risk,
 but this is due not to his aversion towards risk, but to the form of
 the compensation we offer.

 In uncertain prospects involving only money, which is assumed
 to have a positive marginal utility throughout the relevant range,
 this difficulty will not appear in this strong form. Still it seems to be
 useful to be aware of the fact that the behaviour of the risk aversion

 coefficient does not reflect how "unhappy" the decision-maker is
 about a risk; if for instance the risk aversion coefficient increase,
 then this could be said to reflect the fact that the decision-maker

 is more well-off so that he requires a larger sum as a sure com-
 pensation although he is in fact not very averse to the risk.

 These considerations suggest that the variation of the risk aver-
 sion coefficient with the value of the argument is due to two dif-
 ferent factors: In the first place, the aversion to risk concerning the
 value of a variable varies with the initial value of the variable

 around which the possible outcomes of the risk situation - the
 "lottery" - are located. In the second place, the risk aversion coef-
 ficient varies with the marginal value which the decision-maker
 attaches to the good in terms of which the compensation for risk is
 offered. If we want to separate these effects and have a purer
 measure of risk aversion, it might for some purposes be useful to
 stipulate the compensation for risk-taking in terms of another good
 than the one which the lottery refers to. If the lottery refers to
 money, then one might for instance ask how much time or effort
 a decision-maker would be willing to expend in order to avoid a
 specific risk concerning money, for different levels of initial money
 holdings. This way of looking at it may, however, be more relevant
 when we have preference functions involving several variables, and
 when some of them may enter the overall preference function
 through components involving a saturation level. Consider a variable
 xt which enters the overall utility function through an additive
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 component Ui (xt)9 and suppose there is a risk attached to the value
 of Xi. We could then ask what compensation the decision-maker
 requires in terms of some other good xj for undertaking the risk
 referring to xu and then see how this compensation varies with the
 initial value of xt while the value of xj to which the compensation
 is added is kept constant. Then apart from a scale factor the com-
 pensation required, and accordingly the measure of risk aversion,
 will vary as the absolute value of the second order derivative of
 the utility function Ui (xi). For a component with a utility function
 given by (3.5) or equivalently (3.10), this value is

 I ut (xt) I =ßi2Bie-fiixi+yi2Cteyixi

 =Ki [ßie-Mxi-xi*) +^er¿ (**-*<*)]. (A.5)

 This shows no dramatic variations around the value xí = xí*. For
 this special value of Xi we simply have 'ui (xí)| =Ki [ßi+yt'- This,
 however, is not the minimum value of 'ui (x*)|, unless yi=ßu The
 minimum value of | u' (x*)| occurs for

 a. , ~ In ßt - In y i /A
 Xi=Xi a. +1 , ~

 i. e. to the left or to the right of x = x* according as ßi<yt or
 ßi>yu Furthermore, it is seen that the value of 'u% (xi)| increases
 strongly both when Xi becomes very small and when xi becomes
 very large, indicating that risk aversion is strong both for very small
 and very large values of xu This all gives a much more reasonable
 picture than saying that risk aversion goes to infinity as xt approaches
 Xi* from either side, and is infinite at Xj = Xi*.
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