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The size of cities is known to play a fundamental role in social and economic

life. Yet, its relation to the structure of the underlying network of human

interactions has not been investigated empirically in detail. In this paper,

we map society-wide communication networks to the urban areas of two

European countries. We show that both the total number of contacts and

the total communication activity grow superlinearly with city population

size, according to well-defined scaling relations and resulting from a multi-

plicative increase that affects most citizens. Perhaps surprisingly, however,

the probability that an individual’s contacts are also connected with each

other remains largely unaffected. These empirical results predict a systematic

and scale-invariant acceleration of interaction-based spreading phenomena

as cities get bigger, which is numerically confirmed by applying epidemio-

logical models to the studied networks. Our findings should provide a

microscopic basis towards understanding the superlinear increase of differ-

ent socioeconomic quantities with city size, that applies to almost all urban

systems and includes, for instance, the creation of new inventions or the

prevalence of certain contagious diseases.
1. Introduction
The statistical relationship between the size of cities and the structure of the net-

work of human interactions at both the individual and population level has

so far not been studied empirically in detail. Early-twentieth-century writings

suggested that the social life of individuals in larger cities is more fragmented

and impersonal than in smaller ones, potentially leading to negative effects such

as social disintegration, crime and the development of a numberof adverse psycho-

logical conditions [1,2]. Although some echoes of this early literature persist today,

research since the 1970s has dispelled many of these assumptions by mapping

social relations across different places [3,4], yet without providing a comprehensive

statistical picture of urban social networks. At the population level, quantitative

evidence from many empirical studies points to a systematic acceleration of

social and economic life with city size [5,6]. These gains apply to a wide variety

of socioeconomic quantities, including economic output, wages, patents, violent

crime and the prevalence of certain contagious diseases [7–10]. The average

increase in these urban quantities, Y, in relation to the city population size, N, is

well described by superlinear scale-invariant laws of the form Y/ Nb, with a

common exponent b � 1.15 . 1 [11,12].

Recent theoretical work suggests that the origin of this superlinear scaling

pattern stems directly from the network of human interactions [12–14]—in

particular from a similar, scale-invariant increase in social connectivity per
capita with city size [12]. This is motivated by the fact that human interactions

underlie many diverse social phenomena such as the generation of wealth,

innovation, crime or the spread of diseases [15–18]. Such conjectures have
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not yet been tested empirically, mainly because the measure-

ment of human interaction networks across cities of varying

sizes has proved to be difficult to carry out. Traditional

methods for capturing social networks—for example through

surveys—are time-consuming, necessarily limited in scope,

and subject to potential sampling biases [19]. However, the

recent availability of many new large-scale datasets, such as

those automatically collected from mobile phone networks

[20], opens up unprecedented possibilities for the systematic

study of urban social dynamics and organization.

In this paper, we explore the relation between city size

and the structure of human interaction networks by analys-

ing nationwide communication records in Portugal and

the UK. The Portugal dataset contains millions of mobile

phone call records collected during 15 months, resulting in

an interaction network of 1.6 � 106 nodes and 6.8 � 106

links (reciprocated social ties). In accordance with previous

studies on mobile phone networks [21–24], we assume that

these nodes represent individuals (subscriptions that indi-

cate business usage are not considered, see Material and

methods). Mobile phone communication data are not necess-

arily a direct representation of the underlying social network.

For instance, two individuals may maintain a strong tie

through face-to-face interactions or other means of com-

munication, without relying on regular phone calls [23].

Nevertheless, despite such a potential bias, a recent compari-

son with a questionnaire-based survey has shown that mobile

phone communication data are, in general, a reliable proxy

for the strength of individual-based social interactions [25].

Moreover, even if two subscribers maintain a close relation-

ship and usually communicate via other means, it seems

reasonable to assume that both individuals have called each

other at least once during the relatively long observation

period of 15 months, thus reducing the chance of missing

such relationships in our network [21,26,27]. The UK dataset

covers most national landline calls during one month, and

the inferred network has 24 � 106 nodes (landline phones)

and 119 � 106 links, including reciprocated ties to mobile

phones (see Material and methods). We do not consider

these nodes as individuals, because we assume that landline

phones support the sharing of a single device by several

family members or business colleagues [21,28]. Nevertheless,

conclusions for the total (i.e. comprising the entire population

of a city) social connectivity can be drawn.

