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Abstract:

  With existing technology, it is already possible for personal agents to schedule
meetings for their users, to write the small print of an agreement, and for agents to
search the Internet for the cheapest price. But serious negotiation cranks the difficulty
of the problem up several notches. In this paper, we review what game theory has to
offer in the light of experience gained in programming automated agents within the
ADEPT (Advance Decision Environment for Process Tasks) project, which is
currently being used by British Telecom for some purposes.

(1)  Introduction

  An artificial agent is a program that acts independently in furtherance of its user’s
interests. Some simple search agents can already be found on the internet (like
BargainFinder and ShopBot) and others are being developed (by companies such as
AgentSoft, Microsoft and IBM). The usage of agent technology is widely expected to
increase and follow a similar path to that of graphical user interfaces (GUI) - first it
will be an optional extra, but over time, products without intelligent agents will no
longer be viable. The type and number of agents will increase as their intelligence and
autonomy develop. However, progress will depend on the ability of agents to
communicate with each other, share limited resources and negotiate agreements.
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Bearing in mind that today’s co-ordination languages, such as Stanford’s KQML, are
rich enough to enable automated agents to interact meaningfully, this becomes
particularly important.
  Machines that “make deals” are familiar to computer scientists, but in the future they
will no longer be a part of the same system, perhaps not even designed by the same
people. Interacting agents will try to satisfy only their user’s goals and will no longer
have a notion of global utility. Agents will, therefore, find themselves in situations
where they have an incentive to lie, or act tough, or exploit other strategic avenues not
usually associated with machines.
  Although the issues described above are relatively new to the AI community, they
closely resemble the models studied by economists and game theorists. The sub-field of
microeconomics known as game theory is widely acknowledged to provide the best
available set of tools for the design of multi-agent architectures (for a good review of
the topic see Rosenschein and Zlotkin (1994)). However, because existing theory is
sometimes misunderstood or needs further development for computer applications,
researchers have been reluctant to use game theory and those that do, tend to miss out
on the more recent advances, which we believe are likely to prove most useful in such
settings. Following Varian (1995) and others, we seek to bridge the gap between the
strategic approach of microeconomics and distributed AI by describing some of the
problems and opportunities involved in applying game theory and mechanism design to
automated agents. Our ideas are based on experience obtained in working with
researchers from the Distributed AI unit at QMW on the negotiation modules of their
much publicized, ADEPT system. Our goal is to give an overview of some of the
challenges raised by such implementations, without getting into project-specific details.

1.1 The ADEPT Project

  In the ADEPT (Advance Decision Environment for Process Tasks) project
negotiating agents were developed for business process management applications. The
first versions were jointly developed by the Distributed AI unit at QMW college, and
British Telecom. BT plans to use ADEPT in several of its processes, like the “Provide
Customer Quote Business Process”: In this process, before designing a network to
provide some services to a customer, a quotation is provided. Up to six departments
are involved in the process where each of those departments is being replaced by an
agent. Agents negotiate prices, a deadline for the completion of services (with penalties
if these deadlines are violated), and the quality of the network services.
  Unlike most existing internet search agents, the ADEPT agents are computationally
strong, and are able to make many different kinds of decisions. Each agent has a huge
memory, a strong CPU at its disposal and access to all relevant (private) information.
Each agent is built from several modules, each with its own responsibilities and tasks.
The Situation Assessment Module (SAM) makes the decision to start negotiating (or
to renegotiate), while the Interaction Management Module (IMM) is in charge of the
actual process of negotiation. The IMM is the “game theorist” of the agent, and while
higher level modules are able to interfere in extreme circumstances (such as an
unexpected change in priorities caused by new information), it alone has control over
the decisions being made at any stage of the negotiation. The IMM is divided into a
Mega-level Domain Independent Reasoner (DIR) where strategies are chosen (the
words “tactic” often substitutes for what is called a “strategy” in game theory), and a



specific DIR process which is active during negotiation. See Jennings et al. (1996), and
Sierra , Faratin and Jennings (1997) for more details.
  As far as we know, the ADEPT agents are the “strongest” agents amongst existing
multi-agent applications. While the range of bargaining situations they face is very
complex from the point of view of economic modeling, their structure lends itself to
implementations of game-theoretic ideas and models.