With respect to Portugal’s mobile phone data, we first

demonstrate, that this individual-based interaction network

densifies with city size, as the total number of contacts and

the total communication activity (call volume and number

of calls) grow superlinearly in the number of urban dwellers,

in agreement with theoretical predictions and resulting from

a continuous shift in the individual-based distributions.

Second, we show that the probability that an individual’s

contacts are also connected with each other (local cluster-

ing of links) remains largely constant, which indicates that

individuals tend to form tight-knit communities in both

small towns and large cities. Third, we show that the

empirically observed network densification under constant

clustering substantially facilitates interaction-based spreading

processes as cities get bigger, supporting the assumption

that the increasing social connectivity underlies the super-

linear scaling of certain socioeconomic quantities with city

size. Additionally, the UK data suggest that the super-

linear scaling of the total social connectivity holds for both
different means of communication and different national

urban systems.
2. Results
2.1. Superlinear scaling of social connectivity
For each city in Portugal, we measured the social connectivity

in terms of the total number of mobile phone contacts and the

total communication activity (call volume and number of

calls). Figure 1a shows the total number of contacts (cumulat-

ive degree), K ¼
P

i[Ski, for each Portuguese city (defined as

statistical city, larger urban zone or municipality, see Material

and methods) versus its population size, N. Here, ki is the

number of individual i’s contacts (nodal degree) and S is

the set of nodes assigned to a given city. The variation in K
is large, even between cities of similar size, so that a math-

ematical relationship between K and N is difficult to

characterize. However, most of this variation is likely due

to the uneven distribution of the telecommunication provi-

der’s market share, which for each city can be estimated by

the coverage s ¼ jSj/N, with jSj being the number of nodes

in a given city. While there are large fluctuations in the

values of s, we do not find a statistically significant trend

with city size that is consistent across all urban units (see

the electronic supplementary material). Indeed, rescaling

the cumulative degree by s, Kr ¼ K/s, substantially reduces

its variation (figure 1b). Note that this rescaling corresponds

to an extrapolation of the observed average nodal degree,

kkl ¼ K=jSj ¼ Kr=N, to the entire city population. Impor-

tantly, the relationship between Kr and N is now well

characterized by a simple power law, Kr / Nb, with exponent

b ¼ 1.12 . 1 (95% confidence interval (CI) [1.11, 1.14]). This

superlinear scaling holds over several orders of magnitude

and its exponent is in excellent agreement with that of most

urban socioeconomic indicators [11] and with theoretical pre-

dictions [12]. The small excess of b above unity implies a

substantial increase in the level of social interaction with

city size: every doubling of a city’s population results, on

average, in approximately 12% more mobile phone contacts

per person, as kkl/Nb�1 with b 2 1 � 0.12. This implies

that during the observation period (15 months) an average

urban dweller in Lisbon (statistical city, N ¼ 5.6 � 105)

accumulated about twice as many reciprocated contacts as

an average resident of Lixa, a rural town (statistical city,

N ¼ 4.2 � 103; figure 1c). Superlinear scaling with similar

values of the exponents also characterizes both the popu-

lation dependence of the rescaled cumulative call volume,

Vr ¼
P

i[S vi=s, where vi is the accumulated time user i
spent on the phone, and of the rescaled cumulative number

of calls, Wr ¼
P

i[Swi/s, where wi denotes the accumulated

number of calls initiated or received by user i (table 1).

Together, the similar values of the scaling exponents for

both the number of contacts (Kr) and the communication

activity (Vr and Wr) also suggest that city size is a less impor-

tant factor for the weights of links in terms of the call volume

and number of calls between each pair of callers. Other city

definitions and shorter observation periods [27] lead to simi-

lar results with overall b ¼ 1.0521.15 (95% CI [1.00, 1.20]).

The non-reciprocal (nREC) network (see Material and

methods) shows larger scaling exponents b ¼ 1.1321.24

(95% CI [1.05, 1.25]), suggesting that the number of social

solicitations grows even faster with city size than reciprocated
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Figure 1. Human interactions scale superlinearly with city size. (a) Cumulative degree, K, versus city population size, N, for three different city definitions in Portugal. (b)
Collapse of the cumulative degree onto a single curve after rescaling by the coverage, Kr ¼ K/s. For each city definition, the single values of Kr and N are normalized by
their corresponding average values, kKrl and kNl, for direct comparison across different urban units of analysis. (c) An average urban dweller of Lisbon has approximately
twice as many reciprocated mobile phone contacts, kkl, than an average individual in the rural town of Lixa. The fraction of mutually interconnected contacts (black
lines) remains unaffected, as indicated by the invariance of the average clustering coefficient, kCl. The map further depicts the location of the statistical cities and larger
urban zones in Portugal, with the exception of those located on the archipelagos of the Azores and Madeira.
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contacts. Our predictions for the complete mobile phone cov-

erage are, of course, limited as we observe only a sample of

the overall network (ksl � 20% for all statistical cities, see

Material and methods). Nevertheless, based on the fact that

the superlinear scaling also holds when considering only

better sampled cities with high values of s (see the electronic

supplementary material), and that there is no clear trend in s
with city size (so that potential sampling effects presumably

apply to urban units of all sizes), we expect that the observed

qualitative behaviour also applies to the full network.

For the UK network, despite the relatively short observation

period of 31 days, the scaling of reciprocal connectivity shows

exponents in the range b ¼ 1.0821.14 (95% CI [1.05, 1.17];

table 1). As landline phones may be shared by several people,

they do not necessarily reflect an individual-based network,

and the meaning of the average degree per device becomes lim-

ited. Therefore, and considering that the underlying data cover

more than 95% of all residential and business landlines (see

Material and methods), we did not rescale the interaction indi-

cators. Nevertheless, the power-law exponents for K, V and W
(table 1) support the superlinear scaling of the total social con-

nectivity consistent with Portugal’s individual-based network,

and suggest that this result applies to both different means of

communication and different national urban systems.

2.2. Probability distributions for individual social
connectivity

Previous studies of urban scaling have been limited to aggre-

gated, city-wide quantities [11], mainly due to limitations in

the availability and analysis of extensive individual-based

data covering entire urban systems. Here, we leverage the

granularity of our data to explore how scaling relations

emerge from the underlying distributions of network proper-

ties. We focus on Portugal as, in comparison with landlines,

mobile phone communication provides a more direct proxy

for person-to-person interactions [25,29,30] and is generally

known to correlate well with other means of communication

[21] and face-to-face meetings [31]. Moreover, for this part of

our analysis, we considered only regularly active callers who



Table 1. Scaling exponents b. The observation period of DT ¼ 409 days is the full extent of the Portugal dataset, while DT ¼ 92 days corresponds to the
first three consecutive months. For the call volume statistics, we discarded one larger urban zone (Ponta Delgada) due to a high estimation error of
Vr (s.e.m. . 20%). For the UK data, the interaction indicators, Y, are not rescaled by the coverage due to the consistently high market share of the
telecommunication provider. The indicator Klm is based on the cumulative number of links between landlines and mobile phones only (landline – landline
connections are excluded). Exponents were estimated by nonlinear least-squares regression (trust-region algorithm), with adj.-R2 . 0.98 for all fits.

city definition number network type DT (days) Y b 95% CI

Portugal

statistical city 140 reciprocal 409 degree (Kr) 1.12 [1.11, 1.14]

call volume (Vr) 1.11 [1.09, 1.12]

number of calls (Wr) 1.10 [1.09, 1.11]

92 degree (Kr) 1.10 [1.09, 1.11]

call volume (Vr) 1.10 [1.08, 1.11]

number of calls (Wr) 1.08 [1.07, 1.10]

non-reciprocal 409 degree (Kr) 1.24 [1.22, 1.25]

call volume (Vr) 1.14 [1.12, 1.15]

number of calls (Wr) 1.13 [1.12, 1.14]

larger urban zone 9(8) reciprocal 409 degree (Kr) 1.05 [1.00, 1.11]

call volume (Vr) 1.11 [1.02, 1.20]

number of calls (Wr) 1.10 [1.05, 1.15]

non-reciprocal 409 degree (Kr) 1.13 [1.08, 1.18]

call volume (Vr) 1.14 [1.05, 1.23]

number of calls (Wr) 1.13 [1.08, 1.18]

municipality 293 reciprocal 409 degree (Kr) 1.13 [1.11, 1.14]

call volume (Vr) 1.15 [1.13, 1.17]

number of calls (Wr) 1.13 [1.11, 1.14]