(2) Basic differences

  In economic theory distinction is made between models in which we analyse the
optimal behavior of individuals or firms given the underlying mechanism (or rules of
the game), and models in which we study optimal mechanism design, given that agents
behave optimally. In the current early stages of multi-agent design these two
approaches are being developed simultaneously. One cannot compare two different
protocols (mechanisms) without specifying the behaviour of the interacting agents.
Similarly, one cannot design optimising agents without some information about the
protocols governing their interaction. However, we think it clarifies the underlying
philosophy to maintain a clear distinction between the design of protocols and the
design of the agents who operate within the rules specified by the protocol.
  In current systems like ADEPT, bargaining  automated agents are programmed with
rules-of-thumb distilled from intuitions about good behavioral practice in human
negotiations. The danger is that the programmer may not be fully aware of the
circumstances to which human behavioral practice is adapted, and hence use behavioral
rules that are capable of being badly exploited by new agents that have been
programmed to take advantage of the weaknesses of the agents currently in plan.
When protocols have been deliberately constructed to take advantages are available
within the artificial environment of a computing system, the risks of creating the
opportunity for such destabilising invasions by new agents are particularly large.
  Economists believe that their approach provides an escape route from these
difficulties, In principle, an agent should be designed to optimize on behalf of the
decision maker whose role it usurps. The revelation principle of mechanism design
applies also to agent design, and so the designer of a properly engineered agent can tell
his client that his programming takes care of all the strategic problems involved in
bargaining optimally. This leaves the client to report truthfully on his preferences and
his information. This may not always be easy for the client to understand. For example,
evidence from the recent Guttman and Maes electronic-agent marketplace experiment
at MIT shows that users consistently lied to agents that they had designed for
themselves, because they thought they could get more by giving the impression of
being tougher than they are. Similar problems have occurred with ADEPT. With a
properly designed agent, it would always be a mistake to tell such lies. If it is optimal
to pretend to be tough, the agent will do all the pretending necessary.
  The need to get true data in an appropriate form from the client, poses both
psychological and theoretical problems in creating a suitable interface. In particular, the
client may not have thought about what his fundamental preferences are in sufficient
detail and must therefore be prompted with a suitable set of questions. Computer
scientists who want to employ the methodology advanced here must also learn enough
economics to distinguish between what economists call direct and indirect utilities. I
may prefer one action to another as a means to an end. My utility over the actions is
therefore indirect, because it is derived from looking at my preferences over the final



ends. What an agent needs from a client is coherent data about his direct utility over
final ends. This will remain fixed as his information changes. Where a client is unable to
supply the data in an adequate form, the agent will need to make an attempt to
construct direct utility functions from whatever data is available.
  In principle, once each agent has the necessary data from his client, there is no need
for any simulation of the bargaining process. Game theory should provide a prediction
of the outcome that would follow the use of optimal strategies that can be employed
immediately. For example, Rosenschein and Zlotkin (1994) are right to draw attention
to the fact that the Nash bargaining solution will sometimes provide a suitable
prediction - although they are over-optimistic about the range of environments in
which it can be used in an unmodified form.
  The prediction that game theorists make must constitute an equilibrium of the chosen
protocol, otherwise new exploitative agents will be able to invade and disrupt the
system. However, cognoscenti will be aware that the problem of equilibrium selection
arises in a particularly aggravated form when studying bargaining with incomplete
information. Fortunately, operating within a computer context torpedoes most of the
difficulties that arise when trying to model players as people:

(1) For some protocols, the system itself can choose an equilibrium in an
unproblematic manner.

(2) When the choice of an equilibrium selection norm would itself give rise to
bargaining problems among the players, the equilibrium refinement theories of game
theory can be given new life, because we have a specific model of a player in a
computer context. We therefore have a non controversial means of interpreting the
counterfactuals involved when observing that optimizing players stay on the
equilibrium path in a game because of what would happen if they were to deviate.

(3) Where analytic approaches fail, algorithmic methods for computing
fixpoints corresponding to equilibria can be realistically employed.

  We therefore have hopes that introducing game-theoretic methods into automated
negotiations, will not only provide sound design principles for computer scientists but
will also create an area of applications for game theory that eliminates many of the
problems that have hindered advances in some directions.

(3) Classification of environments based on extensive form

  One of the main reasons that game theory may be useful in the artificial agent context
is that it provides us with a classification of interacting situations based on their
extensive forms. It provides us with the tools to say that two, seemingly different,
situations are strategically equivalent because they can be translated into the same
game form. In open architectures, like ADEPT, the interacting agent can find itself in
many different bargaining environments. A service provider, for example, could find
itself the sole provider in some settings, one of two in others, or one of six. All are
very different strategic settings, despite the apparent similarities. It is unlikely that the
same behavioral algorithm for an agent will prove equally useful in all of these settings.
Game theorists are sensitive to such differences (in a manner unusual in computer
science), and it is an interesting challenge to see if we could teach our automated
agents to become similarly sensitive.