UK

urban audit city 24 reciprocal 31 degree (K ) 1.08 [1.05, 1.12]

degree, land-mobile (Klm) 1.14 [1.11, 1.17]

call volume (V ) 1.10 [1.07, 1.14]

number of calls (W ) 1.08 [1.05, 1.11]
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initiated and received at least one call during each successive

period of three months, so as to avoid a potential bias

towards longer periods of inactivity (see the electronic sup-

plementary material). The resulting statistical distributions

of the nodal degree, call volume and number of calls are

remarkably regular across diverse urban settings, with a

clear shift towards higher values with increasing city size

(figure 2).

To estimate the type of parametric probability distri-

bution that best describes these data, we selected as trial

models (i) the lognormal distribution, (ii) the generalized

Pareto distribution, (iii) the double Pareto-lognormal distri-

bution and (iv) the skewed lognormal distribution (see the

electronic supplementary material). We first calculated for

each interaction indicator, each model i and individual city

c the maximum value of the log-likelihood function ln Li,c

[32]. We then deployed it to quantify the Bayesian infor-

mation criterion (BIC) as BICi,c ¼ 22 ln Li,c þ hijScj, where hi

is the number of parameters used in model i and jScj is the

sample size (number of callers in city c). The model with

the lowest BIC is selected as the best model (see the electronic

supplementary material, tables S7–S9). We find that the stat-

istics of the nodal degree is well described by a skewed
lognormal distribution (i.e. k* ¼ ln k follows a skew-normal

distribution), whereas both the call volume and the number

of calls are well approximated by a conventional lognormal

distribution (i.e. v* ¼ ln v and w* ¼ ln w follow a Gaussian

distribution). The mean values of all logarithmic variables

are consistently increasing with city size (figure 2, insets).

While there are some trends in the standard deviations (e.g.

the standard deviation of k* is slightly increasing for the

municipalities and the standard deviation of v* is decreasing

for the statistical cities), overall, we do not observe a clear be-

haviour consistent across all city definitions. This indicates that

superlinear scaling is not simply due to the dominant effect

of a few individuals (as in a power-law distribution), but

results from an increase in the individual connectivity that

characterizes most callers in the city.

More generally, lognormal distributions typically appear as

the limit of many random multiplicative processes [33],

suggesting that an adequate model for the generation of new

acquaintances would need to consider a stochastic cascade of

new social encounters in space and time that is facilitated in

larger cities. As for the analysis of the city-wide quantities (sec-

tion 2.1), the average coverage of ksl � 20% may limit our

prediction for the complete communication network due
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to potential sampling effects [34,35]. However, as the basic

shape of the distributions is preserved even for those cities

with a very high coverage (see the electronic supplemen-

tary material, figure S6), we hypothesize that the observed

qualitative behaviour also holds for ksl � 100%.
2.3. Invariance of the average clustering coefficient
Finally, we examined the local clustering coefficient, Ci,

which measures the fraction of connections between one’s

social contacts to all possible connections between them

[36]; that is Ci ; 2zi/[ki(ki 2 1)], where zi is the total number

of links between the ki neighbours of node i. A high value

of Ci (close to unity) indicates that most of one’s contacts

also know each other, whereas if Ci ¼ 0, they are mutual

strangers. As larger cities provide a larger pool from which
contacts can be selected, the probability that two contacts

are also mutually connected would decrease rapidly if they

were established at random (see the electronic supplemen-

tary material). In contrast to this expectation, we find that

the clustering coefficient averaged over all nodes in a given

city, kCl ¼
P

i[S Ci=jSj, remains approximately constant

with kCl � 0:25 in the individual-based network in Portugal

(figures 1c and 3). Moreover, the clustering remains largely

unaffected by city size, even when taking into account the

link weights (call volume and number of calls, see the elec-

tronic supplementary material). The fact that we observe

only a sample of the overall mobile phone network in

Portugal may have an influence on the absolute value of

kCl [35], especially if tight social groups may prefer using

the same telecommunication provider. Nevertheless, we

expect that this potential bias has no effect on the invariance
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of kCl, as we do not find a clear trend in the coverage s with