  The existence of multiple-game situations raises some interesting questions for the
design of automated agents. As long as information gathering is not observable, we
would like our agent to know as much as possible about the game it is about to play
(see Hurkens & Vulkan, 1996). But how do we do that? How can we possibly
envisage the situations the agent might face? In the real-world people use rules of
thumb to classify situations, which do well on the average, and in the absence of better
information we would be wise to equip our agents with such rules. In other words,
agents will have to decide what to pay attention to. The challenge we are facing is to
design agents who are more than just a dictionary of optimal strategies for a
stereotyped set of game-types, but instead a “thinking machine” in the genuine AI
sense of these words - one that learns what it needs to pay attention to in its
environment. Our impression is that economic theory and game theory might benefit
hugely from attempting such an exercise1.
  It may help to appreciate a game theorist’s sensitivity to an agent’s environment, to
observe that the fact that agents may gather information about their environment is
also a fact about the environment. If agents’ information gathering is observable, it has
strategic value. More specifically, suppose that some of the features of the game to be
played are determined by a random move and that agents are able to obtain (partial)
information about the future state of the world (possibly with a cost). Then, if
information gathering is observable an agent may use it to signal its choice of strategy
in the actual game to be played. For example, an agent might choose not to be
informed at all, because it will imply a continuation equilibrium where he is better off
that in any (or some) of the states where it is informed. A designer of agents must
therefore consider the strategic effects of the public actions of their agents. For
example, if agents can credibly signal that they are not going to gather information,
then this may be used to deter potential competition (see Hurkens and Vulkan (1996)
and Vulkan (1996) for more details, or see Matthews (1984) for a similar study within
the context of auctions).
  In the version of ADEPT which is being used by BT sensitivity to the environment is
largely confined to the number of agents who simultaneously offer or request the same
service. However, the distinction is service-specific, and agents are able to determine
with certainty the number of other players before negotiation begins, although it is
becoming clear that new versions of the system will need to account for situations in
which the agent cannot tell, without further inquiry, the kind of game he is playing.
However, even the case in which the number of interacting agents is given raises
strategic issues that are largely neglected by ADEPT.

(4) One-to-One Bargaining

  The following two-person bargaining model is based on the ADEPT format. Players 1
and 2 bargain over which possible agreement in a set A to implement. We model an
agreement as a pair a=(a1, a2) of real numbers. Each player has a reservation value
r(i) so that only agreements satisfying a ≥ r are viable (if player 2 is the only potential
customer for an object that player 1 has to sell, then r(1) and r(2) are the players’
respective valuations of the object to themselves. If player 2 pays player 1 an amount
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m for the object, then a=(r(2)-m, m-r(1)). Each player is also assumed to care about
the time at which agreement is reached. The cost to players of a delay of length t in
reaching an agreement is taken to be c(i)⋅t. In ADEPT, at least one player is assumed
to have a finite deadline d(i). Agent i’s utility for an agreement a at time t is then given
by a(i)- c(i)⋅t when t ≤ d(i). If a player breaks off the negotiation to take up his best
outside option, or else a deadline is breached, then each receives a breakdown payoff
b(i)-c(i)⋅t (if player 2 is only able to buy a suitable object from player 1, then b(2)=0
and b(1)=r(1)).
  In the general case, a player’s parameters will only be known to himself. The other
player’s beliefs bout the parameters are calculated from a prior probability distribution.
A major task for an agent programmed to investigate his environment will be to learn
what he can about such distributions from observing the play of his opponents and of
agents involved in other publicly observable games. He must also seek to predict what
they know about the distribution, and what they know about what he knows - and so
on. However, we short-circuit such considerations here by assuming that the relevant
distribution is common knowledge (it can be deduced from a publicly observable
event).
  The problem will often be simplified because it is commonly known that some of the
parameters take extreme values. For example, it may be commonly known that
c(1)=c(2)=c, where c is vanishingly small, or that r(1)=0 because the object is a
service and hence worthless to the seller. However, neither r(2) nor d(2) are likely to
be commonly known. If they were, player 1 would be in a perfect position, because he
could wait until player 2’s deadline and then make a take-it-or-leave-it demand of r(2)-
ε. If b(2)=0, player 2 would then be left with a choice between ε > 0 and zero. If she is
rational, she would accept the former.
  In the model, negotiation follow a process of offer and counteroffer first successfully
analysed in the infinite horizon case by Rubinstein (1982). After an offer is made, the
current responder has three choices: (a) she can accept (b) she can refuse and opt out
(c) she cab refuse but continue to negotiate. In the last case, an interval of length ∆ > 0
elapses before she can make her counteroffer. In principle, this process can continue
forever.
  The apparent problem created by a bargaining process with a potentially infinite
horizon is illusory, since it can be implemented by introducing a random stopping time
at the expense of complicating the model only slightly. It is dangerous to terminate the
process at a fixed stopping time that the agents know or can learn as in the current
ADEPT system. The reason is that the effect is the same as introducing an artificial
commonly known deadline that may be exploited as described above.
  Perhaps the most interesting case in when ∆ is made arbitrarily small. If players are
allowed to delay making a counteroffer, they can use this opportunity for strategic
signalling of their strength (as in Admati and Perry (1987)). As in most models of
bargaining with incomplete information (e.g. Rubinstein (1985a and 1985b), Gul and
Sonnenschein (1988)), the set of (sequential) equilibria in the general case is large and
complex. This is nearly always true in models of two-sided uncertainty (Chatterjee &
Samuleson (1987, 1988)). In particular there are multiple equilibria in some of which
agreements may be delayed for many periods (this remains true even if we use the
refined solution concept of perfect sequential equilibrium, as studied by Grossman &
Perry (1986)). Strategic delay was first study by Admati & Perry (1987). Equilibria
involving strategic delay are “type revealing”, i.e. agents delay until the opponent