city size (see the electronic supplementary material). Thus,

assuming that the analysed mobile phone data are a reliable

proxy for the strength of social relations [25], the constancy of

the average clustering coefficient with city size indicates, per-

haps surprisingly, that urban social networks retain much of

their local structures as cities grow, while reaching further

into larger populations. In this context, it is worth noting that

the mobile phone network in Portugal exhibits assortative

degree–degree correlations, denoting the tendency of a node

to connect to other nodes with similar degree [37] (see the elec-

tronic supplementary material). The presence of assortative

degree–degree correlations in networks is known to allow

high levels of clustering [38].
2.4. Acceleration of spreading processes
The empirical quantities analysed so far are topological key

factors for the efficiency of network-based spreading proces-

ses, such as the diffusion of information and ideas or the

transmission of diseases [39]. The degree and communication

activity (call volume and number of calls) indicate how fast

the state of a node may spread to nearby nodes [15,40,41],

whereas the clustering largely determines its probability of

propagating beyond the immediate neighbours [42,43].

Hence, considering the invariance of the link clustering, the

connectivity increase (table 1) suggests that individuals living

in larger cities tend to have similar, scale-invariant gains in
their spreading potential compared with those living in smaller

towns. Given the continuous shift of the underlying distri-

butions (figure 2), this increasing influence seems to involve

most urban dwellers. However, several non-trivial network

effects such as community structures [24] or assortative

mixing by degree [44] may additionally play a crucial role in

the resulting spreading dynamics.

Thus, to directly test whether the increasing connectivity

implies an acceleration of spreading processes, we applied a

simple epidemiological model to Portugal’s individual-

based mobile phone network. The model has been intro-

duced in reference [21] for the analysis of information

propagation through mobile phone communication, and is

similar to the widely used susceptible–infected model in

which the nodes are either in a susceptible or infected state

[15]. The spreading is captured by the dynamic state variable

ji(t) [ {0, 1} assigned to each node i, with ji(t) ¼ 1 if the node

is infected (or informed) and ji(t)¼ 0 otherwise. For a given

city c, we set at time t ¼ 0 the state of a randomly selected

node i [ Sc to si(0) ¼ 1, whereas all other nodes are in the

susceptible (or not-informed) state. At each subsequent time

step, an infected node i can pass the information on to each

susceptible nearest neighbour j with probability Pij ¼ xnij,

where nij is the weight of the link between node i and

node j in terms of the accumulated call volume, and the

parameter x determines the overall spreading speed. Hence,

the chance that two individuals will communicate the infor-

mation increases with the accumulated time they spend

on the phone. In accordance with reference [21], we choose

x ¼ 1/n0.9 ¼ 1/6242 s21, with n0.9 being the value below

which 90% of all link weights in the network fall. This

threshold allows reduction of the problem of long simulation

running times owing to the broad distribution of the link

weights, whereas Pij/ nij holds for 90% of all links in the net-

work. The propagation is always realized for the strongest

10% of the links (Pij ¼ 1, see [21]). For each simulation run

k, we measured the time tc,k(nI) until nI ¼
P

i[Sc
ji(t) nodes

in the given city were infected and estimated the spreading

speed as Rc,k ¼ nI/tc,k(nI). The average spreading speed for

city c is then given by averaging over all simulation runs,

Rc ¼ kRc,kl. The spreading paths are not restricted to city

boundaries, but may involve the entire nationwide network.

We set the total number of infected nodes to nI ¼ 100 and dis-

carded four statistical cities and 17 municipalities for which

jSj, nI. Examples for the infection dynamics and the distri-

bution of the spreading speed resulting from single runs

are provided in the electronic supplementary material,

figure S10. Figure 4 depicts the resulting values of R for all

cities. Indeed, we find a systematic increase of the spreading

speed with city size, that can again be approximated by a

power-law scaling relation, R/ Nd, with d ¼ 0.1120.15

(95% CI [0.02, 0.26]). Similar increases are also found for simu-

lations performed on the unweighted network (see the

electronic supplementary material, figure S11). These numerical

results thus confirm the expected acceleration of spreading

processes with city size, and are also in line with a recent simu-

lation study on synthetic networks [14]. Moreover, such an

increase in the spreading speed is considered to be a key

ingredient for the explanation of the superlinear scaling of

certain socioeconomic quantities with city size [12,14] as, for

instance, rapid information diffusion and the efficient exchange

of ideas over person-to-person networks can be linked to

innovation and productivity [12,45].
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3. Discussion
By mapping society-wide communication networks to the

urban areas of two European countries, we were able to

empirically test the hypothesized scale-invariant increase of

human interactions with city size. The observed increase is

substantial and takes place within well-defined behavioural

constraints in that (i) the total number of contacts (degree)

and the total communication activity (call volume and
number of calls) obey superlinear power-law scaling in agree-

ment with theory [12] and resulting from a multiplicative

increase that affects most citizens, whereas (ii) the average

local clustering coefficient does not change with city size.

Assuming that the analysed data are a reasonable proxy for

the strength of the underlying social relations [25], and that

our results apply to the complete interaction networks, the

constant clustering is particularly noteworthy as it suggests

that even in large cities we live in groups that are as tightly

knit as those in small towns or ‘villages’ [46]. However, in

a real village, we may need to accept a community imposed

on us by sheer proximity, whereas in a city, we can follow the

homophilic tendency [47] of choosing our own village—

people with shared interests, profession, ethnicity, sexual

orientation, etc. Together, these characteristics of the analy-

sed communication networks indicate that larger cities may

facilitate the diffusion of information and ideas or other

interaction-based spreading processes. This further supports

the prevailing hypothesis that the structure of social networks

underlies the generic properties of cities, manifested in the

superlinear scaling of almost all socioeconomic quantities

with population size.

The wider generality of our results remains, of course, to

be tested on other individual-based communication data, ide-

ally with complete coverage of the population (ksl � 100%).

Nevertheless, the revealed patterns offer a baseline to

additionally explore the differences of particular cities with

similar size, to compare the observed network properties

with face-to-face interactions [31] and to extend our study

to other cultures and economies. Furthermore, it would be

instructive to analyse in greater detail how cities affect

more specific circles of social contacts such as family, friends

or business colleagues [22,25]. Finally, it remains a challenge

for future studies to establish the causal relationship between

social connectivity at the individual and organizational

levels and the socioeconomic characteristics of cities, such

as economic output, the rate of new innovations, crime or

the prevalence of contagious diseases. To that end, in combi-

nation with other socioeconomic or health-related data, our

findings might serve as a microscopic and statistical basis

for network-based interaction models in sociology [20,48],

economics [7,49] and epidemiology [18].
4. Material and methods
4.1. Datasets
The Portugal dataset consists of 440 million call detail records

(CDRs) from 2006 and 2007, covering voice calls of �2 million

mobile phone users and thus �20% of the country’s popula-

tion (in 2006, the total mobile phone penetration rate was

�100%, survey available at http://www.anacom.pt). The data

have been collected by a single telecom service provider for

billing and operational purposes. The overall observation

period is 15 months during which the data from 46 consecutive

days are lacking, resulting in an effective analysis period of

DT ¼ 409 days. To safeguard privacy, individual phone numbers

were anonymized by the operator and replaced with a unique

security ID. Each CDR consists of the IDs of the two connected

individuals, the call duration, the date and time of the call

initiation, as well as the unique IDs of the two cell towers routing

the call at its initiation. In total, there are 6511 cell towers for

which the geographical location was provided, each serving on

average an area of 14 km2, which reduces to 0.13 km2 in urban

http://www.anacom.pt
http://www.anacom.pt
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areas. The UK dataset contains 7.6 billion calls from a one-month

period in 2005, involving 44 million landline and 56 million

mobile phone numbers (greater than 95% of all residential and

business landlines countrywide). For customer anonymity, each

number was replaced with a random, surrogate ID by the oper-

ator before providing the data. We had only partial access to the

connections made between any two mobile phones. The operator

partitioned the country into 5500 exchange areas (covering

49 km2 on average), each of which comprises a set of landline

numbers. The dataset contains the geographical location of

4000 exchange areas.