cracks and reveals his type. Once this has been established agreement can be reached
immediately. Of course, the number of rounds before agreement depend on the number
of types. Admati & Perry only consider one-sided uncertainty. In a model of two-sided
uncertainty with strategic delays, it is possible to obtain equilibria where the true types
of players are never revealed. This happens because, under certain assumptions, if a
player knows that its opponent is lying about his type, its best response is to do the
same.
   In general, we have “more” uncertainty than in any of the models successfully
analysed by orthodox game theory methods. But we also have major advantages
facilitating a successful analysis that are not available outside a computer context.
First, we have control over the protocol, which can be altered where necessary to
remove difficulties. Introducing some randomization into the model can often simplify
matters considerably. Second, we have a specific model of an agent that allows us to
deal with the equilibrium selection problem by legitimizing the refinement criteria that
are so difficult to justify when applied to human players (section 2).

(5) One-to-Many negotiations

  Within ADEPT, the structure of most concern involves a single requirer of a specific
and limited service, who has to decide which of many agents who offer the service will
provide it. Binmore’s (1985) adaptation of Rubisntein’s bargaining model to the multi-
person case shows that the problem reduces to an auction in the perfect information
case, in which the service is provided by the agent willing to do it most cheaply. When
information complexities are present, traditional bargaining may still retail a role. For
example, an automated agent in an open architecture might not be certain about the
number of providers or the quality of the service of the service they advertise. He
might therefore bargain in parallel to the use of an auction.
  One to many negotiations may also be embodied in a much wider market context
involving search. When the products being traded are individualistic, as in the housing
market, such a scenario is inevitable. One must then envisage negotiations taking place
while the negotiators continue to search. If one finds a new partner, the potential for
auctioning arises. This idea of bargaining and search with incomplete information is
quite well developed (Chatterhee and Lee (1996)).
  However, we follow the standard view among economists that an auction is an
effective way of resolving the “one to many” bargaining problem. The case for
implementing auctions in a world of automated agents is even stronger than for people.
This is true for two main reasons: First, fast agreements with less communication are
preferred not only directly (via the agents’ utility functions), but also indirectly:
Distributed systems, like ADEPT or the Internet, can support only a limited amount of
communication at any given time. Intra-agent communication can, therefore, be seen as
carrying a negative externality. Secondly, some of the better auction structures require
that players be able to compute complex strategies. With automated agents, this is not
a problem, since calculation is cheap.



(6) Additional implementation problems

  The implementation itself may create problems which are specific to the trading
mechanism and distributed system in question. For example, in the original version of a
Dutch auction announcements are made publicly. On a distributed system where
information might reach different users with some delay, this becomes a problem (this
problem was first reported in (Rodríguez et al. 1997) in their implementation of the
Spanish fish market. If the question of timing and common knowledge of bids is not
resolved, it will become possible to benefit from arbitrage. Timing is only one example
for the problem faced by those who implement trading mechanism on distributed
systems. Problems can also arise regarding issues such as security, identity and others.
In fact, the scale and the exact nature will only become known during the
implementation process. Moreover, it is often not possible (or it is cost-ineffective), to
change the technology so that it would “fit the model”. Instead, an applied theorist
could investigate the implications on the model of whatever problems which may arise.
If incentives exist for individuals to behave in such a way that the mechanism could
become inefficient, it is mostly possible to change some details of the mechanism so
that such behavior is no longer desirable for the participants.

(7) Final Remarks

 Agent technology is likely to have a huge impact on the future of the Internet and
electronic commerce. The growing numbers of applications where automated agents
interact amongst themselves without user intervention provides us with a new field
where game theory and economic theory can be applied. Economic agents have been
criticized in the past as being more like computer programs than real human beings, so
it is interesting to see just how useful our models could be in the design of agents and
protocols. Our initial experience shows that existing models still need to be
considerably modified to become useful in these new settings. In this paper we tried to
underline the theoretical difficulties and opportunities that arise from these
implementations, the kind of changes to existing models that are required and how we
believe progress can be made.
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