4.2. City definitions
Because there is no unambiguous definition of a city we explored

different units of analysis. For Portugal, we used the following

city definitions: (i) statistical cities (STC), (ii) municipalities

(MUN) and (iii) larger urban zones (LUZ). STC and MUN are

defined by the Portuguese National Statistics Office (http://

www.ine.pt), which provided us with the 2001 population

data, and with the city perimeters (shapefiles containing spa-

tial polygons). The LUZ are defined by the European Union

Statistical Agency (Eurostat) and correspond to extended urban

regions (the population statistics and shapefiles are publicly

available at http://www.urbanaudit.org). For the LUZ, we com-

piled the population data for 2001 to assure comparability with

the STC and MUN. In total, there are 156 STC, 308 MUN and

nine LUZ. The MUN are an administrative subdivision and par-

tition the entire national territory. Although their interpretation as

urban units is flawed in some cases, the MUN were included in the

study as they cover the total resident population of Portugal. There

are six MUN which correspond to an STC. For the UK, we focused

on urban audit cities (UACs) as defined by Eurostat, being equiv-

alent to local administrative units, level 1 (LAU-1). Thus, using

population statistics for 2001 allows for a direct comparison with

the MUN in Portugal (corresponding to LAU-1). In total, the UK

contains 30 UAC.

4.3. Spatial interaction networks
For Portugal, we inferred two distinct types of interaction net-

works from the CDRs: in the reciprocal (REC) network, each

node represents a mobile phone user, and two nodes are con-

nected by an undirected link if each of the two corresponding

users initiated at least one call to the other. In accordance

with previous studies on mobile phone data [21,22], this restric-

tion to reciprocated links avoids subscriptions that indicate

business usage (large number of calls which are never returned)

and should largely eliminate call centres or accidental calls to

wrong subscribers. In the nREC network, two nodes are con-

nected if there has been at least one call between them. The

nREC network thus contains one-way calls that were never reci-

procated, presumably representing more superficial interactions

between individuals who might not know each other personally.

Nevertheless, we eliminated all nodes which never received or
never initiated any call, so as to avoid a potential bias induced

by call centres and other business hubs. We performed our

study on the largest connected component (LCC, corresponding

to the giant weakly connected component for the nREC network)

extracted from both network types (see the electronic supplemen-

tary material, table S1). In order to assign a given user to one of

the different cities, we first determined the cell tower which

routed most of his/her calls, presumably representing his or her

home place. Subsequently, the corresponding geographical coor-

dinate pairs were mapped to the polygons (shapefiles) of the

different cities. Following this assignment procedure, we were

left with 140 STC (we discarded five STC for which no shapefile

was available and 11 STC without any assigned cell tower), nine

LUZ and 293 MUN (we discarded 15 MUN without any assigned

cell tower), see the electronic supplementary material, figure S1

and table S2, for the population statistics. The number of assigned

nodes is strongly correlated with city population size (r ¼ 0.95,

0.97, 0.92 for STC, LUZ and MUN, respectively, with p-value ,

0.0001 for the different urban units), confirming the validity of

the applied assignment procedure. To further test the robustness

of our results, we additionally determined the home cell tower

by considering only those calls that were initiated between 22.00

and 07.00, yielding qualitatively similar findings to those reported

in the main text. For the UK, owing to limited access to calls

among mobile phones and to insufficient information about

their spatial location, we included only those mobile phone num-

bers that had at least one connection to a landline phone.

Subsequently, in order to reduce a potential bias induced by

business hubs, we followed the data-filtering procedure used in

[49]. Hence, we considered only the REC network and we

excluded all nodes with a degree larger than 50, as well as all

links with a call volume exceeding the maximum value observed

for those links involving mobile phone users. Summary statistics

are given in the electronic supplementary material, table S3. We

then assigned an exchange area together with its set of landline

numbers to a UAC, if the centre point of the former is located

within the polygon of the latter. This results in 24 UAC containing

at least one exchange area (see the electronic supplementary

material, figure S2 and table S4).
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